首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3,4,5,3',4'-Pentachlorobiphenyl (PenCB), one of the most potent 3-methylcholanthrene (MC)-type inducers of hepatic enzymes in animals, caused a remarkable induction of liver microsomal monooxygenases, particularly 7-ethoxyresorufin (7-ER) O-deethylase, benzo(a)pyrene (BP) 3-hydroxylase, and testosterone 16 alpha-hydroxylase in chickens, but not NADPH-cytochrome c(P-450) reductase and cytochrome b5. Two forms of cytochrome P-450 (P-450) in liver microsomes of PenCB-treated chickens were purified and characterized. The absorption maxima of the CO-reduced difference spectra of both enzymes (chicken P-448 L and chicken P-448 H) were at 448 nm. From the oxidized form of their absolute spectra, chicken P-448 L was a low-spin form and chicken P-448 H was a high-spin form. They had molecular masses of 56 and 54 kDa, respectively. In a reconstituted system, 7-ER O-deethylation, BP 3-hydroxylation, and testosterone 16 alpha-hydroxylation were catalyzed at high rates by chicken P-448 L but not by chicken P-448 H. Chicken P-448 L also catalyzed N-demethylation of aminopyrine, benzphetamine, and ethylmorphine with relatively low activity. On the other hand, chicken P-448 H functioned only in catalyzing estradiol 2-hydroxylation. These results were supported by an inhibition study of microsomal monooxygenases using an antibody against each enzyme. Immunochemical studies revealed that the enzymes differ from each other but are both inducible by PenCB-treatment. Chicken P-448 L and chicken P-448 H respectively comprise about 82 and 7% of the total P-450 content in chicken liver microsomes.  相似文献   

2.
Two constitutive forms of cytochrome P-450 isozyme were isolated from microsomes prepared from a single bovine liver. The two highly purified isozymes were electrophoretically homogeneous on SDS-polyacrylamide gel and their apparent minimum molecular weights were estimated to be 50 000 and 55 000. The isozyme of smaller molecular weight, designated cytochrome P-450A, and the one of large molecular weight, designated cytochrome P-450B, were distinct proteins by the criteria, SDS-polyacrylamide gel electrophoresis, peptide maps, amino acid contents. To reveal the immunochemical relation between these two isozymes, antibodies to each isozyme was raised in rabbit. Antibodies to cytochrome P-450A gave a single precipitin line against its antigen in Ouchterlony double-diffusion plates, but did not cross-react against cytochrome P-450B. On the other hand, antibodies to cytochrome P-450B formed a single precipitin line with its antigen and did not show any cross-reactivity against cytochrome P-450B. These results indicate that two isozymes are immunochemically distinct. This conclusion was supported by the results from immunochemical staining of the SDS-polyacrylamide gel electrophoretogram of the purified isozymes and detergent-solubilized bovine liver microsomes transferred to the nitrocellulose sheet. Both cytochromes P-450 showed high catalytic activities toward (+)-benzphetamine and aminopyrine in reconstituted systems, indicating that both enzymes have a high turnover number for N-demethylation.  相似文献   

3.
Induction by hexachlorobenzene (HCB) of the liver microsomal system of metabolism of xenobiotics has been studied in comparison with the inductions by phenobarbital (PB) and 3-methylcholanthrene (MC). It has been shown that HCB increases the content of cytochrome P-450 in the microsomes. Like PB, HCB induces the activities of aminopyrine- and benzphetamine-N-demethylases. At the same time HCB increases also the activities of benzpyrenehydroxylase and 7-ethoxyresorufin-O-deethylase, which are characteristic of the MC-induction. However, sodium dodecyl sulphate (SDS)-electrophoresis on polyacrylamide gel has revealed that HCB, similar to PB, induces protein with Mr = 52 000 (cytochrome P-450), but not the protein with Mr = 56 000, which is the main isoenzyme of cytochrome P-450 in MC-microsomes (P-448). Using specific antibodies to isolated cytochromes P-450 and P-448 (anti-P-450 and anti-P-448) it has been found by rocket immunoelectrophoresis that in HCB-treated microsomes 20% of the total cytochrome P-450 consist of PB-form and about 10% comprise cytochrome P-488. It has also been found that anti-P-448 totally inhibit 7-ethoxyresorufin-O-deethylase activity of HCB-microsomes while anti-P-450 was inactive. The data presented give direct proof that HCB exemplifies an individual chemical compound which is able to initiate the synthesis of both PB-form and MC-form of the cytochrome P-450.  相似文献   

