首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mosquito Aedes aegypti is the most important vector of yellow fever and dengue fever flaviviruses. Ae. aegypti eradication campaigns have not been sustainable and there are no effective vaccines for dengue viruses. Alternative control strategies may depend upon identification of mosquito genes that condition flavivirus susceptibility and may ultimately provide clues for interrupting transmission. Quantitative trait loci affecting the ability of Ae. aegypti to develop a dengue-2 infection in the midgut have been mapped previously. Herein we report on QTL that determine whether mosquitoes with a dengue-2-infected gut can then disseminate the virus to other tissues. A strain selected for high rates of dengue-2 dissemination was crossed to a strain selected for low dissemination rates. QTL were mapped in the F(2) and again in an F(5) advanced intercross line. QTL were detected at 31 cM on chromosome I, at 32 cM on chromosome II, and between 44 and 52 cM on chromosome III. Alleles at these QTL were additive or dominant in determining rates of dengue-2 dissemination and accounted for approximately 45% of the phenotypic variance. The locations of dengue-2 midgut infection and dissemination QTL correspond to those found in earlier studies.  相似文献   

2.
QTL mapping analysis of plant height and ear height of maize (Zea mays L.)   总被引:3,自引:0,他引:3  
Zhang ZM  Zhao MJ  Ding HP  Rong TZ  Pan GT 《Genetika》2006,42(3):391-396
Genetic map containing 103 microsatellite loci obtained on 200 F2 plants derived from the cross R15 x 478 was used for quantitative trait loci (QTL) mapping in maize. QTL were characterized in a population of 200 F2:4 lines, derived from selfing the F2 plants, and were evaluated with two replications in two environments. QTL determinations were made from the mean of these two environments. Plant height (PH) and ear height (EH) were measured. Using composite interval mapping (CIM) method, a total of 14 distinct QTLs were identified: nine for PH and five for EH. Additive, partial dominance, dominance, and overdominance actions existed among all detected QTL affecting plant height and ear height. The QTL explained 78.27% of the phenotypic variance of PH and 41.50% of EH. The 14 QTLs displayed mostly dominance or partial dominance gene action and mapped to chromosomes 2, 3, 4, 8 and 9.  相似文献   

3.
A linkage map of garden pea was constructed on the basis of 114 plants (F2 generation) derived from a cross combination Wt10245 x Wt11238. The map, consisting of 204 morphological, isozyme, AFLP, ISSR, STS, CAPS and RAPD markers, was used for interval mapping of quantitative trait loci (QTLs) controlling seed number, pod number, 1000-seed weight, 1000-yield, and seed protein content. Characterization of each QTL included identification of QTL position with reference to the flanking markers, estimation of the part of variance explained by this QTL, and determination of its gene action. The yield-related traits were measured in F2 plants and in F4 recombinant inbred lines (RILs). The interval mapping revealed two to six QTLs per trait, demonstrating linkage to seven pea chromosomes. A total of 37 detected QTLs accounted for 9.1-55.9% of the trait's phenotypic variation and showed different types of gene action. As many as eight and ten QTLs influencing the analysed traits were mapped in linkage groups III and V, respectively, indicating an important role of these regions of the pea genome in the control of yield and seed protein content.  相似文献   

4.
Existing approaches to characterizing quantitative trait loci (QTL) utilize a paradigm explicitly focused on the direct effects of genes, where phenotypic variation among individuals is mapped onto genetic variation of those individuals. For many characters, however, the genotype of the mother via its maternal effect accounts for a considerable portion of the genetically based variation in progeny phenotypes. Thus the focus on direct effect QTL may result in an insufficient or misleading characterization of genetic architecture due to the omission of the potentially important source of genetic variance contributed by maternal effects. We analyze the relative contribution of direct and maternal effect (ME) QTL to early growth in mice using a three-generation intercross of the Small (SM/J) and Large (LG/J) inbred mouse lineages. Using interval mapping and composite interval mapping, direct effect (DE) QTL for early growth (change in body mass during the interval from week 1 to 2) were detected in the F(2) generation of the intercross (n = 510), where no maternal genetic effect variance is present (all individuals are progeny of genetically identical F(1) mothers). ME QTL were detected by treating the phenotypes of cross-fostered F(3) pups as a characteristic of their nurse-dam (n = 168 dams with cross-fostered progeny). Five DE QTL, significant at a chromosome wide level (alpha = 0.05), were detected, with two significant at a genome wide level. FourME QTL significant at the chromosome wide level were detected, with three significant at the genome wide level. A model containing only DE QTL accounted for 11.8% of phenotypic variance, while a model containing only ME QTL accounted for 31.5% of the among litter variance in growth. There was no evidence for pleiotropy of DE and ME loci since there was no overlap between loci detected in these two analyses. Epistasis between all pairs of loci was analyzed for both DEs and MEs. Ten pairs of loci showed significant epistasis for MEs (alpha = 0.05 corrected for multiple comparisons) while four pairs showed significant epistasis for DEs on early growth.  相似文献   

