首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca2+ concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation. Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival.  相似文献   

2.
长链不饱和脂肪酸(LC-PUFAs)对人类健康具有重要作用,通过转基因植物生产LC-PUFAs具有低成本、可持续、污染少等诸多优势。本文简要介绍了LC-PUFAs的作用、来源及其植物生物合成途径,综述了转基因植物合成LC-PUFAs的研究进展,并对如何进一步提高LC-PUFAs产量进行了探讨。  相似文献   

3.
Thermal stability of erythrocyte membrane is a measure for its ability to maintain permeability barrier at deleterious conditions. Hence, it could impact the resistance of erythrocytes against detrimental factors in circulation. In this study the thermostability of erythrocyte membranes was expressed by the temperature, T(go), at which the transmembrane gradient of ion concentration rapidly dissipated during transient heating. T(go) is the inducing temperature of the membrane transition that activated passive ion permeability at hyperthermia causing thermal hemolysis. A good allometric correlation of T(go) to the resistance against thermal hemolysis and the life span of erythrocytes were found for 13 mammals; sheep, cow, goat, dog, horse, man, rabbit, pig, cat, hamster, guinea pig, rat, and mouse. For the same group, the values of T(go) were strictly related to the sphingomyelin content of erythrocyte membranes. The residual ion permeability, P, was temperature activated from 38 to 57 degrees C with activation energy of 250+/-15 kJ/mol that strongly differed from that below 37 degrees C. The projected value of P at 37 degrees C was about half that of residual physiological permeability for Na+ and K+ that build ground for possible explanation of the life span vs membrane thermostability allometric correlation.  相似文献   

4.
Analyses of the fatty acid composition of the outer and inner pools of sphingomyelin in the human erythrocyte membrane revealed significant differences in molecular species composition of these two pools. The sphingomyelin in the inner monolayer, representing 15–20% of the total sphingomyelin content of this membrane, is characterized by a relatively high content (73%) of fatty acids, which have less than 20 carbon atoms, whereas these account for only 31% of the total fatty acids in the sphingomyelin in the outer leaflet. On the other hand, the ratio saturated/unsaturated fatty acids in the two pools is similar. Significant differences are also observed for the fatty acid composition of the sphingomyelin in human serum when compared to that in the outer monolayer of the corresponding red cell. These results are interpreted to indicate an (almost) complete absence of transbilayer movements of sphingomyelin molecules in the human erythrocyte membrane, whereas an exchange of this phospholipid between the red cell membrane and serum is either virtually absent, or affects only a minor fraction of the sphingomyelin in the outer membrane layer.  相似文献   

5.
    
Sphingolipids from rodent testis and spermatozoa are known to contain non-hydroxylated (N-) and 2-hydroxylated (2-OH) very-long-chain polyunsaturated fatty acids (VLCPUFA). In this study, the contribution of species with each type of fatty acids to the total ceramides (Cer) and sphingomyelins (SM) was investigated in rat and mouse testis and in rat spermatozoa. The major VLCPUFA in both lipids of testis were N- and 2-OH versions of 28:4n−6, 30:5n−6 and 32:5n−6 in the rat, and predominantly of 30:5n−6 in the mouse. Absent altogether from rat pre-puberal testes, SM and Cer with N-VLCPUFA appeared 10 days earlier than those with 2-OH VLCPUFA in postnatal development, in association with germ cell differentiation. Conversely, in adult fertile rats that were gradually deprived of germ cells in vivo after treatment with doxorubicin, SM and Cer with N-VLCPUFA decreased earlier than their 2-OH counterparts, and neither was present in aspermatogenic testes. In rat epididymal spermatozoa, the content of Cer prevailed over that of SM and 2-OH VLCPUFA prevailed over N-VLCPUFA in both lipids. In mature gametes, the acrosomal reaction resulted in an almost complete hydrolysis of the species of SM that contain both types of VLCPUFA to produce the corresponding Cer. Ceramides are biosynthetic precursors of SM in the testis, but themselves final products in spermatozoa. VLCPUFA-rich SM and Cer are thus produced in germ cells with the teleological objective of fulfilling their ultimate physiological role in spermatozoa that are apt and ready to fertilize an oocyte.  相似文献   

6.
    
