首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high affinity binding site (Site1) of the human growth hormone (hGH) binds to its cognate receptor (hGHR) via a concave surface patch containing about 35 residues. Using 167 sequences from a shotgun alanine scanning analysis of Site1, we have determined that over half of these residues can be simultaneously changed to an alanine or a non-isosteric amino acid while still retaining a high affinity interaction. Among these hGH variants the distribution of the mutation is highly variable throughout the interface, although helix 4 is more conserved than the other binding elements. Kinetic and thermodynamic analyses were performed on 11 representative hGH Site1 variants that contained 14-20 mutations. Generally, the tightest binding variants showed similar associated rate constants (k(on)) as the wild-type (wt) hormone, indicating that their binding proceeds through a similar transition state intermediate. However, calorimetric analyses indicate very different thermodynamic partitioning: wt-hGH binding exhibits favorable enthalpy and entropy contributions, whereas the variants display highly favorable enthalpy and highly unfavorable entropy contributions. The heat capacities (DeltaCp) on binding measured for wt-hGH and its variants are significantly larger than normally seen for typical protein-protein interactions, suggesting large conformational or solvation effects. The multiple Site1 mutations are shown to indirectly affect binding of the second receptor at Site2 through an allosteric mechanism. We show that the stability of the ternary hormone-receptor complex reflects the affinity of the Site2 binding and is surprisingly exempt from changes in Site1 affinity, directly demonstrating that dissociation of the active signaling complex is a stepwise process.  相似文献   

2.
A high-affinity variant of human growth hormone (hGH(v)) contains 15 mutations within site 1 and binds to the hGH receptor (hGHR) approximately 400-fold tighter than does wild-type (wt) hGH (hGH(wt)). We used shotgun scanning combinatorial mutagenesis to dissect the energetic contributions of individual residues within the hGH(v) binding epitope and placed them in context with previously determined structural information. In all, the effects of alanine substitutions were determined for 35 hGH(v) residues that are directly contained in or closely border the binding interface. We found that the distribution of binding energy in the functional epitope of hGH(v) differs significantly from that of hGH(wt). The residues that contributed the majority of the binding energy in the wt interaction (the so-called binding "hot spot") remain important, but their contributions are attenuated in the hGH(v) interaction, and additional binding energy is acquired from residues on the periphery of the original hotspot. Many interactions that inhibited the binding of hGH(wt) are replaced by interactions that make positive contributions to the binding of hGH(v). These changes produce an expanded and diffused hot spot in which improved affinity results from numerous small contributions distributed broadly over the interface. The mutagenesis results are consistent with previous structural studies, which revealed widespread structural differences between the wt and variant hormone-receptor interfaces. Thus, it appears that the improved binding affinity of hGH(v) site 1 was not achieved through minor adjustments to the wt interface, but rather, results from a wholesale reconfiguration of many of the original binding elements.  相似文献   

3.
Receptor signaling in the growth hormone (GH)-growth hormone receptor (GHR) system is controlled through a sequential two-step hormone-induced dimerization of two copies of the extracellular domain (ECD) of the receptor. The regulatory step of this process is the binding of the second ECD (ECD2) to the stable preassociated 1 : 1 GH/ECD1 complex on the cell surface. To determine the energetics that governs this step, the binding kinetics of 38 single- and double-alanine mutants in the hGH Site2 contact with ECD2 were measured by using trimolecular surface plasmon resonance (TM-SPR). We find that the Site2 interface of hGH does not have a distinct binding hot-spot region, and the most important residues are not spatially clustered, but rather are distributed over the whole binding surface. In addition, it was determined through analysis of a set of pairwise double alanine mutations that there is a significant degree of negative cooperativity among Site2 residues. Residues that show little effect or even improved binding on substitution with alanine, when paired with D116A-hGH, display significant negative cooperativity. Because most of these pairwise mutated residues are spatially separated by >or=10 A, this indicates that the Site2 binding interface of the hGH-hGHR ternary complex displays both structural and energetic malleability.  相似文献   