5.
Molecular mapping of quantitative trait loci in japonica rice.   总被引:1,自引:0,他引:1  
E D Redo?a  D J Mackill 《Génome》1996,39(2):395-403
Rice (Oryza sativa L.) molecular maps have previously been constructed using interspecific crosses or crosses between the two major subspecies: indica and japonica. For japonica breeding programs, however, it would be more suitable to use intrasubspecific crosses. A linkage map of 129 random amplified polymorphic DNA (RAPD) and 18 restriction fragment length polymorphism (RFLP) markers was developed using 118 F2 plants derived from a cross between two japonica cultivars with high and low seedling vigor, Italica Livorno (IL) and Labelle (LBL), respectively. The map spanned 980.5 cM (Kosambi function) with markers on all 12 rice chromosomes and an average distance of 7.6 cM between markers. Codominant (RFLP) and coupling phase linkages (among RAPDs) accounted for 79% of total map length and 71% of all intervals. This map contained a greater percentage of markers on chromosome 10, the least marked of the 12 rice chromosomes, than other rice molecular maps, but had relatively fewer markers on chromosomes 1 and 2. We used this map to detect quantitative trait loci (QTL) for four seedling vigor related traits scored on 113 F3 families in a growth chamber slantboard test at 18 degrees C. Two coleoptile, five root, and five mesocotyl length QTLs, each accounting for 9-50% of the phenotypic variation, were identified by interval analysis. Single-point analysis confirmed interval mapping results and detected additional markers significantly influencing each trait. About two-thirds of alleles positive for the putative QTLs were from the high-vigor parent, IL. One RAPD marker (OPAD13720) was associated with a IL allele that accounted for 18.5% of the phenotypic variation for shoot length, the most important determinant of seedling vigor in water-seeded rice. Results indicate that RAPDs are useful for map development and QTL mapping in rice populations with narrow genetic base, such as those derived from crosses among japonica cultivars. Other potential uses of the map are discussed. Key words : QTL mapping, RAPD, RFLP, seedling vigor, japonica, Oryza sativa.  相似文献   

6.
Susceptibility of the mosquito Aedes aegypti to the malarial parasite Plasmodium gallinaceum was investigated as a quantitative trait using restriction fragment length polymorphisms (RFLP). Two F(2) populations of mosquitoes were independently prepared from pairwise matings between a highly susceptible and a refractory strain of A. aegypti. RFLP were tested for association with oocyst development on the mosquito midgut. Two putative quantitative trait loci (QTL) were identified that significantly affect susceptibility. One QTL, pgs[2,LF98], is located on chromosome 2 and accounted for 65 and 49% of the observed phenotypic variance in the two populations, respectively. A second QTL, pgs[3,MalI], is located on chromosome 3 and accounted for 14 and 10% of the observed phenotypic variance in the two populations, respectively. Both QTL exhibit a partial dominance effect on susceptibility, wherein the dominance effect is derived from the refractory parent. No indication of epistasis between these QTL was detected. Evidence suggests that either a tightly linked cluster of independent genes or a single locus affecting susceptibility to various mosquito-borne parasites and pathogens has evolved near the LF98 locus; in addition to P. gallinaceum susceptibility, this general genome region has previously been implicated in susceptibility to the filarial nematode Brugia malayi and the yellow fever virus.  相似文献   