To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1alpha (CPT1alpha). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1alpha transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1alpha over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1alpha over-expressing cells in a concentration-dependent manner. Both, PA and CPT1alpha over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1alpha, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.  相似文献   

7.
Recently, it has been found that long-chain fatty acids activate the G protein-coupled receptors (GPRs), GPR120 and GPR40. However, there have been no reports to date on the possible physiological roles of these GPRs in adipose tissue development and adipocyte differentiation. GPR120 mRNA was highly expressed in the four different adipose tissues, and the amount of mRNA was elevated in adipose tissues of mice fed a high fat diet. However, GPR40 mRNA was not detected in any of the adipose tissues. The expression of GPR120 mRNA was higher in adipocytes compared to stromal-vascular (S-V) cells. The level of GPR120 mRNA increased during adipocyte differentiation in 3T3-L1 cells. Similar results were observed in human adipose tissue, human preadipocytes, and cultured adipocytes. Moreover, use of a small interference RNA (siRNA) to down-regulate GPR120 expression resulted in inhibition of adipocyte differentiation. Our results suggest that GPR120 regulates adipogenic processes such as adipocyte development and differentiation.  相似文献   

8.
Abstract: White matter and active plaque tissue from adrenoleukodystrophy (ALD) patients were analysed for lipid class and fatty acid compositions and the results compared with white matter from normal brain. ALD white matter was characterized by increased levels of cholesteryl esters and decreased levels of phosphatidylethanola- mine, including phosphatidylethanolamine plasmalogen, in comparison with normal brain white matter. In addition to even higher levels of cholesteryl esters, ALD plaque tissue had reduced levels of cerebrosides as well as phosphati-dylethanolamines. The loss of phosphatidylethanolamine plasmalogen is indicative of early demyelination. Total lipid from ALD white matter and ALD plaque tissue contained nearly five times and seven times, respectively, more 26:0 than total lipid from normal brain white matter. The 26:0 in ALD white matter was elevated in all lipid classes except phosphatidylinositol, but was located mainly in cerebrosides, phosphatidylcholine, sphingomyelin, and sulfatides. Most of the 26:0 in ALD plaque tissue was present in cholesteryl esters, followed by phosphatidylcholine and sphingomyelin, with reduced amounts in cerebrosides as compared with ALD white matter. The results are consistent with an initial accumulation of very-long-chain fatty acids in ALD white matter, primarily in sphingolipids and phosphatidylcholine, and subsequent accumulation of very-long- chain fatty acids in cholesteryl esters during demyelination. In addition, it was notable that the sphingolipids, especially sphingomyelin in ALD brain, had decreased levels of 24:1 and increased levels of 18:0, as well as increased levels of very-long-chain fatty acids. The extent to which the data shed light on mechanisms of demyelination in ALD is discussed.  相似文献   

9.
We examined effects of exogenous very-long-chain fatty acids on lipids of cultured chick neurons and astrocytes. When chick neurons were incubated in chemically defined medium containing 10 microM nervonic acid (C24:1) for 7 days, it was found that a major fatty acid moiety of gangliosides and sphingomyelin was nervonic acid itself, which was not normally detected in the sphingolipid fraction. This alteration in the fatty acid composition apparently occurred in each ganglioside species. Under these experimental conditions, nervonic acid was not found in the glycerophospholipid fraction, and the amounts of triacylglycerol and free nervonic acid increased. Addition of behenic acid (C22:0) or erucic acid (C22:1) also induced changes in the fatty acid composition of gangliosides. When chick astrocytes were incubated in the presence of 10 microM nervonic acid for 7 days, no significant change was observed in the fatty acid composition of gangliosides. These studies indicate that the manipulation of the fatty acid moiety of sphingolipids in cultured neurons is possible.  相似文献   