4.
David Poger  Alan E. Mark 《Proteins》2010,78(5):1163-1174
Atomistic molecular dynamics simulations have been used to investigate the conformational changes associated with the binding of human growth hormone (hGH) to the extracellular domains (ECD) of the human growth hormone receptor (hGHR), thereby shedding light on the mechanism of activation. It is shown that the removal of hGH from the hormone‐bound receptor complex results in a counter‐clockwise rotation of the twosubunits relative to each other by 30°–64° (average 45° ± 14°), in close agreement in terms of both the magnitude and direction of the rotation with that proposed based on mutagenesis experiments. In addition to providing evidence to support a rotational activation mechanism, the simulations have enabled the nature of the interaction interfaces in both the cytokine‐bound and unliganded hGHR states to be analyzed in detail. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The pituitary hormone prolactin (prl) is implicated in a number of biological functions, especially lactation, which is mediated through specific lactogenic receptors (PrlR). Human growth hormone (hGH) is also a pituitary hormone responsible for linear growth. While the growth hormone receptor (hGHR) binds only hGH, hPrlR can interact with both hGH and hPrl. Using structural information from the human growth hormone (hGH)/receptor (hGHR) complex, we modeled by homology a complex between rabbit prolactin hormone (rbPrl) and its receptor (rbPrlR). While the somatogenic hormone/somatogenic receptor (hGH/hGHR) and somatogenic hormone/lactogenic receptor (hGH/hPrlR) interactions are now known and well studied, here we propose a model for the interaction of the lactogenic hormone with its receptor (rbPrl/rbPrlR), and compare these three kinds of ligand/receptor interaction. We identified residues contributing to the active site and tested the potential dimerization of the receptor. Biochemical studies and information deduced from the modeled complex do not exclude a homodimeric form but point to a functional heterodimeric complex. Proteins 27: 459–468, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Despite the lower site 1 affinity of the 20-kDa human growth hormone (20K-hGH) for the hGH receptor (hGHR), 20K-hGH has the same hGHR-mediated activity as 22-kDa human GH (22K-hGH) at low hGH concentration and even higher activity at high hGH concentration. This study was performed to elucidate the reason why 20K-hGH can activate hGHR to the same level as 22K-hGH. To answer the question, we hypothesized that the binding between the stem regions of hGHR could compensate for the weaker site 1 binding of 20K-hGH than that of 22K-hGH in the sequential binding with hGHR. To demonstrate it, we prepared 15 types of alanine-substituted hGHR gene at the stem region and stably transfected them into Ba/F3 cells. Using these cells, we measured and compared the cell proliferation activities between 20K- and 22K-hGH. As a result, the activity of 20K-hGH was markedly reduced than that of 22K-hGH in three types of mutant hGHR (T147A, H150A, and Y200A). Regarding these mutants, the dissociation constant of hGH at the first and second step (KD1 and KD2) in the sequential binding with two hGHRs was predicted based on the mathematical cell proliferation model and computational simulation. Consequently, it was revealed that the reduction of the activity in 20K-hGH was attributed to the change of not KD1 but KD2. In conclusion, these findings support our hypothesis, which can account for the same potencies for activating hGHR between 20K- and 22K-hGH, although the site 1 affinity of 20K-hGH is lower than that of 22K-hGH.  相似文献   

7.
In primates, placental lactogen (PL) is a pituitary hormone with fundamental roles during pregnancy involving fetal growth, metabolism, and stimulating lactation in the mother. Human placental lactogen (hPL) is highly conserved with human growth hormone (hGH) and both hormones bind to the hPRLR extracellular domain (ECD), the first step in receptor homodimerization, in a Zn2+-dependent manner. A modified surface plasmon resonance method was developed to measure the kinetics for hPL and hGH binding to the hPRLR ECD, with and without Zn2+ and showed that hPL has about a tenfold higher affinity for the hPRLR ECD1 than hGH. The crystal structure of the free state of hPL has been determined to 2.0 A resolution showing the molecule possesses an overall structure similar to other long chain four-helix bundle cytokines. Comparison of the free hPL structure with the 1:1 complex structure of hGH bound to the hPRLR ECD1 suggests that two surface loops undergo conformational changes >10 A upon binding. An 18 residue Ala-scan was used to characterize the binding energy epitope for the site 1 interface of hPL. Individual alanine substitutions at five positions reduced binding affinity by a DeltaDeltaG > or = 3 kcal mol(-1). A comparison of the hPL site 1 epitope with that previously determined for hGH indicates contributions of individual residues track reasonably well between hPL and hGH. In particular, residues involved in the zinc-binding site and Lys172 constitute the principal binding determinants for both hormones. However, several residues that are identical between hPL and hGH contribute quite differently to the binding of the hPRLR ECD1. Additionally, the overall magnitudes of the DeltaDeltaG changes observed from the Ala-scan of hPL were markedly larger than those determined in the comparative scan of hGH to the hPRLR ECD1. The structural and biophysical data presented here show that subtle changes in the structural context of an interaction can lead to significantly different effects at the individual residue level.  相似文献   

