首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydraulic pressure in the extrapleural parietal interstitium (Pepl) and in the pleural space over the costal side (Pliq) was measured in anesthetized spontaneously breathing supine adult mammals of increasing size (rats, dogs, and sheep) using saline-filled catheters and cannulas, respectively. From the Pliq and Pepl vs. lung height regressions it appears that in all species Pliq was significantly more subatmospheric than Pepl simultaneously measured at the same lung height. The vertical pleural liquid pressure gradient increased with size, amounting to -1, -0.69, and -0.44 cmH2O/cm in rats, dogs, and sheep, respectively. The vertical extrapleural liquid pressure gradient also increased with size, being -0.6, -0.52, and -0.33 cmH2O/cm in rats, dogs, and sheep, respectively. With increasing body size, the transpleural hydraulic pressure gradient (Ptp = Pepl - Pliq) at the level of the right atrium increased from 1.45 to 5.6 cmH2O going from rats to sheep. In all species Ptp increased, with lung height being greatest in the less dependent part of the pleural space.  相似文献   

2.
To determine the permeability of canine pleural mesothelium, visceral and intercostal parietal pleura from mongrel dogs was carefully stripped from the underlying tissue and mounted as a planar sheet in a Ussing-type chamber. The hydraulic conductivity (Lp) was determined from the rate of volume flux in response to hydrostatic pressure gradients applied to either the mucosal or serosal surface of the pleural membrane. The diffusional permeability (Pd) of radiolabeled water, sucrose, inulin, and albumin was determined under equilibrium conditions from the unidirectional tracer flux. The Lp of the visceral pleura was 0.39 +/- 0.032 (SE) X 10(-4) ml.s-1.cmH2O-1.cm-2 and that Lp of parietal pleura was 1.93 +/- 0.93 X 10(-4) ml.s-1.cmH2O-1.cm-2 (P less than 0.001). The Pd of the visceral pleura ranged from 12.21 +/- 0.45 X 10(-4) cm/s for 3H2O to 0.34 +/- 0.03 X 10(-4) cm/s for [3H]albumin. The Pd of the parietal pleura for water and sucrose was similar to that of the visceral membrane, whereas its Pd for the larger inulin and albumin molecules was greater than that of visceral pleura (P less than 0.01). A spontaneous potential difference could not be detected across either membrane. The relatively higher parietal pleural Lp and Pd for larger solutes is probably due to the presence of stomata in this membrane. These results indicate that both the parietal and the visceral pleura are extremely permeable tissues which offer little resistance to water and solute flux.  相似文献   

3.
Alveolar liquid pressure (Pliq) was measured by micropipettes in conjunction with a servo-nulling pressure measuring system in isolated air-inflated edematous dog lungs. Pliq was measured in lungs either washed with a detergent (0.01% Triton X-100) or subjected to refrigeration for 2-3 days followed by ventilation for 3 h. At 55% of total lung capacity (TLC, the volume at a transpulmonary pressure (Ptp) of 25 cmH2O before treatment), in both the Triton-washed and the ventilated lung, Ptp increased from 5 to 11 cmH2O, whereas Pliq, decreased from -3 to -11 cmH2O relative to alveolar air pressure. Similar increases in Ptp and decreases in Pliq were obtained at higher lung volumes. Alveolar surface tension (T) was estimated from the Laplace equation for a spherical air-liquid interface, assuming that the radius of curvature varies as (volume)n, for -1/3 less than n less than 1/3. For uniform expansion of alveoli (n = 1/3), estimated T was 6 and 18 dyn/cm at 55 and 85% TLC, respectively, before treatment and increased to 23 and 40 dyn/cm following either Triton washing or ventilation. If pericapillary interstitial fluid pressure (Pi) equaled Pliq in edematous lungs, increases in T might reduce Pi and increase extravascular fluid accumulation in lungs made stiff by either Triton washing or cooling and ventilation using large tidal volumes.  相似文献   