10.
Abstract: X-Adrenoleukodystrophy (X-ALD) is an inherited metabolic disorder of very long-chain fatty acids (VLCFA) with subsequent manifestation of neuroinflammatory disease. To investigate the possible role of proinflammatory cytokines in the X-ALD disease process, we examined the effect of cytokines on the metabolism of VLCFA in C6 glial cells expressing oligodendrocyte-like properties. C6 glial cells under serum-free conditions were treated with different combinations of cytokines (tumor necrosis factor-α, interleukin-1β, interferon-γ) or cytokine with bacterial lipopolysaccharide (LPS). Cytokine-treated C6 cells had higher concentrations of VLCFA, measured as percent weight and also as C26:0/C22:0 ratio, which were 300–400% as compared with the controls. We also found increased levels of C26:1 in cytokine-treated cells. The accumulation of VLCFA paralleled the decrease (35–55%) in peroxisomal β-oxidation activity and a 12- to 14-fold increase in the production of nitric oxide (NO). Individual cytokines were unable either to produce NO or to increase the levels of VLCFA in C6 cells. Inhibition of cytokine-induced NO production by l -N-methylarginine, an inhibitor of NO synthase (NOS), and N-acetylcysteine, an inhibitor of cytokine-mediated induction of inducible NOS, normalized the peroxisomal β-oxidation activity and the levels of VLCFA, suggesting a role for the proinflammatory cytokines and NO toxicity in the neuropathological changes associated with abnormal VLCFA metabolism (e.g., X-ALD). X-ALD is a peroxisomal disease having deficient oxidation of VLCFA, resulting in the excessive accumulation of VLCFA in all tissues but especially in brain. We observed greater increase in levels of VLCFA in the inflammatory region of ALD brain (in the demyelinating plaque and the area around the plaque) than in the normal-looking area away from the plaque; this also indicates that cytokines in the proinflammatory region may augment the VLCFA defect caused by the inherited abnormality in X-ALD brain. Although C6 glial cultured cells do not reflect the X-ALD model precisely, the observed relationship between the cytokine-induced inhibition of the oxidation of VLCFA, excessive accumulation of VLCFA, and excessive production of NO and their normalization by inhibitors of NOS in C6 glial cells suggests that NO-mediated toxicity may play a role in VLCFA-associated neuroinflammatory diseases (e.g., X-ALD).  相似文献   

11.
12.
Existence of GPR40 functioning in a human breast cancer cell line, MCF-7   总被引:6,自引:0,他引:6  
GPR40, which has recently been identified as a G-protein-coupled cell-surface receptor for long-chain fatty acids, was assessed in a human breast cancer cell line (MCF-7). We detected GPR40 mRNA by RT-PCR and found that oleate and linoleate, but not palmitate or stearate, caused an increase in cellular Ca(2+) concentrations, which was partially blocked by the pertussis toxin (PTX) treatment. We examined the expression of GPR40 mRNA by quantitative RT-PCR in the relation to cell number. It was significantly increased at the beginning and at the end of cell proliferation. These results indicate the possibility that GPR40 for long-chain fatty acids may be involved in cellular function such as cell proliferation, providing a new perspective for the action of long-chain fatty acids on mammary epithelial cells.  相似文献   

13.
Abstract: Polyunsaturated fatty acids are needed for normal neonatal brain development, but the degree of conversion of the 18-carbon polyunsaturated fatty acid precursors consumed in the diet to their respective 20-and 22-carbon polyunsaturates accumulating in the brain is not well known. In the present study, in vivo 13C nuclear magnetic resonance spectroscopy was used to monitor noninvasively the brain uptake and metabolism of a mixture of uniformly 13C-enriched 16-and 18-carbon polyunsaturated fatty acid methyl esters injected intragastrically into neonatal rats. In vivo NMR spectra of the rat brain at postnatal days 10 and 17 had larger fatty acid signals than in uninjected controls, but changes in levels of individual fatty acids could not be distinguished. One day after injection of the U-13C-polyunsaturated fatty acid mixture, 13C enrichment (measured by isotope ratio mass spectrometry) was similar in brain phospholipids, free fatty acids, free cholesterol, and brain aqueous extract; 13C enrichment remained high in the phospholipids and cholesterol for 15 days. 13C enrichment was similar in the main fatty acids of the brain within 1 day of injection but 15 days later had declined in all except arachidonic acid while continuing to increase in docosahexaenoic acid. These changes in 13C enrichment in brain fatty acids paralleled the developmental changes in brain fatty acid composition. We conclude that, in the neonatal rat brain, dietary 16-and 18-carbon polyunsaturates are not only elongated and desaturated but are also utilized for de novo synthesis of long-chain saturated and monounsaturated fatty acids and cholesterol.  相似文献   

14.
    