8.
Based on phage display optimization studies with human growth hormone (GH), it is thought that the biopotency of GH cannot be increased. This is proposed to be a result of the affinity of the first receptor for hormone far exceeding that which is required to trap the hormone long enough to allow diffusion of the second receptor to form the ternary complex, which initiates signaling. We report here that despite similar site 1 kinetics to the hGH/hGH receptor interaction, the potency of porcine GH for its receptor can be increased up to 5-fold by substituting hGH residues involved in site 1 binding into pGH. Based on extensive mutations and BIAcore studies, we show that the higher potency and site 1 affinity of hGH for the pGHR is primarily a result of a decreased off-rate associated with residues in the extended loop between helices 1 and 2 that interact with the two key tryptophans Trp104 and Trp169 in the receptor binding hot spot. Our mutagenic analysis has also identified a second determinant (Lys165), which in addition to His169, restricts the ability of non-primate hormones to activate hGH receptor. The increased biopotency of GH that we observe can be explained by a model for GH receptor activation where subunit alignment is critical for effective signaling.  相似文献   

9.
The structure of the ternary complex between ovine placental lactogen (oPL) and the extracellular domain (ECD) of the rat prolactin receptor (rPRLR) reveals that two rPRLR ECDs bind to opposite sides of oPL with pseudo two-fold symmetry. The two oPL receptor binding sites differ significantly in their topography and electrostatic character. These binding interfaces also involve different hydrogen bonding and hydrophobic packing patterns compared to the structurally related human growth hormone (hGH)-receptor complexes. Additionally, the receptor-receptor interactions are different from those of the hGH-receptor complex. The conformational adaptability of prolactin and growth hormone receptors is evidenced by the changes in local conformations of the receptor binding loops and more global changes induced by shifts in the angular relationships between the N- and C-terminal domains, which allow the receptor to bind to the two topographically distinct sites of oPL.  相似文献   

10.
BACKGROUND: Interferon-gamma (IFN-gamma) is a homodimeric cytokine that exerts its various activities by inducing the aggregation of two different receptors. The alpha chain receptor (IFN-gammaRalpha) is a high affinity receptor that binds to IFN-gamma in a symmetric bivalent manner to form a stable, intermediate 1:2 complex. This intermediate forms a binding template for the subsequent binding of two copies of the second receptor, beta chain receptor (IFN-gammaRbeta), producing the active 1:2:2 signaling complex. RESULTS: A single chain monovalent variant of IFN-gamma (scIFN-gamma) was constructed and complexed to one copy of the extracellular domain (ECD) of IFN-gammaRalpha. The structure of this 1:1 complex was determined and the hormone-receptor interface shown to be characterized by a number of hydrophilic interactions mediated by several highly ordered water networks. The scIFN-gamma interface consists of segments from each of the monomer chains of the homodimer. The principal hydrophobic contact of the receptor involves a tripeptide segment of the receptor having an unusual and high energy conformation. Despite containing only one binding site for IFN-gammaRalpha, the monovalent scIFN-gamma molecule has significant activity in antiviral biological assays. CONCLUSIONS: ScIFN-gamma binds the ECD of IFN-gammaRalpha through a highly hydrated interface with an important set of hormone-receptor contacts mediated through structured waters. Although the interface is highly hydrated, it supports tight binding and has a considerable degree of specificity. The biological activity of scIFN-gamma confirms that the scIFN-gamma:IFN-gammaRalpha complex represents a productive intermediate and that it can effectively recruit the other required component, IFN-gammaRbeta, to signal based on the 1:1:1 complex.  相似文献   