4.
Effect of 2-methoxy-4-aminoazobenzene (2-MeO-AAB) and 3-methylcholanthrene (MC) on the induction of microsomal cytochrome P-448 isozymes in primary cultured rat hepatocytes was examined by means of immunochemical methods such as protein A-enzyme-linked immonosorbent assay and immuno-blots using anti-rat cytochrome P-448 monoclonal antibodies and by means of bacterial mutation tests. Although 2-MeO-AAB selectively induced cytochrome P-448H and MC induced both cytochrome P-448H and a low spin form of cytochrome P-448 (P-448L) in the liver of rats, addition of these chemicals to primary cultured rat hepatocytes resulted in selective induction of cytochrome P-448L, as determined by the immunological methods. This was substantiated by the bacterial mutation test using Salmonella typhimurium TA 98 bacteria and two aromatic amine substrates with different specificities to the cytochrome P-448 isozymes. These results suggest that the responses of rat hepatocytes to cytochrome P-450 inducers are different in in vivo and in vitro.  相似文献   

5.
Two constitutive forms of cytochrome P-450, designated P-450ib and P-450ic, were purified from intestinal mucosa microsomes of untreated rabbits. P-450ib and P-450ic have minimal molecular weights of 56 000 and 49 000, respectively, as determined by calibrated sodium dodecyl sulphate polyacrylamide gel electrophoresis. The CO-reduced difference spectral maximum of cytochrome P-450ib is at 450 nm and P-450ic is at 451 nm. Both the cytochromes preferentially demethylate aminopyrine, benzphetamine and N,N-dimethylaniline in the presence of NADPH-cytochrome P-450 reductase. Cytochrome P-450ib has absorption maxima at 417, 535 and 573 nm in the oxidized form, indicating that this cytochrome is in a low-spin state. Ouchterlony double-diffusion studies show that cytochrome P-450ib does not cross-react with antisera against liver cytochrome P-450LM2 purified from phenobarbital-treated rabbits, but P-450ic cross-reacts with spur formation. Unlike cytochrome P-450ib, P-450ic is very similar, if not identical, to liver cytochrome P-450LM2 on the basis of its molecular weight, spectral properties, catalytic activities and immunochemical properties.  相似文献   

6.
Using immunochemical methods, the identity of cytochrome P-448 from liver microsomes of mice of "inducible" and "non-inducible" lines during induction by xenobiotics of MX-type (3-methylcholanthrene, 3,4-benzpyrene, 2,3,7,8-tetrachlorodibenzodioxin) was established. This hemoprotein form was shown to play a role in 3,4-benzpyrene metabolism. Monospecific antibodies to purified cytochromes P-448 and P-450 were obtained; the cytochrome P-448 content in microsomes was measured by rocket immunoelectrophoresis. The content of cytochrome P-448 in control and phenobarbital-induced microsomes makes up to 10-15% of the total hemoprotein content determinable from the CO-spectra. 3-Methylcholanthrene and 3,4-benzpyrene injected into "non-inducible" mice cause no increase in the content of this hemprotein form, whereas in mice induced with 2,3,7,8-tetrachlorodibenzodioxin it rises to 50%. Under these conditions, an almost 100% inhibition of 3,4-benzpyrene metabolism by antibodies to cytochrome P-448 is observed. Antibodies against cytochrome P-448 obtained from liver microsomes of 3-methylcholanthrene-induced mice cause a 90% inhibition of 3,4-benzpyrene in microsomes induced with 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzodioxin.  相似文献   