A new green microalga isolate Micractinium sp. GA001 was found to accumulate long-chain fatty acids, and the strain was subjected to flow cytometry-based adaptive evolution approach to produce improved phenotypes. At first, original phenotype of new isolate GA001 was well characterized followed by establishment of flow cytometry conditions in combination with fluorescent dyes BODIPY and Nile Red, to screen intracellular long-chain fatty acids in GA001. Fluorescent dyes staining and flow cytometry analysis revealed the progressive accumulation of desirable lipid components in GA001. Further, a flow cytometry-based strategy was used to selectively isolate and enrich particular GA001 phenotypes with higher accumulation of long-chain fatty acids, under nitrogen-depletion and –repletion conditions. This strategy yielded an improved population with high lipid content than original population. Micractinium sp. GA001 was proved to be a promising strain with improved phenotypes for the production of large-scale target-specific long-chain fatty acids.  相似文献   

15.
Although mammary epithelial cells are known to synthesize and accumulate triacylglycerol (TAG) in order to produce milk lipid in the cytosol, lipid and energy metabolism is still not fully understood. In this study, we assessed the effects of long-chain fatty acid (LCFA) on the accumulation of cytosolic TAG and uncoupling protein (UCP) 2 in cloned bovine mammary epithelial cells (bMEC). LCFAs significantly raised the expression of UCP2 mRNA and the accumulation of TAG. We observed the rapid elevation in UCP2 shown at 6 h after LCFA treatment. Insulin (5-50 ng/ml) or dexamethasone (500 nM) significantly suppressed the expression of UCP2 mRNA. These results suggest that UCP2 play an important role of lipid and energy metabolism in mammary epithelial cells.  相似文献   

16.
Current measurement of appetite depends upon tools that are either subjective (visual analogue scales), or invasive (blood). Saliva is increasingly recognised as a valuable resource for biomarker analysis. Proteomics workflows may provide alternative means for the assessment of appetitive response. The study aimed to assess the potential value of the salivary proteome to detect novel biomarkers of appetite using an iTRAQ-based workflow. Diurnal variation of salivary protein concentrations was assessed. A randomised, controlled, crossover study examined the effects on the salivary proteome of isocaloric doses of various long chain fatty acid (LCFA) oil emulsions compared to no treatment (NT). Fasted males provided saliva samples before and following NT or dosing with LCFA emulsions. The oil component of the DHA emulsion contained predominantly docosahexaenoic acid and the oil component of OA contained predominantly oleic acid. Several proteins were present in significantly (p<0.05) different quantities in saliva samples taken following treatments compared to fasting samples. DHA caused alterations in thioredoxin and serpin B4 relative to OA and NT. A further study evaluated energy intake (EI) in response to LCFA in conjunction with subjective appetite scoring. DHA was associated with significantly lower EI relative to NT and OA (p=0.039). The collective data suggest investigation of salivary proteome may be of value in appetitive response. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

17.
1. The sidedness of Ca2+-pump activation by Na+ and K+ was studied by atomic absorption spectrophotometry in human erythrocyte ghosts, which had been prepared in dextran solutions and resealed to alkali cations. 2. When ghosts were incubated in an all-choline medium, the increase in Nai+ elicited an inhibitory-stimulatory effect on Ca2+ extrusion. By contrast, only a stimulatory action was induced when choline was replaced by Na0+. 3. A dual effect on active Ca2+ efflux was also produced by increasing Ki+ or K0+. The biphasic response to the latter, however, was absent from high-K+ ghosts. Furthermore, the stimulation obtained at high K0+ was additive to that elicited by Ki+. 4. The results suggest that Na+ and K+ stimulate the Ca2+ pump of human red cells through two different mechanisms. The first one appears to be an electric coupling between Ca2+ efflux and the external activating cation. The other seems associated with the molecular reactions of the Ca2+-pump protein.  相似文献   