4.
The parameters describing the permeability of the parietal pleura to liquid and total plasma proteins were measured in five anesthetized adult dogs. Small areas of parietal pleura (approximately 1 cm2) and the underlying endothoracic fascia were exposed through resection of the skin and the intercostal muscles. The portion of the thorax containing the pleural windows was removed from the chest and fixed over a bath of whole autologous plasma, the inner parietal pleural surface facing the bath. Small hemispheric Perspex capsules (surface area 0.28 cm2) connected to a pressure manometer were glued to the pleural windows; a subatmospheric pressure was set into the capsule chamber to create step hydraulic transpleural pressure gradients (delta P) ranging from 5 to 60 cmH2O. Transpleural liquid flows (Jv) and protein concentration of the capsular filtrate (Cfilt) and of the plasma bath were measured at each delta P. The transpleural protein flux (Js) at each delta P was calculated by multiplying Jv by the corresponding Cfilt. The hydraulic conductivity (Lp) of the parietal pleura was obtained from the slope of the Jv vs. delta P linear regression. The average Lp from 14 capsules was 9.06 +/- 4.06 (SD) microliters.h-1.cmH2O-1.cm-2. The mathematical treatment of the Js vs. Jv relationship allowed calculation of the unique Peclet number at the maximal diffusional protein flux and a corresponding osmotic permeability coefficient for plasma protein of 1 x 10(-5) +/- 0.97 x 10(-5) cm/s. The reflection coefficient calculated from the slope of the linear phase of the Js vs. Jv relationship was 0.11 +/- 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Pleural liquid pressure in dogs measured using a rib capsule   总被引:3,自引:0,他引:3  
We have developed a minimally invasive method for measuring the hydrostatic pressure in the pleural space liquid. A liquid-filled capsule is bonded into a rib and a small hole is cut in the parietal pleura to allow direct communication between the liquid in the capsule and the pleural space. The pressure can be measured continuously by a strain gauge transducer connected to the capsule. The rib capsule does not distort the pleural space or require removal of intercostal muscle. Pneumothoraces are easily detected when they occur inadvertently on puncturing the parietal pleura. We examined the effect of height on pleural pressure in 15 anesthetized spontaneously breathing dogs. The vertical gradients in pleural pressure were 0.53, 0.42, 0.46, and 0.23 cmH2O/cm height for the head-up, head-down, supine, and prone body positions, respectively. These vertical gradients were much less than the hydrostatic value (1 cmH2O/cm), indicating that the pleural liquid is not in hydrostatic equilibrium. In most body positions the magnitudes of pleural liquid pressure interpolated to midchest level were similar to the mean transpulmonary (surface) pressure determined postmortem. This suggests that pleural liquid pressure is closely related to the lung static recoil.  相似文献   

6.
The hydraulic conductivity (Lp) of the parietal pleura was measured in vivo in spontaneously breathing anesthetized dogs in either the supine (n = 8) or the prone (n = 7) position and in an excised portion of the chest wall in which the pleura and its adjacent tissue were intact (n = 3). A capsule was glued to the exposed parietal pleura after the intercostal muscles were removed. The capsule was filled with either autologous plasma or isotonic saline. Transpleural fluid flow (V) was measured at several transpleural hydrostatic pressures (delta P) from the rate of meniscus movement within a graduated pipette connected to the capsule. Delta P was defined as the measured difference between capsule and pleural liquid pressures. The Lp of the parietal pleura was calculated from the slope of the line relating V to delta P by use of linear regression analysis. Lp in vivo averaged 1.36 X 10(-3) +/- 0.45 X 10(-3) (SD) ml.h-1.cmH2O-1.cm-2, regardless of whether the capsule was filled with plasma or saline and irrespective of body position. This value was not significantly different from that measured in the excised chest wall preparation (1.43 X 10(-3) +/- 1.1 X 10(-3) ml.h-1.cmH2O-1.cm-2). The parietal pleura offers little resistance to transpleural protein movement, because there was no observed difference between plasma and saline. We conclude that because the Lp for intact parietal pleura and extrapleural interstitium is approximately 100 times smaller than that previously measured in isolated stripped pleural preparations, removal of parietal pleural results in a damaged preparation.  相似文献   

7.
We studied the vertical gradient in lung expansion in rabbits in the prone and supine body positions. Postmortem, we used videomicroscopy to measure the size of surface alveoli through transparent parietal pleural windows at dependent and nondependent sites separated in height by 2-3 cm at functional residual capacity (FRC). We compared the alveolar size measured in situ with that measured in the isolated lungs at different deflationary transpulmonary pressures to obtain transpulmonary pressure (pleural surface pressure) in situ. The vertical gradient in transpulmonary pressure averaged 0.48 +/- 0.16 (SD) cmH2O/cm height (n = 10) in the supine position and 0.022 +/- 0.014 (SD) cmH2O/cm (n = 5) in the prone position. In mechanically ventilated rabbits, we used the rib capsule technique to measure pleural liquid pressure at different heights of the chest in prone and supine positions. At FRC, the vertical gradient in pleural liquid pressure averaged 0.63 cmH2O/cm in the supine position and 0.091 cmH2O/cm in the prone position. The vertical gradients in pleural liquid pressure were all less than the hydrostatic value (1 cmH2O/cm), which indicates that pleural liquid is not generally in hydrostatic equilibrium. Both pleural surface pressure and pleural liquid pressure measurements show a greater vertical gradient in the supine than in the prone position. This suggests a close relationship between pleural surface pressure and pleural liquid pressure. Previous results in the dog and pony showed relatively high vertical gradients in the supine position and relatively small gradients in the prone position. This behavior is similar to the present results in rabbits. Thus the vertical gradient is independent of animal size and might be related to chest shape and weight of heart and abdominal contents.  相似文献   

