首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The global pool of all metabolites in a cell, or metabolome, is a reflection of all the metabolic functions of an organism under any particular growth condition. In the absence of in situ methods capable of universally measuring metabolite pools, intracellular metabolite measurements need to be performed in vitro after extraction. In the past, a variety of cell lysis methods were adopted for assays of individual metabolites or groups of intermediates in pathways. In this study, metabolites were extracted from Escherichia coli using six different commonly used procedures including acid or alkaline treatments, permeabilization by freezing with methanol, high-temperature extraction in the presence of ethanol or methanol, and by lysis with chloroform-methanol. Metabolites were extracted by the six methods from cells grown under identical conditions and labeled with [14C]glucose. The metabolomes were compared after 2-dimensional thin-layer chromatography of labeled compounds. For global analysis, extraction with cold (-40 degrees C) methanol showed the greatest promise, allowing simultaneous resolution of more than 95 metabolite spots. In contrast, 80 or less spots were obtained with other extraction methods. Extraction also influenced quantitative analysis of particular compounds. Metabolites such as adenosine exhibited up to 20-fold higher abundance after cold methanol extraction than after extraction with acid, alkali, or chloroform. The simplicity, rapidity, and universality of cold methanol extraction offer great promise if a single method of lysis is to be adopted in metabolome analysis.  相似文献   

2.
An automated sampling device coupled to a stirred tank reactor was developed for monitoring intracellular metabolite dynamics. Sample flasks fixed in transport magazines were moved by a step engine in a way that each sample flask was filled within 220 ms, resulting in a sampling rate of 4.5 s-1. Rapid inactivation of the metabolism was achieved by spraying the samples into 60% methanol at -50 degrees C. After centrifugation of the quenched cells at -20 degrees C the metabolites were extracted with perchloric acid and analyzed biochemically or with HPLC. The automated sampling device was applied for investigation of the intracellular metabolite dynamics of glycolysis in Escherichia coli after rapid glucose addition to a glucose-limited steady-state culture. For the first time oscillations of intracellular metabolite concentrations like glucose-6-phosphate, phosphoenolpyruvate, glyceraldehyde 3-phosphate, dihydroxyacetonphosphate, 3-phosphoglycerate, and pyruvate were quantified on a subseconds to seconds scale in E. coli. As an example, the kinetics of the decomposition of fructose 1, 6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetonphosphate were investigated by use of a well-known mechanistic kinetic model and the measured in vivo metabolite dynamics.  相似文献   

3.
An experimental procedure for the determination of intracellular concentrations of the phosphorylated sugars in the lactic acid bacterium Lactococcus lactis is presented. The first step of the procedure is a rapid sampling of a small volume of the growth medium into 60% (v/v) methanol precooled to -35 degrees C, bringing about a fast and complete stop of all metabolic activity. In contrast to yeast the metabolites leak out of the cells when these are brought into contact with methanol and are present in the medium and in the biomass after the quenching. A liquid-liquid extraction with chloroform at -25 degrees C ensures a total permeability of the cellular membrane towards the metabolites of interest as well as the inactivation of enzymes liable to alter their levels. The final step of the procedure consists in a solid phase extraction using columns with a high affinity for phosphorylated components. The internal standard was recovered to an extent of 85-95%.  相似文献   

4.
Heat shock enhanced the synthesis of neutral trehalase in growing cells of Saccharomyces cerevisiae, as detected by immunological methods. The activity of the enzyme was measured in extracts obtained by two methods: cells were either harvested by filtration and subsequent disruption with glass beads at 0-4 degrees C or immediately frozen with liquid nitrogen in the presence of Triton X-100, followed by thawing at 30 degrees C. The first procedure yielded artificially high activities of neutral trehalase in heat-shocked cells due to rapid (less than 1 min) activation during handling at 4 degrees C before homogenization. Activity of the enzyme in these homogenates decreased 75-90% upon a treatment with alkaline phosphatase, indicating that activation was due to phosphorylation. The second procedure yielded low trehalase activities for heat-shock treated cells, much higher activities for cells shifted back for some seconds to 27 degrees C, and very low activities again for cells shifted from 27 to 40 degrees C for a second time. Thus, permeabilization of cells following rapid freezing in Triton X-100 is a method of choice to study post-translational modulation of the neutral trehalase of S. cerevisiae by phosphorylation and dephosphorylation.  相似文献   