7.
水稻低温发芽力QTL定位和遗传分析   总被引:5,自引:0,他引:5  
以Kinmaze(粳稻)/DV85(籼稻)的重组自交系F10世代群体检测了影响水稻低温发芽力性状的数量性状基因座(QTL)。通过测定不同时期的低温发芽率,确定了15℃低温、第10d为检测低温发芽率的最适处理温度和时间,该条件下能够充分检测到品种的差异和分离群体的变异。通过设置对照,证明所检测的低温发芽率不受休眠及二次休眠的影响。15℃低温、第10d时,Kinmaze的发芽率达35%,DV85的发芽率只有7%,两亲本之间存在明显差异,该群体81个家系的低温发芽率变幅在0%~99%之间。QTL分析结果检测到5个与低温发芽力相关的基因座,分别位于第2、6、7、11和12染色体上。位于第2、6和11染色体上的qLTG-2、qLTG-6和qLTG-11贡献率分别为27.1%、17.1%和15.0%,对低温发芽力性状的增效基因来自DV85;位于第7、12染色体上qLTG-7和qLTG-12的贡献率分别为22.9%和8.8%,增效基因来自Kinmaze。其中,qLTG-6和qLTG-11在染色体上的位置与已报道的有关低温发芽力QTL位置相似,而qLTG-2、qLTG-7和qLTG-12为新检测的低温发芽力基因座。上位性分析结果显示,第3与第5染色体上存在影响低温发芽力的互作位点,其互作可以提高低温发芽力,而第7染色体上的两位点之间的互作降低了低温发芽力。  相似文献   

8.
W R Wu  W M Li  D Z Tang  H R Lu  A J Worland 《Genetics》1999,151(1):297-303
Using time-related phenotypic data, methods of composite interval mapping and multiple-trait composite interval mapping based on least squares were applied to map quantitative trait loci (QTL) underlying the development of tiller number in rice. A recombinant inbred population and a corresponding saturated molecular marker linkage map were constructed for the study. Tiller number was recorded every 4 or 5 days for a total of seven times starting at 20 days after sowing. Five QTL were detected on chromosomes 1, 3, and 5. These QTL explained more than half of the genetic variance at the final observation. All the QTL displayed an S-shaped expression curve. Three QTL reached their highest expression rates during active tillering stage, while the other two QTL achieved this either before or after the active tillering stage.  相似文献   

9.
A previous genetic map containing 117 microsatellite loci and 400 F(2) plants was used for quantitative trait loci (QTL) mapping in tropical maize. QTL were characterized in a population of 400 F(2:3) lines, derived from selfing the F(2) plants, and were evaluated with two replications in five environments. QTL determinations were made from the mean of these five environments. Grain yield (GY), plant height (PH), ear height (EH) and grain moisture (GM) were measured. Variance components for genotypes (G), environments (E) and GxE interaction were highly significant for all traits. Heritability was 0.69 for GY, 0.66 for PH, 0.67 for EH and 0.23 for GM. Using composite interval mapping (CIM), a total of 13 distinct QTLs were identified: four for GY, four for PH and five for EH. No QTL was detected for GM. The QTL explained 32.73 % of the phenotypic variance of GY, 24.76 % of PH and 20.91 % of EH. The 13 QTLs displayed mostly partial dominance or overdominance gene action and mapped to chromosomes 1, 2, 7, 8 and 9. Most QTL alleles conferring high values for the traits came from line L-14-4B. Mapping analysis identified genomic regions associated with two or more traits in a manner that was consistent with correlation among traits, supporting either pleiotropy or tight linkage among QTL. The low number of QTLs found, can be due to the great variation that exists among tropical environments.  相似文献   