8.
In 15 anesthetized apneic, oxygenated rabbits we simultaneously measured pleural liquid and interstitial extrapleural parietal pressures by using catheters and/or cannulas and micropipettes connected to a servonull system. With the animal in lateral posture, at an average recording height of 4.4 +/- 0.9 (SD) cm from the most dependent part of the cavity, the extrapleural catheter and the pleural cannula yielded -2.5 +/- 0.6 and -5.5 +/- 0.2 cmH2O; the corresponding values for micropipette readings in the two compartments were -2.4 +/- 0.6 and -5.4 +/- 0.4 cmH2O, respectively (not significantly different from those measured with catheters and cannulas). In the supine animal, interstitial extrapleural catheter pressure data obtained at recording heights ranging from 15 to 80% of pleural cavity lay on the identity line when plotted vs. the micropipette pressure values simultaneously gathered from the same tissues. We conclude that 1) micropipettes and catheters-cannulas yield similar results when recording from the same compartment and 2) the hydraulic pressure in the parietal extrapleural interstitium is less negative than that in the pleural space.  相似文献   

9.
Pleural pressure was measured at end expiration in spontaneously breathing anesthetized rabbits. A liquid-filled capsule was implanted into a rib to measure pleural liquid pressure with minimal distortion of the pleural space. Capsule position relative to lung height was measured from thoracic radiographs. Measurements were made when the rabbits were in the prone, supine, right lateral, and left lateral positions. Average lung heights in the prone and supine positions were 4.21 +/- 0.58 and 4.42 +/- 0.51 (SD) cm, respectively (n = 7). Pleural pressure was -2.60 +/- 1.87 (SD) cmH2O at 50.2 +/- 7.75% lung height in the prone position and -3.10 +/- 1.22 cmH2O at 51.4 +/- 6.75% lung height in the supine position. There was no difference between the values recorded in the prone and supine positions. Placement of the capsule into the right or left chest had no effect on the magnitude of the pleural pressure recorded in rabbits in right and left lateral recumbency (n = 12). Measurements over the nondependent lung were repeatable when rabbits were turned between the right and left lateral positions. Lung height in laterally recumbent rabbits averaged 4.55 +/- 0.52 (SD) cm.  相似文献   

10.
We developed an experimental approach to measure the pulmonary interstitial pressure with the micropuncture technique in in situ lungs with an intact pleural space. Experiments were done in anesthetized paralyzed rabbits that were oxygenated via an endotracheal tube with 50% humidified oxygen and kept in either the supine or the lateral position. A small area of an intercostal space was cleared of the intercostal muscles down to the endothoracic fascia. Subsequently a "pleural window" was opened by stripping the endothoracic fascia over a 0.2-cm2 surface and leaving the parietal pleura (approximately 10 microns thick). Direct micropuncture through the pleural window was performed with 2- to 3-microns-tip pipettes connected to a servo-null pressure-measuring system. We recorded pleural liquid pressure and, after inserting the pipette tip into the lung, we recorded interstitial pressure from subpleural lung tissue. Depth of recording for interstitial pressure averaged 263 +/- 122 (SD) microns. We report data gathered at 26, 53, and 84% lung height (relative to the most dependent portion of the lung). For the three heights, interstitial pressure was -9.8 +/- 3, -10.1 +/- 1.6, and -12.5 +/- 3.7 cmH2O, respectively, whereas the corresponding pleural liquid pressure was -3.4 +/- 0.5, -4.4 +/- 1, and -5.2 +/- 0.3 cmH2O, respectively.  相似文献   