5.
In the present work the effect of quenching on quantification of intracellular metabolites in Corynebacterium glutamicum was investigated. C. glutamicum showed a high sensitivity to cold shock. Quenching of the cells by -50 degrees C buffered methanol prior to cell separation and extraction led to drastically reduced concentrations for free intracellular amino acids compared to those for nonquenched filtration. As demonstrated for glutamate and glutamine, this was clearly due to a more than 90% loss of these compounds from the cell interior into the medium during quenching. With lower methanol concentration in the quenching solution the metabolic losses were significantly lower but still amounted to about 30%. Due to the fact that quenching with ice-cold NaCl (0.9%) also resulted in significantly lower pool sizes for intracellular amino acids, a basic cold shock phenomenon is most likely the reason for the observed effects. The results clearly demonstrate that quenching combined with cell separation for concentration of the cells and removal of the medium is not applicable for intracellular metabolite analysis in C. glutamicum. Sampling by quick filtration without quenching allows complete cell separation and authentic quantification of intracellular metabolite pools exhibiting time constants significantly larger than sampling time.  相似文献   

6.
The activity of pyruvate kinase, subtype M2 (PKM2), is known to be increased by fructose 1,6-bisphosphate (Fru-1,6-P2), one of the metabolites in the glycolytic pathway. Recently, we have shown that in vitro, Fru-1,6-P2 activated the association of monomer to form the tetrameric PKM2. To ascertain whether this mode of regulation also occurs in vivo, we prepared monomer-specific monoclonal antibody and quantified the monomer formation in situ in cultured cells by immunocytochemistry. The intracellular Fru-1,6-P2 was manipulated by the glucose concentration in the media. At the physiological concentration of glucose (4-6 mM), 30-35% of PK existed as a monomer. However, PKM2 was dissociated into monomer within minutes after cells were deprived of glucose. The maximal level of monomer was detected after 1 h at 37 degrees C. Monomer was rapidly (within minutes) converted to tetramer after addition of glucose. Furthermore, when cells cultured in 10 mM of glucose were treated with cytochalasin B, an inhibitor of the glucose transporter, a maximal level of monomer was detected within 20-30 min. Determination of Fru-1,6-P2 indicated that its intracellular concentration decreased concomitantly with the reduction in glucose concentration in the medium. These results indicate that monomer-tetramer inter-conversion is a major in vivo cellular regulatory mechanism in response to changes in the extracellular glucose concentration via Fru-1,6-P2.  相似文献   

7.
In contrast to previous investigations at 25 degrees C, glucose was shown to support 45Ca2+ uptake at 37 degrees C in intact ELD ascites tumor cells. Intact ascites tumor cells in vitro accumulated up to 5.0 micromol of 45Ca2+ per g cells dry wt. within 20 min. In the presence of 10.0 mM glucose, intracellular P(i) levels fell from 40.0 micromol x g(-1) cells dry wt. to 20.0 micromol x g(-1) cells dry wt. in 5 min. Intracellular P(i) levels were maintained by 20.0 mM extracellular Tris-P(i). 45Ca2+ uptake was inhibited in P(i)-depleted cells, even though the metabolic rate (as measured by Q(lactate)) and energy state (as measured by ATP levels) were at acceptable levels. Evidence has been presented suggesting that previous reports of glucose inhibition of calcium uptake can be attributed to a competition for available intracellular P(i) between glycolytic processes and the mitochondrial calcium uptake mechanism.  相似文献   