10.
Laboratory colonies of the eastern treehole mosquito (Ochlerotatus triseriatus (Say)) exhibit a consistent female-biased sex ratio. This is unusual among mosquito species, in which heritable sex ratio distortion is usually male biased and mediated by meiotic drive. Quantitative trait loci (QTL) affecting sex were mapped in an F(1) intercross to better understand the genetics underlying this female bias. In P(1) and F(1) parents and in 146 F(2) individuals with a female-biased sex ratio (106 females:40 males), regions of seven cDNA loci were analyzed with single-strand conformation polymorphism (SSCP) analysis to identify and orient linkage groups. Genotypes were also scored at 73 random amplified polymorphic DNA (RAPD)-SSCP loci. In addition to the sex locus, at least four QTL affecting sex determination were detected with interval mapping on linkage groups I and II. Alleles at the sex locus cumulatively accounted for approximately 61-77% of the genetic variance in sex. Alleles at QTL adjacent to the sex locus and at a QTL on the opposite end of linkage group I increased the proportion of females, but alleles at a QTL on linkage group I and a second QTL on linkage group II increased the proportion of males. The female-biased sex ratio observed in laboratory colonies of O. triseriatus is most easily explained by the existence of multiple female biased distorter loci, as have been observed in other Diptera.  相似文献   

11.
Qiu F  Zheng Y  Zhang Z  Xu S 《Annals of botany》2007,99(6):1067-1081
BACKGROUND AND AIMS: Soil waterlogging is a major environmental stress that suppresses maize (Zea mays) growth and yield. To identify quantitative trait loci (QTL) associated with waterlogging tolerance at the maize seedling stage, a F2 population consisting of 288 F(2:3) lines was created from a cross between two maize genotypes, 'HZ32' (waterlogging-tolerant) and 'K12' (waterlogging-sensitive). METHODS: The F2 population was genotyped and a base-map of 1710.5 cM length was constructed with an average marker space of 11.5 cM based on 177 SSR (simple sequence repeat) markers. QTL associated with root length, root dry weight, plant height, shoot dry weight, total dry weight and waterlogging tolerance coefficient were identified via composite interval mapping (CIM) under waterlogging and control conditions in 2004 (EXP.1) and 2005 (EXP.2), respectively. KEY RESULTS AND CONCLUSIONS: Twenty-five and thirty-four QTL were detected in EXP.1 and EXP.2, respectively. The effects of each QTL were moderate, ranging from 3.9 to 37.3 %. Several major QTL determining shoot dry weight, root dry weight, total dry weight, plant height and their waterlogging tolerance coefficient each mapped on chromosomes 4 and 9. These QTL were detected consistently in both experiments. Secondary QTL influencing tolerance were also identified and located on chromosomes 1, 2, 3, 6, 7 and 10. These QTL were specific to particular traits or environments. Although the detected regions need to be mapped more precisely, the findings and QTL found in this study may provide useful information for marker-assisted selection (MAS) and further genetic studies on maize waterlogging tolerance.  相似文献   

12.
The genetic architecture of Drosophila sensory bristle number   总被引:2,自引:0,他引:2  
Dilda CL  Mackay TF 《Genetics》2002,162(4):1655-1674
We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits.  相似文献   

13.
Recombinant-inbred populations, generated from a cross between Caenorhabditis elegans strains Bergerac-BO and RC301, were used to identify quantitative trait loci (QTL) affecting nematode longevity. Genotypes of young controls and longevity-selected worms (the last-surviving 1% from a synchronously aged population) were assessed at dimorphic transposon-specific markers by multiplex polymerase chain reaction. The power of genetic mapping was enhanced, in a novel experimental design, through map expansion by accrual of recombinations over several generations, internally controlled longevity selection from a genetically heterogeneous, homozygous population, and selective genotyping of extremely long-lived worms. Analysis of individual markers indicated seven life-span QTL, situated near markers on chromosomes I (tcbn2), III (stP127), IV (stP13), V (stP6, stP23, and stP128), and X (stP41). These loci were corroborated, and mapped with increased precision, by nonparametric interval mapping-which supported all loci implicated by single-marker analysis. In addition, a life-span QTL on chromosome II (stP100-stP196), was significant only by interval mapping. Congenic lines were constructed for the longevity QTL on chromosomes III and X, by backcrossing the Bergerac-BO QTL allele into an RC301 background with selection for flanking markers. Survival data for these lines demonstrated consistent and significant effects of each QTL on life span.  相似文献   