11.
The present study addresses the effect of a sustained change in pressure on microvascular permeability assessed by hydraulic conductivity (Lp) measurements from microvessels of the rat mesentery. With a microperfusion technique, transvascular filtration (normalized to surface area; Jv/S) and Lp were measured in small arterioles (baseline Lp= 0.26 x 10(-7) cm.s(-1).cmH2O(-1)) and venules (baseline Lp= 2.88 x 10(-7) cm.s(-1).cmH2O(-1)). The main finding of this study is that step increases in microvascular pressure led to time-dependent alterations of L(p). Immediately after a twofold step increase in pressure, Jv/S increased in proportion to the pressure change. This observation is consistent with Starling's law that predicts filtration proportional to the overall pressure gradient when Lp is constant. However, when Jv/S measurements continued for 60-90 min past the step in pressure, there was an initial decrease in Jv/S for 30 min ("sealing effect") followed by a substantial increase in Jv/S out to 90 min. The sustained increase in Jv/S suggests an increase in Lp of 36 +/- 7% for small arterioles and 42 +/- 5% for small venules (P < 0.05 for both). In addition, the increase in Lp in response to an increase in pressure was attenuated significantly by nitric oxide synthase inhibition. These results indicate that a pressure-induced mechanical stimulus (possibly Jv) activates a NO-dependent biochemical response that leads to an increase in hydraulic conductivity.  相似文献   

12.
We studied the bronchial arterial blood flow (Qbr) and bronchial vascular resistance (BVR) in sheep prepared with carotid-bronchial artery shunt. Nine adult sheep were anesthetized, and through a left thoracotomy a heparinized Teflon-tipped Silastic catheter was introduced into the bronchial artery. The other end of the catheter was brought out through the chest wall and through a neck incision was introduced into the carotid artery. A reservoir filled with warm heparinized blood was connected to this shunt. The height of blood column in the reservoir was kept constant at 150 cm by adding more blood. Qbr was measured, after interrupting the carotid-bronchial artery flow, by the changes in the reservoir volume. The bronchial arterial back pressure (Pbr) was measured through the shunt when both carotid-bronchial artery and reservoir Qbr had been temporarily interrupted. The mean Qbr was 34.1 +/- 2.9 (SE) ml/min, Pbr = 17.5 +/- 3.3 cmH2O, BVR = 3.9 +/- 0.5 cmH2O X ml-1 X min, mean pulmonary arterial pressure = 21.5 +/- 3.6 cmH2O, and pulmonary capillary wedge pressure (Ppcw) = 14.3 +/- 3.7 cmH2O. We further studied the effect of increased left atrial pressure on these parameters by inflating a balloon in the left atrium. The left atrial balloon inflation increased Ppcw to 25.3 +/- 3.1 cmH2O, Qbr decreased to 21.8 +/- 2.4 ml/min (P less than 0.05), and BVR increased to 5.5 +/- 1.0 cmH2O.ml-1.min (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To explore the determinants of possible collapse of the nasal valve region, a common cause of nasal obstruction, we evaluated the mechanical properties of the nasal wall. In this study, we determined the nasal cross-sectional area-to-negative pressure ratio (nasal wall compliance) in the anterior part of the nose in six healthy subjects by measuring nasal area by acoustic rhinometry at pressures ranging from atmospheric pressure to a negative pressure of -10 cmH(2)O. Measurements were performed at baseline and after nasal mucosal decongestion (oxymetazoline). At baseline, nasal wall compliance increased progressively from the nasal valve (0.031 +/- 0.016 cm2/cmH(2)O, mean +/- SD) to the anterior and medial part of the inferior turbinate (0.045 +/- 0.024 cm2/cmH(2)O) and to the middle meatus region (0.056 +/- 0.029 cm2/cmH(2)O). After decongestant, compliances decreased and became similar in the three regions. On the basis of these results, we hypothesize that compliance of the nasal wall is partly related to mucosal blood volume and quantity of vascular tissue, which differ in the three regions, increasing from the nasal valve to the middle meatus.  相似文献   