8.
代谢组样品制备是代谢组学研究的基础。本文以维生素B12生产菌株苜蓿中华根瘤菌Sinorhizobium meliloti 320为研究对象,通过检测细胞损伤、ATP泄漏、代谢物回收效率以及细胞代谢淬灭效率综合评价细胞淬灭方法,同时对5种提取试剂的提取效率进行比较优化胞内代谢物的提取方法。最终获得苜蓿中华根瘤菌S.meliloti 320的胞内代谢组学样品制备较佳条件:即-20℃40%甲醇淬灭细胞,过滤收集淬灭细胞,甲醇/乙腈/水(体积比为2∶2∶2,外加0.1%的甲酸)与50%甲醇相结合提取胞内代谢物。实验结果显示-20℃的40%甲醇(通过过滤收集细胞)对细胞膜的损伤较小,且细胞代谢淬灭效率和回收效率较高;甲醇/乙腈/水(体积比为2∶2∶2,外加0.1%的甲酸)与50%的甲醇对胞内代谢物的提取效率较高且有互补作用。  相似文献   

9.
An analytical method is described whereby progesterone is isolated from pregnancy plasma on the basis of the high affinity and specificity of the progesterone receptor for its ligand. Partially purified progesterone receptor ligand-binding domain, expressed as a protein A fusion protein in Escherichia coli, is incubated with a neutral steroid fraction obtained by extraction and ion-exchange chromatography of human late-pregnancy plasma. The incubated sample is passed through two Lipidex 1000 (lipophilic gel) beds. The first, at 4 degrees C, separates the specific ligand-fusion protein complex from nonspecifically bound and unbound compounds, and the second, at 40 degrees C, separates the specific ligand from the protein. Elution of the second bed with methanol yields a fraction containing specific ligand that can be characterized by gas chromatography-mass spectrometry. This methodology may be valuable for identification of endogenous ligands to orphan receptors of the steroid hormone receptor superfamily.  相似文献   

10.
31P-NMR spectroscopy has been used to study the energy metabolism and the NMR visibility of ATP and intracellular Pi of the C6 glioma cell line and rat astrocyte grown on microcarrier beads with the following results. 1. In vivo NMR spectra of C6 glioma cells and rat astrocytes indicate that these cells were able to maintain their level of ATP resonances during a long anoxic period (more than an hour). Both cell types were sensitive to ischemia which induced a loss of ATP resonances within 40 min. Glucose starvation induced by 40% decrease in ATP resonances correlated to a 50% increase in the intensity of the Pi signal. These changes corresponded to a new steady state which could be reversed by reperfusing the cells with a glucose-containing medium. 2. In contrast to in vivo data, 31P-NMR analyses of perchloric acid extracts of cells incubated in a glucose-free medium showed that their ATP and Pi contents were unchanged during starvation. The changes of NMR visibility of the metabolites in living C6 cells were correlated to modifications of their macroscopic longitudinal relaxation times, evolving from 0.30 +/- 0.08 s and 6.6 +/- 1.5 s in the presence of glucose to 0.68 +/- 0.26 s and 3.2 +/- 0.9 s in the absence of glucose for ATP and Pi, respectively. The changes of the NMR detectability of ATP and Pi indicate that changes in their microenvironment occur during glucose starvation, suggesting the existence of different pools of these metabolites within the cells. 3. Under various experimental conditions, i.e. anoxia, ischemia and glucose starvation, rat astrocytes in primary culture showed a very similar behavior to that of C6 cells, suggesting a similar adaptability to the nature of the energy supply for both the normal and the malignant cell.  相似文献   

11.
Thermal inactivation and reactivation of pantothenate hydrolase were studied in whole cells of Pseudomonas fluorescens. The enzyme is susceptible to thermal inactivation in whole cells at 37-40 degrees C, and is reactivated when the temperature is lowered again. Chloramphenicol does not prevent reactivation. The activation energy of enzyme inactivation in vivo is about 540kJ/mol. This activation energy is 220kJ/mol in vitro, but it is increased to 550-630kJ/mol by several metabolites, such as succinate, glyoxylate and oxalate. Generally, good carbon sources, causing rapid growth, protect the enzyme from thermal inactivation in vivo, and enable reactivation to occur at a fast rate. The enzyme is also inactivated below 35 degrees C, showing an activation energy of about 35kJ/mol. Good carbon sources prevent this inactivation as well, and cause slight reactivation. Glycine, although not utilized for growth, protects the enzyme well from this inactivation but not from inactivation at 37-40 degrees C, and prevents reactivation totally. From the activation energies of inactivation and the effects of the various carbon sources, it appears possible that changes in the concentrations of intracellular metabolites may be responsible for the changes in inactivation and reactivation.  相似文献   