14.
Jarvis JP  Cheverud JM 《Genetics》2011,187(2):597-610
Genome-wide mapping analyses are now commonplace in many species and several networks of interacting loci have been reported. However, relatively few details regarding epistatic interactions and their contribution to complex trait variation in multicellular organisms are available and the identification of positional candidate loci for epistatic QTL (epiQTL) is hampered, especially in mammals, by the limited genetic resolution inherent in most study designs. Here we further investigate the genetic architecture of reproductive fatpad weight in mice using the F(10) generation of the LG,SM advanced intercross (AI) line. We apply multiple mapping techniques including a single-locus model, locus-specific composite interval mapping (CIM), and tests for multiple QTL per chromosome to the 12 chromosomes known to harbor single-locus QTL (slQTL) affecting obesity in this cross. We also perform a genome-wide scan for pairwise epistasis. Using this combination of approaches we detect 199 peaks spread over all 19 autosomes, which potentially contribute to trait variation including all eight original F(2) loci (Adip1-8), novel slQTL peaks on chromosomes 7 and 9, and several novel epistatic loci. Extensive epistasis is confirmed involving both slQTL confidence intervals (C.I.) as well as regions that show no significant additive or dominance effects. These results provide important new insights into mapping complex genetic architectures and the role of epistasis in complex trait variation.  相似文献   

15.
The primary goal of this study was to investigate statistical properties of a mixed inheritance model for the localization of quantitative trait loci (QTL). This is based on the analysis of phenotypic data for the amount of intramuscular fat (IMF) scored on 305 individuals originating from a cross between Duroc and Norwegian Landrace breeds. Marker genotype information is available for F1 and F2 generations. Statistical procedures compared involve i) the interval mapping, ii) the composite interval mapping, iii) a regression method, and iv) a mixed inheritance model accounting for a random animal additive genetic effect and relationships between individuals. The basic statistical properties of the latter approach are then assessed using Monte Carlo simulations showing slight unconservativeness as compared to chi(2)2df and reasonable power to detect QTL of moderate effects. In the analysis of IMF data, the significant evidence for the existing QTL is detected on chromosome 6. A chromosomal region recommended for a second-step fine mapping analysis is identified between markers SW1823 and S0228, based on three types of confidence intervals derived by using: i) the Jackknife algorithm, ii) the numerical variance approximation, and iii) the LOD score approach. The Jackknife algorithm was additionally used to quantify each family's contribution to the test statistic and to the estimate of QTL position.  相似文献   

16.
Fine mapping of quantitative trait loci (QTL) from previous linkage studies was performed on pig chromosomes 1, 4, 7, 8, 17, and X which were known to harbor QTL. Traits were divided into: growth performance, carcass, internal organs, cut yields, and meat quality. Fifty families were used of a F2 population produced by crossing local Brazilian Piau boars with commercial sows. The linkage map consisted of 237 SNP and 37 microsatellite markers covering 866 centimorgans. QTL were identified by regression interval mapping using GridQTL. Individual marker effects were estimated by Bayesian LASSO regression using R. In total, 32 QTL affecting the evaluated traits were detected along the chromosomes studied. Seven of the QTL were known from previous studies using our F2 population, and 25 novel QTL resulted from the increased marker coverage. Six of the seven QTL that were significant at the 5% genome-wide level had SNPs within their confidence interval whose effects were among the 5% largest effects. The combined use of microsatellites along with SNP markers increased the saturation of the genome map and led to smaller confidence intervals of the QTL. The results showed that the tested models yield similar improvements in QTL mapping accuracy.  相似文献   

17.
Hayashi T  Awata T 《Genetica》2004,122(2):173-183
In the present paper, we proposed a statistical procedure based on composite interval mapping for accurate analysis of quantitative trait loci (QTL) for individuals sampled from an outcrossing population with two-generation families consisting of the sampled individuals and F1 progenies obtained by crossing them as parental individuals. In the proposed procedure, haplotypes of markers of parental individuals were reconstructed based on the genotypes of F1 progenies and QTL analyses with composite interval mapping were conducted separately for each of parents as well as jointly for both parents. A least squares method was applied to the composite interval mapping, where some of markers were selected as cofactors to absorb the variation induced by QTL located elsewhere in the genome. The procedure was evaluated for the efficiency in detecting QTL and the precision of estimates of locations and effects of QTL using simulations. It was shown that QTL with interaction between paternal and maternal alleles was effectively detected by joint analysis of both parents, while a QTL segregating only in one parent, closely linked to a QTL segregating only in the other parent, was successfully detected by analyzing separately each of the parents with inclusion of markers of both parents. The proposed procedure can provide detailed genetic information useful for marker assisted breeding in an outcrossing species such as forest trees.  相似文献   