11.
Specific interactions of human melanocortin-4 receptor (hMC4R) with its nonpeptide and peptide agonists were studied using alanine-scanning mutagenesis. The binding affinities and potencies of two synthetic, small-molecule agonists (THIQ, MB243) were strongly affected by substitutions in transmembrane alpha-helices (TM) 2, 3, 6, and 7 (residues Glu(100), Asp(122), Asp(126), Phe(261), His(264), Leu(265), and Leu(288)). In addition, a I129A mutation primarily affected the binding and potency of THIQ, while F262A, W258A, Y268A mutations impaired interactions with MB243. By contrast, binding affinity and potency of the linear peptide agonist NDP-MSH were substantially reduced only in D126A and H264A mutants. Three-dimensional models of receptor-ligand complexes with their agonists were generated by distance-geometry using the experimental, homology-based, and other structural constraints, including interhelical H-bonds and two disulfide bridges (Cys(40)-Cys(279), Cys(271)-Cys(277)) of hMC4R. In the models, all pharmacophore elements of small-molecule agonists are spatially overlapped with the corresponding key residues (His(6), d-Phe(7), Arg(8), and Trp(9)) of the linear peptide: their charged amine groups interact with acidic residues from TM2 and TM3, similar to His(6) and Arg(6) of NDP-MSH; their substituted piperidines mimic Trp(9) of the peptide and interact with TM5 and TM6, while the d-Phe aromatic rings of all three agonists contact with Leu(133), Trp(258), and Phe(261) residues.  相似文献   

12.
Ly49A, an inhibitory C-type lectin-like mouse natural killer cell receptor, functions through interaction with the major histocompatibility complex class I molecule, H-2D(d). The x-ray crystal structure of the Ly49A.H-2D(d) complex revealed that homodimeric Ly49A interacts at two distinct sites of H-2D(d): Site 1, spanning one side of the alpha1 and alpha2 helices, and Site 2, involving the alpha1, alpha2, alpha3, and beta(2)m domains. Mutants of Ly49A, H-2D(d), and beta(2)-microglobulin at intermolecular contacts and the Ly49A dimer interface were examined for binding affinity and kinetics. Although mutations at Site 1 had little affect, several at Site 2 and at the dimer interface hampered the Ly49A.H-2D(d) interaction, with no effect on gross structure or T cell receptor interaction. The region surrounding the most critical residues (in H-2D(d), Asp(122); in Ly49A, Asp(229), Ser(236), Thr(238), Arg(239), and Asp(241); and in beta(2)-microglobulin, Gln(29) and Lys(58)) of the Ly49A.H-2D(d) interface at Site 2 includes a network of water molecules, suggesting a molecular basis for allelic specificity in natural killer cell recognition.  相似文献   

13.
14.
A chemically synthesized gene (hGHR-ED) coding for the extracellular domain (ED) of the human growth hormone (hGH) receptor (hGHR) was inserted into the genome of Autographa californica nuclear polyhedrosis virus adjacent to the polyhedrin promoter. Spodoptera frugiperda cells infected with the recombinant virus secreted a protein with hGH-binding activity into the medium. The secreted 35-kDa protein was purified to near homogeneity. The purified protein exhibited a high binding affinity (Kd = 0.2-0.3 nM) to hGH. The highest cell production capability was estimated at more than 10-20 micrograms hGHR-ED/ml of culture. The inhibition of the hGHR-ED secretion by treatment with tunicamycin suggests that glycosylation is important for secretion.  相似文献   