18.
Sphingomyelin synthase (SMS) is an enzyme that catalyzes the transfer of phosphocholine from phosphatidylcholine to ceramide for sphingomyelin synthesis. Here, we show that SMS2 is palmitoylated at cysteine residues via thioester bonds in the COOH-terminal cytoplasmic tail. [3H]palmitic acid labeling of SMS1 or SMS2-overexpressing HEK293 cells revealed that SMS2, but not SMS1, is palmitoylated. Site-directed mutagenesis of cysteine residues to alanine ones indicated that the COOH-terminal cysteine cluster of the enzyme is palmitoylated. Mutation of all potential palmitoylation sites resulted in a dramatic reduction in the plasma membrane distribution of SMS2, whereas it did not affect the in vitro enzyme activity. These results suggested that this posttranslational modification is important for determination of the subcellular localization of SMS2.  相似文献   

19.
Multiplicity of hepatic microsomal coenzyme A ligases catalyzing acyl-CoA thioester formation is an important factor for consideration in relation to the metabolism of xenobiotic carboxylic acids. In this study the kinetic characteristics of rat hepatic microsomal nafenopin-CoA ligase were studied and compared with those of long-chain fatty acid (palmitoyl) CoA ligase. The high affinity component of palmitoyl-CoA formation was inhibited by nafenopin (Ki 53 μM) and ciprofibrate (Ki 1000 μM). Analagous to palmitoyl-CoA, nafenopin-CoA formation was catalyzed by an apparent high affinity low capacity isoform (Km 6 ± 2.5 μM, (Vmax 0.33 ± 0.12 nmol/mg per min) which was inhibited competitively by palmitic acid (mean Ki 1.7 μM, n = 5) and R-ibuprofen (mean Ki 10.8 μM, n = 5) whilst ciprofibrate and clofibric acid were ineffective as inhibitors. The intrinsic metabolic clearance of nafenopin to nafenopin-CoA (Vmax/Km 0.057 ± 0.011 nmol/mg/min ± M) was similar to that reported recently for the formation of ibuprofenyl-CoA by rat liver microsomes. Evidence of both a substantial difference between the Km and Ki for nafenopin and lack of commonality with regard to xenobiotic inhibitors suggests that the high affinity microsomal nafenopin-CoA and long-chain fatty acid-CoA ligases are kinetically distinct. Thus until the current ‘long-chain like’ xenobiotic-CoA ligases are fully characterised in terms of substrate specificity, inhibitor profile, etc, it will be impossible to rationalize (and possibly predict) the metabolism and hence toxicity of xenobiotic carboxylic acids forming acyl-CoA thioester intermediates.  相似文献   

20.
    
A low-affinity Ca2+-ATPase from erythrocyte membranes has been purified by agarose suspension electrophoresis and polyacrylamide gel electrophoresis in the absence of detergents. For maximal activity a calcium concentration above 10 mM is required. The activity is independent of magnesium. The Km value for ATP is about 60 μM. The enzyme appears in two forms (A and B) with similar amino acid composition. The specific activity of A is higher than that of B. Gel electrophoresis in SDS of A gives a pattern consisting of two bands. B gives the same pattern; the only difference between the patterns is the ratio of the amounts of protein in the bands. The apparent molecular weight of the proteins in the two SDS bands has been estimated at 23 000 and 21 000, respectively. The results obtained can be explained by assuming that the two proteins corresponding to the two bands obtained in SDS electrophoresis have a similar structure and can associate to complexes A and B. We have also shown that electrophoretic and chromatographic supporting media can induce aggregation of (membrane) proteins. Artificial complexes can thus be formed and cause misinterpretation of the data obtained. This may be the reason why some authors have speculated that Ca2+-ATPase is active only in complex with other proteins such as spectrin and actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号