7.
A total of nine forms of cytochrome P-450 were purified to homogeneity from liver microsomes of male Wistar rats. They were P-451 I and P-451 II from untreated rats, P-450 II and P-450 III from phenobarbital-treated rats, MC-P-448 L and MC-P-448 H from 3-methylcholanthrene-treated rats, and P-452, P-448 L, and P-448 H from 3,4,5,3',4'-pentachlorobiphenyl-treated rats. Among them, MC-P-448 L and MC-P-448 H were indistinguishable from P-448 L and P-448 H, respectively, with regard to electrophoretic, spectral, catalytic and immunochemical properties, and thus seven forms were distinct hemoproteins. The minimal molecular weight of each form was as follows: P-451 I (49,000), P-451 II (52,000), P-450 II (52,000), P-450 III (53,500), P-452 (48,000), P-448 L (56,000), P-448 H (54,000). Judging from the oxidized absolute spectra, P-448 H was a high-spin form and the others were of low-spin type. In a reconstituted system, N-demethylations of benzphetamine and aminopyrine were catalyzed by most of the forms at comparable rates. On the other hand, the activities for the oxidations of benzo[a]pyrene, 7-ethoxycoumarin, biphenyl, and estradiol-17 beta varied greatly among the forms of cytochrome P-450. The most efficient catalysts were as follows: P-448 L and P-451 II for benzo[a]pyrene 3-hydroxylation; P-448 L for 7-ethoxycoumarin O-deethylation; P-448 L, P-451 II, and P-448 H for biphenyl 4-hydroxylation; P-448 L and P-448 H for biphenyl 2-hydroxylation; and P-451 II and P-448 H for estradiol 2-hydroxylation. P-451 I, P-450 II, and P-450 III were somewhat poorer catalysts in metabolizing all the substrates except for benzphetamine and aminopyrine, but their substrate specificities were still distinguishable from one another. Of all the purified cytochrome P-450's, P-452 showed the least ability to metabolize all the substrates. Judging from the properties, it appears that six forms in male Wistar rats correspond to the distinct forms of cytochrome P-450 in Long-Evans and/or Sprague-Dawley rats reported by other workers, but P-451 I is a new constitutive isozyme in Wistar rats.  相似文献   

8.
Chromatography on 1.8-diaminooctyl-Sepharose and DEAE-Sephacel resulted in 4 fractions of cytochrome P-450 from liver microsomes of 3-methylcholanthrene-induced Wistar rats. All the four fractions differed in terms of their absorption maxima in the CO-reduced state, Mr and catalytic activity. Only one cytochrome fraction (cytochrome P-450 C) possessed a high activity upon benz(a)pyrene hydroxylation. All cytochrome P-450 forms were characterized by a low rate of aminopyrine N-demethylation. Antibodies against cytochrome P-450 C (P-448) (anti-P-448) were raised. Cytochromes of fractions A, B1 and B2 in the Ouchterlony reaction of double immunodiffusion did not give precipitation bands with anti-P-448. Neither of the four cytochrome P-450 forms interacted with the antibodies raised against cytochrome P-450 isolated from liver microsomes of rats induced with phenobarbital. The procedure developed is applicable to the isolation of multiple forms of cytochrome P-450 from liver microsomes of 3-methylcholanthrene-induced rats. Using rocket immunoelectrophoresis, cytochrome P-450 C possessing a high (as compared to benz(a)pyrene metabolism) activity (18 nmol/min/nmol cytochrome) and a high (60-70%) content in 3-methylcholanthrene-induced rat liver microsomes was shown to give a relatively high yield.  相似文献   

9.
Two cytochrome P-448 fractions, B1 and B2, were isolated from liver microsomes of 3,4-benzpyrene-induced inbred C57Bl/6 mice, using chromatography on octyl-Sepharose CL-4B and on Whatman 52E. During subsequent chromatography on hydroxylapatite fraction B1 was separated into 2 subfractions, G1 and G2. Cytochrome fractions B1, G1 and G2 have similar "peptide maps" differing from that of fraction B2. Cytochrome fraction B1 is immunologically identical to G2, partly to fraction B2 but is distinct from fraction G1. Fraction G2 is identified as the form of cytochrome P-448 catalyzing the hydroxylation of 3,4-benzpyrene and 7-ethoxyresorufin and existing in a low spin form. Cytochrome fraction G1 is apparently identical to the form P3-450. Fraction B2 was not yet described in current literature, since cytochrome P-448 (Mr = 53,000 Da) was identified only after the induction of mice with 3,4-benzpyrene but not with other inducers, e.g., polycyclic aromatic hydrocarbons.  相似文献   