15.
The glucagon-like peptide-1 receptor (GLP-1R) belongs to Family B1 of the seven-transmembrane G protein-coupled receptors, and its natural agonist ligand is the peptide hormone glucagon-like peptide-1 (GLP-1). GLP-1 is involved in glucose homeostasis, and activation of GLP-1R in the plasma membrane of pancreatic beta-cells potentiates glucose-dependent insulin secretion. The N-terminal extracellular domain (nGLP-1R) is an important ligand binding domain that binds GLP-1 and the homologous peptide Exendin-4 with differential affinity. Exendin-4 has a C-terminal extension of nine amino acid residues known as the "Trp cage", which is absent in GLP-1. The Trp cage was believed to interact with nGLP-1R and thereby explain the superior affinity of Exendin-4. However, the molecular details that govern ligand binding and specificity of nGLP-1R remain undefined. Here we report the crystal structure of human nGLP-1R in complex with the antagonist Exendin-4(9-39) solved by the multiwavelength anomalous dispersion method to 2.2A resolution. The structure reveals that Exendin-4(9-39) is an amphipathic alpha-helix forming both hydrophobic and hydrophilic interactions with nGLP-1R. The Trp cage of Exendin-4 is not involved in binding to nGLP-1R. The hydrophobic binding site of nGLP-1R is defined by discontinuous segments including primarily a well defined alpha-helix in the N terminus of nGLP-1R and a loop between two antiparallel beta-strands. The structure provides for the first time detailed molecular insight into ligand binding of the human GLP-1 receptor, an established target for treatment of type 2 diabetes.  相似文献   

16.
Calcitonin gene‐related peptide (CGRP) and adrenomedullin (AM) are related peptides that are potent vasodilators. The CGRP and AM receptors are heteromeric protein complexes comprised of a shared calcitonin receptor‐like receptor (CLR) subunit and a variable receptor activity modifying protein (RAMP) subunit. RAMP1 enables CGRP binding whereas RAMP2 confers AM specificity. How RAMPs determine peptide selectivity is unclear and the receptor stoichiometries are a topic of debate with evidence for 1:1, 2:2, and 2:1 CLR:RAMP stoichiometries. Here, we describe bacterial production of recombinant tethered RAMP‐CLR extracellular domain (ECD) fusion proteins and biochemical characterization of their peptide binding properties. Tethering the two ECDs ensures complex stability and enforces defined stoichiometry. The RAMP1‐CLR ECD fusion purified as a monomer, whereas the RAMP2‐CLR ECD fusion purified as a dimer. Both proteins selectively bound their respective peptides with affinities in the low micromolar range. Truncated CGRP(27‐37) and AM(37‐52) fragments were identified as the minimal ECD complex binding regions. The CGRP C‐terminal amide group contributed to, but was not required for, ECD binding, whereas the AM C‐terminal amide group was essential for ECD binding. Alanine‐scan experiments identified CGRP residues T30, V32, and F37 and AM residues P43, K46, I47, and Y52 as critical for ECD binding. Our results identify CGRP and AM determinants for receptor ECD complex binding and suggest that the CGRP receptor functions as a 1:1 heterodimer. In contrast, the AM receptor may function as a 2:2 dimer of heterodimers, although our results cannot rule out 2:1 or 1:1 stoichiometries.  相似文献   

17.
18.
Natural peptide agonists of corticotrophin-releasing factor (CRF) receptors bind to the receptor by a two-site mechanism as follows: the carboxyl end of the ligand binds the N-terminal extracellular domain (ECD) of the receptor and the amino portion of the ligand binds the extracellular face of the seven transmembrane region. Recently, peptide antagonists homologous to the 12 C-terminal residues of CRF have been derived, which bind the CRF(1) receptor through an interaction with the ECD. Here we characterized the binding of a minimal 12-residue peptide antagonist while bound to the isolated ECD of the CRF(1) receptor. We have expressed and purified soluble and properly folded ECD independent from the seven-transmembrane region as a thioredoxin fusion protein in Escherichia coli. A model of the peptide antagonist, cyclic corticotrophin-releasing factor residues 30-41 (cCRF(30-41)), was calculated while bound to the recombinant ECD using transferred nuclear Overhauser effect spectroscopy. Although the peptide is unstructured in solution, it adopts an alpha-helical conformation when bound to the ECD. Residues of cCRF(30-41) comprising the binding interface with the ECD were mapped using saturation transfer difference NMR. Two hydrophobic residues (Met(38) and Ile(41)) as well as two amide groups (Asn(34) and the C-terminal amide) on one face of the helix defined the binding epitope of the antagonist. This epitope may be used as a starting point for development of non-peptide antagonists targeting the ECD of this receptor.  相似文献   