12.
A Sener  W J Malaisse 《FEBS letters》1985,193(2):150-152
Rat pancreatic islets and insulin-producing cells of the RINm5F line were incubated for 5 min at 7 or 23 degrees C in media containing 3H2O and either L-[1-14C]glucose or [2-14C]alloxan. In the islets the intracellular distribution space of [2-14C]alloxan represented, at 7 and 23 degrees C respectively, 11.4 +/- 1.0 and 25.5 +/- 2.3% of the intracellular 3H2O space. In the RINm5F cells, the distribution space of [2-14C]alloxan failed to be affected by the ambient temperature and represented, after correction for extracellular contamination, no more than 5.2 +/- 0.5% of the intracellular 3H2O space. Preincubation for 30 min at 7 degrees C in the presence of alloxan (10 mM) failed to affect subsequent D-[U-14C]glucose oxidation in the tumoral cells, whilst causing a 70% inhibition of glucose oxidation in the islets. It is proposed that RINm5F cells are resistant to the cytotoxic action of alloxan, this being attributable, in part at least, to poor uptake of the diabetogenic agent.  相似文献   

13.
Yeast whole-cell biocatalysts for lipase-catalyzed reactions were constructed by intracellularly overproducing Rhizopus oryzae lipase (ROL) in Saccharomvces cerevisiae MT8-1. The gene encoding lipase from R. orvzae IFO4697 was cloned, and intracellular overproduction systems of a recombinant ROL with a pro-sequence (rProROL) were constructed. When rProROL from R. oryzae IFO4697 was produced under the control of the 5'-upstream region of the isocitrate lyase gene of Candida tropicalis (UPR-ICL) at 30 degrees C for 98 h by two-stage cultivation using SDC medium (SD medium with 2% casamino acids) containing 2.0% and 0.5% glucose, intracellular lipase activity reached levels up to 474.5 IU/l. These whole-cell biocatalysts were permeabilized by air-drying and used for the synthesis of methyl esters (MEs), a potential biodiesel fuel, from plant oil and methanol in a solvent-free and water-containing system. The ME content in the reaction mixture was 71 wt% after a 165-h reaction at 37 degrres C with stepwise addition of methanol. These results indicate that an efficient whole-cell biocatalyst can be prepared by intracellular overproduction of lipase in yeast cells and their permeabilization.  相似文献   

14.
A thermophilic, anaerobic, spore-forming bacterium (strain TMS) was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as the energy source. Cells were gram-positive straight rods, 0.4-0.6 microm x 2-8 microm, growing as single cells or in pairs. The temperature range for growth was 40-70 degrees C with an optimum at 65 degrees C. Growth was observed from pH 5.5 to 8.5, and the optimum pH was around 7. The salinity range for growth was 0-45 g NaCl l(-1 )with an optimum at 10 g l(-1). The isolate was able to grow on methanol, H(2)-CO(2 )(80/20%, v/v), formate, lactate, pyruvate, glucose, fructose, cellobiose and pectin. The bacterium reduced thiosulfate to sulfide. The G+C content of the DNA was 53 mol%. Comparison of 16S rRNA genes revealed that strain TMS is related to Moorella glycerini (96%, sequence similarity), Moorella thermoacetica (92%) and Moorella thermoautotrophica (92%). On the basis of physiological and phylogenetic differences, strain TMS is proposed as a new species within the genus Moorella, Moorella mulderi sp. nov. (=DSM 14980, =ATCC BAA-608).  相似文献   