10.
The regularities of changes in the functional activity of the microsomal monooxygenase system reconstituted by self-assembly from intact rat liver microsomes solubilized with 4% sodium cholate were studied at variable levels of NADPH-cytochrome P-450 reductase and the 3-methylcholanthrene-induced form of cytochrome P-450. Using antibodies against cytochrome P-448, the role of cytochrome P-448 in the overall reaction of benzopyrene hydroxylation induced in the microsomal membrane by a set of molecular forms of cytochrome P-450 was investigated. The effect of NADPH-cytochrome P-450 reductase and cytochrome P-448 incorporation into reconstituted microsomal membranes on benzpyrene metabolism suggests that in intact microsomal membranes benzopyrene metabolism induced by different forms of cytochrome P-450, with the exception of P-448, is limited by reductase is not the limiting component; however, cytochrome P-448 reveals its maximum activity at the cytochrome to reductase optimal molar ratio of 5:1; above this level, the catalytic activity of cytochrome P-448 is lowered.  相似文献   

11.
The "fast" phase reduction of microsomal cytochromes P-450 and P-448 and their benz(a)pyrene (BP) hydroxylase activity was investigated as a function of menadione concentrations. Within a narrow concentration range (1.5-3 microM) menadione activates cytochrome P-448 reduction and the BP hydroxylase activity. At higher concentrations menadione inhibits cytochromes P-450 and P-448 reduction and BP hydroxylation with participation of the both cytochromes. These data suggest that menadione molecules present in membrane lipids serve as an additional electron carrier to cytochrome P-448, the active site of which is embedded into lipids. The activating effect is unobserved is case of cytochrome P-450 with an active site localized in the aqueous phase. The number of different BP metabolites formed at low (3 microM) menadione concentrations in the microsomes of rats induced with 3-methylcholanthrene (MC) and phenobarbital (PB) was compared. In PB-induced microsomes the amount of 7,8-dihydrodiol rises whereas the total content of BP metabolites decreases. Contrariwise, in MC-induced microsomes the synthesis of all BP metabolites is augmented. Menadione has a very weak effect on the ratio of different BP metabolites in PB- and MC-microsomes, but strongly inhibits the formation of more polar metabolites. This results in a marked reduction of the number of "dangerous" BP diolepoxides.  相似文献   

12.
Cytochrome P-448H/L-enriched and cytochrome P-448L-enriched microsomes were prepared from the livers of Sprague-Dawley rats treated with 3-methylcholanthrene (MC) and with a combination of MC and carbon tetrachloride, respectively, and their activities for mediating mutagenic activation of 9 carcinogenic aromatic amines and benzo[a]pyrene, which are found to be different from cyt. P-450 isozymes as to mutagenic activation, were compared on the basis of microsomal cytochrome P-450 content using Salmonella typhimurium TA98 as a tester bacterium. With regard to the substrate-specificity of cytochrome P-448 isozymes, the present results reflected the reported results with use of a cytochrome P-450-reconstituted system. These findings indicate that the mutation test with cytochrome P-448H/L-enriched and cytochrome P-448L-enriched microsomes could be used as a simple method for the determination of the cytochrome P-448 isozymes responsible for the mutagenic activation of carcinogens and mutagens without the use of a cytochrome P-450-reconstituted system.  相似文献   