19.
The aim of the present study was to investigate the binding sites interactions and the selectivity of sarpogrelate to human 5-HT(2) receptor family (5-HT(2A), 5-HT(2B) and 5-HT(2C) receptor subtypes) using molecular modeling. Rhodopsin (RH) crystal structures were used as template to build structural models of the human serotonin-2A and -2C receptors (5-HT(2A)R, 5-HT(2C)R), whereas for 5-HT(2B)R, we used our previously published three-dimensional (3D) models based on bacteriorhodopsin (BR). Sarpogrelate, a novel 5-HT(2)R antagonist, was docked to the receptors. Molecular dynamics (MD) simulations produced the strongest interaction for 5-HT(2A)R/sarpogrelate complex. Upon binding, sarpogrelate constraints aromatic residues network (Trp(3.28), Phe(5.47), Trp(6.48), Phe(6.51), Phe(6.52) in 5-HT(2A)R; Phe(3.35), Phe(6.51), Trp(7.40) in 5-HT(2B)R; Trp(3.28), Phe(3.35), Phe(5.47), Trp(6.48), Phe(6.51), Phe(6.52) in 5-HT(2C)R) in a stacked configuration, preventing activation of the receptor. The models suggest that the structural origin of the selectivity of sarpogrelate to 5-HT(2A)R vs both 5-HT(2B)R and 5-HT(2C)R comes from the following results: (1) The tight interaction between the antagonist and the transmembrane domain (TMD) 3. Asp(3.32) neutralizes the cationic head and interacts simultaneously with carboxylic group hydrogen of the antagonist molecule. (2) Due to steric hindrance, Ser(5.46) (vs Ala(5.46) in 5HT(2B) and 5HT(2C)) prevents sarpogrelate to enter deeply inside the hydrophobic core of the helix bundle and to interact with Pro(5.50). (3) The side chain of Ile(4.56) (vs Ile(4.56) in 5HT(2B)R and Val(4.56) in 5HT(2C)R) constraints sarpogrelate to adjust its position by translating toward the strongly attractive Asp(3.32). These results are in good agreement with binding affinities (pKi) of sarpogrelate for 5-HT(2) receptor family expressed in transfected cell.  相似文献   

20.
Primate growth hormone (GH) has evolved rapidly, having undergone approximately 30% amino acid substitutions from the inferred ancestral eutherian sequence. Nevertheless, human growth hormone (hGH) is physiologically effective when administered to nonprimate mammals. In contrast, its functional counterpart, the human growth hormone receptor (hGHR), has evolved species specificity so that it responds only to Old World primate GHs. It has been proposed that this species specificity of the hGHR is largely caused by the Leu --> Arg change at position 43 after a prior His --> Asp change at position 171 of the GH. Sequence analyses supported this hypothesis and revealed that the transitional phase in the GH:GHR coevolution still persists in New World monkeys. For example, although the GH of the squirrel monkey has the His --> Asp substitution at position 171, residue 43 of its GHR is a Leu, the nonprimate residue. If the squirrel monkey truly represents an intermediate stage of GH:GHR coevolution, its GHR should respond to both hGH and nonprimate GH. Also, if the emergence of species specificity was a result of the selection for a more efficient GH:GHR interaction, then changing residue 43 of the squirrel monkey growth hormone receptor (smGHR) to Arg should increase its binding affinity toward higher primate GH. To test these hypotheses, we performed protein-binding assays between the smGHR and both human and rat GHs, using the surface plasmon resonance methodology. Furthermore, the effects of reciprocal mutations at position 43 of human and squirrel monkey GHRs are measured for their binding affinities toward human and squirrel monkey GHs. The results from the binding kinetic assays clearly demonstrate that the smGHR is in the intermediate state of the evolution of species specificity. Interestingly, the altered residue Arg at position 43 of the smGHR does not lead to an increased binding affinity. The implications of these results on the evolution of the GH:GHR interaction and on functional evolution are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号