15.
Metabolomics aims to quantify all metabolites within an organism, thereby providing valuable insight into the metabolism of cells. To study intracellular metabolites, they are first extracted from the cells. The ideal extraction procedure should immediately quench metabolism and quantitatively extract all metabolites, a significant challenge given the rapid turnover and physicochemical diversity of intracellular metabolites. We have evaluated several quenching and extraction solutions for their suitability for mammalian cells grown in suspension. Quenching with 60% methanol (buffered or unbuffered) resulted in leakage of intracellular metabolites from the cells. In contrast, quenching with cold isotonic saline (0.9% [w/v] NaCl, 0.5 °C) did not damage cells and effectively halted conversion of ATP to ADP and AMP, indicative of metabolic arrest. Of the 12 different extraction methods tested, cold extraction in 50% aqueous acetonitrile was superior to other methods. The recovery of a mixture of standards was excellent, and the concentration of extracted intracellular metabolites was higher than for the other methods tested. The final protocol is easy to implement and can be used to study the intracellular metabolomes of mammalian cells.  相似文献   

16.
Metabolism of [2-13C]pyruvate, [1,2-13C]ethanol, and NH4+ in the presence and absence of 7 nM insulin has been followed at 35 degrees C by alternate scan 13C and 31P NMR at 90.5 and 145.8 MHz, respectively, in isolated perfused liver from 16-h fasted rats. With this technique, 31P and 13C NMR spectra are recorded simultaneously so that both phosphate metabolites and 13C-labeled metabolites could be followed, noninvasively, in perfused liver to give a comprehensive view of the response to a variety of stimuli. 13C-labeled glycogen increased synchronously, at a rate of 17 mumol of glucose units/g of liver/h, with the synthesis of 13C-labeled glucose, which also proceeded at a rate of 17 mumol/g of liver/h; glycogenesis was essentially a gluconeogenic process under these conditions and was not affected by the presence of insulin. From the position of the 13C-labeled citrate peak observed in liver, the measurement of Kd for the citrate-Mg complex under our conditions, and the expression relating these quantities to the concentration of free Mg2+, the intracellular level of free Mg2+ is estimated to be 0.46 +/- 0.05 mM in perfused rat liver. After subsequent administration of glucagon, a rapid decrease in glycogen and citrate was seen by 13C NMR and a 44% increase in glycero-3-phosphocholine was seen by 31P NMR; increase in glycero-3-phosphocholine is consistent with stimulation of liver phospholipase activity by glucagon. The co-administration of two different 13C-labeled substrates introduced multiplet structure arising from spin-spin interaction between labeled adjacent carbons into the peaks of several key metabolites. 13C enrichments at specific carbons of citrate, glutamate, glutamine, beta-hydroxybutyrate, and glucose and the distribution of intensity within the multiplets of specific carbons were measured in spectra of perfusates and extracts of the freeze-clamped livers. Within the context of a first order model for fluxes into the Krebs cycle and into glucose, analytical expressions were written that describe the intensity distributions within the several multiplets. In this way, a set of simultaneous equations was generated and solved in general form; when the measured intensity ratios are substituted into these expressions, relative fluxes under the conditions of the experiment can be estimated. Because a redundancy of information is available, checks on self-consistency are built into the estimated fluxes.  相似文献   