13.
1. Microsomal fractions isolated from various housefly strains have been characterized with respect to multiple forms of cytochrome P-450 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 2. Susceptible NAIDM houseflies were pretreated with known inducers of cytochrome P-450, and their microsomal electrophoretic profiles were compared to control NAIDM microsomes, using as standards partially purified cytochrome P-450s from noninduced NAIDM houseflies. 3. Tentatively, at least five different species of cytochrome P-450 may exist in the NAIDM housefly strain. 4. A comparison of the microsomal electrophoretic profile of different housefly strains also indicates the presence of at least two additional cytochrome P-450 species. 5. Induction with alpha-pinene and phenobarbital was expressed by a shift of the maximum absorbance at 452 nm in the CO-difference spectrum to lower wavelengths in the NAIDM strain; whereas, beta-naphthoflavone, although increasing the amount of cytochrome P-450, did not change the wavelength of maximum absorbance. 6. Cytochromes of the P-452 type appear to predominate in the susceptible NAIDM strain, while cytochromes of the P-450 and P-448 types predominate in resistant strains.  相似文献   

14.
Cytochrome P-450 induction in rat liver microsomes after intravenous injections of submicrone emulsions of nine perfluorochemicals (2 g of PFC per kg of body weight) was investigated. A comparison of physico-chemical properties of the fluorocarbons revealed that their activity as cytochrome P-450 inducers is determined by their solubility in H2O and lipids as well as by the pressure of their saturated vapours at 37 degrees C. The fluorocarbons capable of inducing cytochrome P-450 have a molecular mass of 400-550 Da. The presence of heteroatoms (N and O) and some structural peculiarities of the perfluorochemicals do not influence the ability of the fluorocarbons to induce cytochrome P-450.  相似文献   

15.
Using hydrophobic and ion-exchange chromatography, cytochromes P-450 and P-448 from liver microsomes of C 57 BL mice induced by phenobarbital and 3-methylcholantrene were isolated. The cytochromes purified to homogeneity as evidenced from SDS polyacrylamide gel electrophoresis were characterized in terms of molecular weight and catalytic and spectral properties and by peptide mapping. Cytochrome P-450, in contrast to cytochrome P-448, was not bound to the ion-exchanger and was eluted in a void volume. Cytochrome P-450 (Mr = 51 000) elicits a low spin signal and reveals a high catalytic activity toward aminopyrine and a low catalytic activity toward benz(a)pyrene. Cytochrome P-448 (Mr = 55 000) elicits both high an low spin signals and reveals a high catalytic activity toward benz(a)pyrene and a low catalytic activity toward aminopyrine. Limited proteolysis with papain demonstrated the differences in the proteins primary structure.  相似文献   

16.
Simple and informative method for the elucidation of de novo synthesized forms of microsomal cytochrome P-448 induced by 3-methylcholanthrene and 2,3,7,8-tetrachlordibenzo-p-dioxine has been developed. The method is based on gel fluorography upon electrophoretic separation of microsomal proteins obtained from the liver of rats pre-treated with the inducers of monooxygenase system components and then with 14C-leucine. At least two forms of cytochrome P-448 (with molecular weight of 56000 and 53000) were shown to be de novo synthesized under the influence of 3-methylcholanthrene and 2,3,7,8-tetrachlodbibenzo-p-dioxine.  相似文献   

17.
T Iyanagi  F K Anan  Y Imai  H S Mason 《Biochemistry》1978,17(11):2224-2230
Hepatic microsomal NADPH-cytochrome P-450 reductase was solubilized from rabbit liver microsomes in the presence of detergents and purified to homogeneity by column chromatography. The purified reductase had a molecular weight of 78 000 and contained 1 mol each of FAD and FMN per mol of enzyme. On reduction with NADPH in the presence of molecular oxygen, an 02-stable semiquinone containing one flavin free radical per two flavins was formed, in agreement with previous work on purified trypsin-solubilized reductase. The reduction of oxidized enzyme by NADPH, and autoxidation of NADPH-reduced enzyme by air, proceeded by both one-electron equivalent and two-electron equivalent mechanisms. The reductase reduced cytochrome P-450 (from phenobarbital-treated rabbits) and cytochrome P-448 (from 3-methylcholanthrene-treated rabbits). The rate of reduction of cytochrome P-450 increased in the presence of a substrate, benzphetamine, but that of cytochrome P-448 did not.  相似文献   