14.
To describe the flow characteristics of vessels open in zone 1, we perfused isolated rabbit lungs with Tyrode's solution containing 1% albumin, 4% dextran, and papaverine (0.05 mg/ml). Lungs were expanded by negative pleural pressure (Ppl) of -10, -15, -20, and -25 cmH2O. Pulmonary arterial (Ppa) and venous (Ppv) pressures were varied relative to alveolar pressure (PA = 0) and measured 5-10 mm inside the pleura (i) and outside (o) of the lungs. With Ppa(o) at -2.5 cmH2O, we constructed pressure-flow (P-Q) curves at each Ppl by lowering Ppv(o) until Q reached a maximum, indicating fully developed zone 1 choke flow. Maximum flows were negligible until Ppl fell below -10 cmH2O, then increased rapidly at Ppl of -15 and -20 cmH2O, and at Ppl of -25 cmH2O reached about 15 ml.min-1.kg body wt-1. The Ppv(o) at which flow became nearly constant depended on degree of lung inflation and was 5-8 cmH2O more positive than Ppl. As Ppv(o) was lowered below Ppa(o), Ppv(i) remained equal to Ppv(o) until Ppv(i) became fixed at a pressure 2-3 cmH2O more positive than Ppl. At this point the choke flow was therefore located in veins near the pleural boundary. No evidence of choke flow (only ohmic resistance) was seen in the intrapulmonary segment of the vessels remaining open in zone 1. With Ppv(o) held roughly at Ppl, Q could be stopped by lowering Ppa(o), at which time Ppa(i) was several cmH2O above Ppv(i), showing that intrapulmonary vessel closure had occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We measured the microvascular pressure profile in lungs physiologically expanded in the pleural space at functional residual capacity. In 29 anesthetized rabbits a caudal intercostal space was cleared of its external and internal muscles. A small area of endothoracic fascia was surgically thinned, exposing the parietal pleura through which pulmonary vessels were clearly detectable under stereomicroscopic view. Pulmonary microvascular pressure was measured with glass micropipettes connected to a servo-null system. During the pressure measurements the animal was kept apneic and 50% humidified oxygen was delivered in the trachea. Pulmonary arterial and left atrial pressures were 22.3 +/- 1.5 and 1.6 +/- 1.5 (SD) cmH2O, respectively. The segmental pulmonary vascular pressure drop expressed as a percentage of the pulmonary arterial to left atrial pressure was approximately 33% from pulmonary artery to approximately 130-microns-diam arterioles, 4.5% from approximately 130- to approximately 60-microns-diam arterioles, approximately 46% from approximately 60-microns-diam arterioles to approximately 30-microns-diam venules, approximately 9.5% from 30- to 150-microns-diam venules, and approximately 7% for the remaining venous segment. Pulmonary capillary pressure was estimated at approximately 9 cmH2O.  相似文献   

16.
The response of segmental filtration coefficients (Kf) to high peak inflation pressure (PIP) injury was determined in isolated perfused rat lungs. Total (K f,t ), arterial (K f,a ), and venous (K f,v ) filtration coefficients were measured under baseline conditions and after ventilation with 40-45 cmH(2)O PIP. K f,a and K f,v were measured under zone I conditions by increasing airway pressure to 25-27 cmH(2)O. The microvascular segment K f (K f,mv ) was then calculated by: K f,mv = K f,t - K f,a - K f,v. The baseline K f,t was 0.090 +/- 0.022 ml. min(-1). cm H2O(-1). 100 g(-1) and segmentally distributed 18% arterial, 41% venous, and 41% microvascular. After high PIP injury, K f,t increased by 680%, whereas K f,a, K f,v, and K f,mv increased by 398, 589, and 975%, respectively. Pretreatment with 50 microM gadolinium chloride prevented the high PIP-induced increase in K f in all vascular segments. These data imply a lower hydraulic conductance for microvascular endothelium due to its large surface area and a gadolinium-sensitive high-PIP injury, produced in both alveolar and extra-alveolar vessel segments.  相似文献   

17.
After resecting the intercostal muscles and thinning the endothoracic fascia, we micropunctured the lung tissue through the intact pleural space at functional residual capacity (FRC) and at volumes above FRC to evaluate the effect of increasing parenchymal stresses on pulmonary interstitial pressure (Pip). Pip was measured at a depth of approximately 230 microns from the pleural surface, at 50% lung height, in 12 anesthetized paralyzed rabbits oxygenated via a tracheal tube with 50% humidified O2. Pip was -10 +/- 1.5 cmH2O at FRC. At alveolar pressure of 5 and 10 cmH2O, lung volume increased by 8.5 and 19 ml and Pip decreased to -12.4 +/- 1.6 and -12.3 +/- 5 cmH2O, respectively. For the same lung volumes held by decreasing pleural surface pressure to about -5 and -8.5 cmH2O, Pip decreased to -17.4 +/- 1.6 and -23.8 +/- 5 cmH2O, respectively. Because Pip is more negative than pleural pressure, the data suggest that in intact pulmonary interstitium the pressure of the liquid phase is primarily set by the mechanisms controlling interstitial fluid turnover.  相似文献   