17.
Metabolomics is a rapidly emerging tool for studying and optimizing both media and bioprocess development for culturing recombinant mammalian cells that are used in protein production processes. Quenching of the cells is crucial to fix their metabolic status at the time of sampling. Three precooled quenching solutions were tested for their ability to fix the metabolic activity of CHO cells: phosphate-buffered saline (PBS) (pH 7.4; 0.5°C), 60% methanol with 70?mM HEPES (pH 7.4; -20°C), and 60% methanol with 0.85% (w/v) ammonium bicarbonate (AMBIC) (pH 7.4; -20°C). The metabolic activity of the sampled CHO cells was assessed by determining the intracellular levels of ATP using a bioluminescence assay and selected metabolites with LC-MS/MS. We found the precooled PBS (pH 7.4; 0.5°C) to be the optimal quenching reagent for fixing intracellular metabolism. Importantly, the structural integrity of the cell membrane was maintained and highest yields were obtained for intracellular levels of ATP as well as for 18 out of 28 intracellular metabolites. In contrast to the previously reported studies, buffered methanol quenching was not applicable for suspension cultured CHO cells as cellular membrane integrity was affected. We recommend that the cells are quenched and washed simultaneously to keep the sampling time to a minimum and to prevent any further metabolic activity in the cells. We observed that additional washing steps are not required. Our analyses suggest that methanol as quenching solution, even in combination with a buffer substance, appears not suitable for quenching sensitive mammalian cells. The protocol we report herein is a simple cell sampling method that enables high-throughput metabolomic analyses and is suitable for a large number of samples.  相似文献   

18.
Extracellular proteases from eight psychrotolerant Antarctic strains   总被引:3,自引:0,他引:3  
Extracellular proteases from 8 Antarctic psychrotolerant Pseudomonas sp. strains were purified and characterised. All of them are neutral metalloproteases, have an apparent molecular mass of 45kDa, optimal activity at 40 degrees C and pH 7-9, retaining significant activity at pH 5-11. With the exception of P96-18, which is less stable, all retain more than 50% activity after 3 h of incubation at pH 5-9 and show low thermal stability (their half-life times range from 20 to 60 min at 40 degrees C and less than 5 min at 50 degrees C). These proteases can be used in commercial processes carried out at neutral pH and moderate temperatures, and are of special interest for their application in mixtures of enzymes where final thermal selective inactivation is needed. Results also highlight the relevance of Antarctic biotopes for the isolation of protease-producing enzymes active at low temperatures.  相似文献   

19.
Heat shock resulted in rapid accumulation of large amounts of trehalose in Saccharomyces cerevisiae. In cultures growing exponentially on glucose, the trehalose content of the cells increased from 0.01 to 1 g/g of protein within 1 h after the incubation temperature was shifted from 27 to 40 degrees C. When the temperature was readjusted to 27 degrees C, the accumulated trehalose was rapidly degraded. In parallel, the activity of the trehalose-phosphate synthase, the key enzyme of trehalose biosynthesis, increased about sixfold during the heat shock and declined to the normal level after readjustment of the temperature. Surprisingly, the activity of neutral trehalase, the key enzyme of trehalose degradation, also increased about threefold during the heat shock and remained almost constant during recovery of the cells at 27 degrees C. In pulse-labeling experiments with [14C]glucose, trehalose was found to be turned over rapidly in heat-shocked cells, indicating that both anabolic and catabolic enzymes of trehalose metabolism were active in vivo. Possible functions of the heat-induced accumulation of trehalose and its rapid turnover in an apparently futile cycle during heat shock are discussed.  相似文献   

20.
The thermal stability of the helical domain of intracellular and matrix-associated type X collagen was examined in situ within the hypertrophic region of embryonic chick vertebral cartilages. For this we employed indirect immunofluorescence histochemistry of unfixed tissue sections reacted at progressively higher temperatures (Linsenmayer et al., J cell biol 99 (1984) 1405) with a conformation-dependent monoclonal antibody (X-AC9) (Schmid & Linsenmayer, J cell biol 100 (1985) 598). The hypertrophic chondrocytes which had most recently initiated synthesis of type X did not immediately secrete it, but instead retained it intracellularly within cytoplasmic organelles. This allowed for clear visualization of the intracellular type X. Within the pool of intracellular type X collagen, the epitope recognized by the antibody was stable up to 55 degrees C, but was destroyed at 60 degrees C. This is 5-10 degrees C higher than the thermal stability of the epitope when the molecule is in neutral solution (as determined by competition ELISA). The matrix-associated type X collagen is stable at least to 65-67.5 degrees C. We conclude that in situ the stability of the collagen helix in its normal intracellular environment is considerably greater than might be predicted from measurements made on molecules in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号