18.
Common smut in maize, caused by Ustilago maydis, reduces grain yield greatly. Agronomic and chemical approaches to control such diseases are often impractical or ineffective. Resistance breeding could be an efficient approach to minimize the losses caused by common smut. In this study, quantitative trait loci (QTL) for resistance to common smut in maize were identified. In 2005, a recombinant inbred line (RIL) population along with the resistant (Zong 3) and susceptible (87-1) parents were planted in Beijing and Zhengzhou. Significant genotypic variation in resistance to common smut was observed at both locations after artificial inoculation by injecting inoculum into the whorl of plants with a modified hog vaccinator. Basing on a genetic map containing 246 polymorphic SSR markers with an average linkage distance of 9.11 cM, resistance QTL were analysed by composite interval mapping. Six additive-effect QTL associated with resistance to common smut were identified on chromosomes 3 (three QTL), 5 (one QTL) and 8 (two QTL), and explained 3.2% to 12.4% of the phenotypic variation. Among the 6 QTL, 4 showed significant QTL x environment (Q x E) interaction effects, which accounted for 1.2% to 2.5% of the phenotypic variation. Nine pairs of epistatic interactions were also detected, involving 18 loci distributed on all chromosomes except 2, 6 and 10, which contributed 0.8% to 3.0% of the observed phenotypic variation. However, no significant epistasis x environment interactions were detected. In total, additive QTL effects and Q x E interactions explained 38.8% and 8.0% of the phenotypic variation, respectively. Epistatic effects contributed 15% of the phenotypic variation. The results showed that besides the additive QTL, both epistasis and Q x E interactions formed an important genetic basis for the resistance to Ustilago maydis in maize.  相似文献   

19.
QTL mapping for teat number in an Iberian-by-Meishan pig intercross   总被引:2,自引:0,他引:2  
The aim of this study was to investigate chromosomal regions affecting the number of teats in pigs and possible epistatic interactions between the identified quantitative trait loci (QTL). An experimental F2 cross between Iberian and Chinese Meishan lines was used for this purpose. A genomic scan was conducted with 117 markers covering the 18 porcine autosomes. Linkage analyses were performed by interval mapping using an animal model to estimate QTL and additive polygenic effects. Complementary analyses with models fitting two QTL were also carried out. The results showed three genomewide significant QTL mapping on chromosomes 5, 10 and 12, whose joint action control up to 30% of the phenotypic variance of the trait. Meishan alleles had a positive additive effect on teat number, and a positive-additive x additive-epistatic interaction was detected between QTL on chromosomes 10 and 12.  相似文献   

20.
Orobanche crenata Forsk. is a root parasite that produces devastating effects on many crop legumes and has become a limiting factor for faba bean production in the Mediterranean region. The efficacy of available control methods is minimal and breeding for broomrape resistance remains the most promising method of control. Resistance seems to be scarce and complex in nature, being a quantitative characteristic difficult to manage in breeding programmes. To identify and map the QTLs (quantitative trait loci) controlling the trait, 196 F2 plants derived from the cross between a susceptible and a resistant parent were analysed using isozymes, RAPD, seed protein genes, and microsatellites. F2-derived F3 lines were studied for broomrape resistance under field conditions. Of the 130 marker loci segregating in the F2 population, 121 could be mapped into 16 linkage groups. Simple interval mapping (SIM) and composite interval mapping (CIM) were performed using QTL Cartographer. Composite interval mapping using the maximum number of markers as cofactors was clearly the most efficient way to locate putative QTLs. Three QTLs for broomrape resistance were detected. One of the three QTLs explained more than 35% of the phenotypic variance, whereas the others accounted for 11.2 and 25.5%, respectively. This result suggests that broomrape resistance in faba bean can be considered a polygenic trait with major effects of a few single genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号