18.
Three cytochrome P-450 preparations, designated as cytochrome P-450ca, cytochrome P-450cb, and cytochrome P-448c fraction, were separated and purified about 23-, 50-, and 29-fold, respectively, from the cholate extracts of rabbit colon mucosa microsomes. Their specific contents were 1.2, 2.6, and 1.5 nmol of cytochrome P-450 per mg of protein, respectively. Cytochrome P-450ca and cytochrome P-450cb migrated as heme-containing polypeptide bands with molecular weights of about 53,000 and 57,000, respectively, on SDS-polyacrylamide gel electrophoresis. The CO-reduced difference spectra of cytochrome P-450ca, cytochrome P-450cb, and cytochrome P-448c fraction showed maxima at 451, 450, and 449 nm, respectively. Cytochrome P-450ca efficiently catalyzed the omega-hydroxylation of prostaglandin A1 (PGA1) and the omega- and (omega-1)-hydroxylation of caprate, laurate, and myristate in the reconstituted system containing cytochrome P-450ca, NADPH-cytochrome P-450 reductase, cytochrome b5, and phosphatidylcholine. In contrast, cytochrome P-450cb and cytochrome P-448c fraction had no detectable activity toward PGA1 and fatty acids. Both catalyzed aminopyrine and benzphetamine N-demethylation. Cytochrome P-448c fraction also hydroxylated benzo(a)pyrene, and phosphatidylinositol or phosphatidylserine exhibited a stimulatory effect on this activity. The results show that rabbit colon microsomes contain catalytically different cytochrome P-450, one of which is specialized for the omega-oxidation prostaglandins, the others being involved in the metabolism of exogenous compounds such as drugs and polycyclic hydrocarbons.  相似文献   

19.
The activity of cytochrome P-450 dependent monooxygenase system from rat liver microsomes after induction by phenobarbital and 3-methylcholantrene in early neonatal period (3-16 days after birth) was studied. It was found that the total amount of cytochrome P-450 increases after injection of these inducers in neonatal rats of all age groups. In parallel, in the case of 3-methylcholantrene induction the benz(a)pyrene hydroxylase and 7-ethoxyresorufin deethylase activities increase; phenobarbital induction causes a rise in the benzphetamine-N-demethylase and benz(a)pyrene hydroxylase activities. Immunochemical analysis involving the use of antibodies specifically directed against cytochrome P-450 of adult rats revealed that the level of cytochrome P-450 in the case of 3-methylcholantrene induction increases from 5 to 50%, whereas that of cytochrome P-450 upon phenobarbital induction increases from 5 to 40% in liver microsomes of 3- and 16-day-old rats. The mode of inhibition of various substrates metabolism by antibodies in neonatal rat microsomes suggests that the 3-methylcholantrene-induced cytochrome P-448, like in adult rats, participates in the hydroxylation of benz(a)pyrene and O-deethylation of 7-etoxyresorufin. The participation of phenobarbital-induced cytochrome P-450 in the metabolism of benzphetamine and aldrin in neonatal rats is much lower than in the adult ones. The metabolism of benz(a)pyrene in phenobarbital-induced neonatal rat microsomes in all age groups is not inhibited by antibodies. The age-dependent differences in inhibition of metabolism and the increase in the benz(a)pyrene hydroxylase activity in phenobarbital-induced rats suggest that the spectrum of inducible forms of cytochrome P-450 in neonatal rats differ from that in adult animals.  相似文献   

20.
Two forms of cytochrome P-450, designated P-448a and P-448b, were purified from intestinal mucosa microsomes of rabbits treated with 3-methylcholanthrene. Both the cytochromes had absorption maxima at 448 nm in the carbon monoxide-reduced difference spectra. They exhibited comparable catalytic activities with benzo(a)pyrene, 7-ethoxycoumarin, and 7-ethoxyresorufin, when reconstituted with hepatic NADPH-cytochrome c reductase and phosphatidylserine. P-448a was apparently homogeneous on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and its monomeric molecular weight was estimated to be 58,000. The oxidized form had absorption maxima at 416, 512 and 571 nm, indicative of the low spin state. Thus P-448a appeared to be similar to one form of P-450, which was induced in rabbit liver by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). On the other hand, SDS-PAGE of P-448b gave a single major protein band with a monomeric molecular weight of 55,500, indicating that P-448b can be distinguished from P-448a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号