18.
We report the first direct measurements of perialveolar interstitial pressures in lungs inflated with negative pleural pressure. In eight experiments, we varied surrounding (pleural) pressure in a dog lung lobe to maintain constant inflation with either positive alveolar and ambient atmospheric pleural pressures (positive inflation) or ambient atmospheric alveolar and negative pleural pressures (negative inflation). Throughout, vascular pressure was approximately 4 cmH2O above pleural pressure. By the micropuncture servo-null technique we recorded interstitial pressures at alveolar junctions (Pjct) and in the perimicrovascular adventitia (Padv). At transpulmonary pressure of 7 cmH2O (n = 4), the difference of Pjct and Pady from pleural pressure of 0.9 +/- 0.4 and -1.1 +/- 0.2 cmH2O, respectively, during positive inflation did not significantly change (P less than 0.05) after negative inflation. After increase of transpulmonary pressure from 7 to 15 cmH2O (n = 4), the decrease of Pjct by 3.3 +/- 0.3 cmH2O and Pady by 2.0 +/- 0.4 cmH2O during positive inflation did not change during negative inflation. The Pjct-Pady gradient was not affected by the mode of inflation. Our measurements indicate that, in lung, when all pressures are referred to pleural or alveolar pressure, the mode of inflation does not affect perialveolar interstitial pressures.  相似文献   

19.
The barrier functions of myocardial precapillary arteriolar and postcapillary venular walls (PCA or PCV, respectively) are of considerable scientific and clinical interest (regulation of blood flow and recruitment of immune defense). Using enzyme histochemistry combined with confocal microscopy, we reexamined the cell architecture of human PCA and PVC and reconstructed appropriate in vitro models for studies of their barrier functions. Contrary to current opinion, the PCA endothelial tube is encompassed not by smooth muscle cells but rather by a concentric layer of pericytes cocooned in a thick, microparticle-containing extracellular matrix (ECM) that contributes substantially to the tightness of the arteriolar wall. This core tube extends upstream into the larger arterioles, there additionally enwrapped by smooth muscle. PCV consist of an inner layer of large, contractile endothelial cells encompassed by a fragile, wide-meshed pericyte network with a weakly developed ECM. Pure pericyte and endothelial cell preparations were isolated from PCA and PCV and grown in sandwich cultures. These in vitro models of the PCA and PCV walls exhibited typical histological and functional features. In both plasma-like (PLM) and serum-containing (SCM) media, the PCA model (including ECM) maintained its low hydraulic conductivity (L(P) = 3.24 ± 0.52·10(-8)cm·s(-1)·cmH(2)O(-1)) and a high selectivity index for transmural passage of albumin (SI(Alb) = 0.95 ± 0.02). In contrast, L(P) and SI(Alb) in the PCV model (almost no ECM) were 2.55 ± 0.32·10(-7)cm·s(-1)·cmH(2)O(-1) and 0.88 ± 0.03, respectively, in PLM, and 1.39 ± 0.10·10(-6)cm·s(-1)·cmH(2)O(-1) and 0.49 ± 0.04 in SCM. With the use of these models, systematic, detailed studies on the regulation of microvascular barrier properties now appear to be feasible.  相似文献   

20.
The static mechanical properties of the passive pharynx were investigated in Vietnamese pot-bellied pigs by using an isolated upper airway preparation. During general anesthesia and neuromuscular blockade, cross-sectional area (A) of the pharynx was measured while airway pressure (Paw) was held at various pressures in the absence of airflow. The static A-Paw relationship was measured during application of 0, 1, and 2 cm of caudal tracheal displacement. Relative to humans, closing pressures (Pclose) of the pig pharynx were very low (-15 to -35 cmH(2)O). Tracheal displacement significantly decreased compliance of the hypopharynx (from 0.074 +/- 0.02 cm(2)/cmH(2)O with no displacement to 0.052 +/- 0.01 cm(2)/cmH(2)O with 2 cm of displacement) and decreased Pclose of the oropharynx (from -18.2 +/- 9.9 cmH(2)O to -24.1 +/- 10.5 and -28.7 +/- 12.3 cmH(2)O with 1 and 2 cm of displacement, respectively). Tracheal displacement did not affect A of the pharyngeal segments. In conclusion, tracheal displacement decreased collapsibility of the passive pharynx. The pharynx of the pot-bellied pig is structurally more resistant to collapse than the human pharynx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号