首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The recovery of proteins solubilised inside reversed micelles is generally a low yielding process. We have studied three methods for recovery of lysozyme. The protein laden organic phase was contacted with solutions of varying pH. Greater than 95% recovery was achieved at pH values close to the isoelectric point (10.9). The use of 2.5 M KCl gave close to 100% recovery of lysozyme. The organic phase was passed onto a ion exchange matrix. This resulted in disruption of the reversed micelle releasing 60–80% of the protein into the eluent.  相似文献   

2.
Qi XM  Yao SJ  Guan YX 《Biotechnology progress》2004,20(4):1176-1182
A novel isoelectric precipitation of proteins in a pressurized carbon dioxide-water-ethanol system was developed where carbon dioxide was used as a volatile acid. The pH-pressure curves of the system with the absence and presence of proteins were investigated. By introducing the pressurized carbon dioxide to a solution containing protein, the pH value in the solution was decreased to the isoelectric region of the model protein BSA. Addition of ethanol could lower the buffer capacity of the protein, which made the precipitation concentration of protein go beyond the limits in a system without ethanol and well exploited the application field of the technique. In addition, ethanol in solution played the role of aiding precipitation in the process. Another model protein, hen egg white lysozyme, was also studied but could not be precipitated in the above system. All of these phenomena prove that isoelectric precipitation is the key point in the pressurized carbon dioxide-water-ethanol system.  相似文献   

3.
On protein solubility in organic solvent   总被引:1,自引:0,他引:1  
Solubility of a model protein, hen egg-white lysozyme, was investigated in a wide range of neat nonaqueous solvents and binary mixtures thereof. All solvents that are protic, very hydrophilic, and polar readily dissolve more than 10 mg/mL of lysozyme (lyophilized from aqueous solution of pH 6.0). Only a marginal correlation was found between the lysozyme solubility in a non-aqueous solvent and the letter's dielectric constant or Hildebrand solubility parameter, and no correlation was observed with the dipole moment. Lysozyme dissolved in dimethyl sulfoxide (DMSO) could be precipitated by adding protein nondissolving co-solvents, although the enzyme had a tendency to form supersaturated solutions in such mixtures. The solubility of lysozyme, both in an individual solvent (1,5-pentanediol) and in binary solvent mixtures (DMSO/acetonitrile), markedly increased when the pH of the enzyme aqueous solution prior to lyophilization was moved away from the proteins's isoelectric point. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
A foam fractionation apparatus was prepared to aid protein separation at the gas–liquid interface. Using lysozyme as a model protein, we investigated the alteration of enzymatic and optical activities through foaming. The lysozyme transferred to the gaseous nitrogen phase after 5 min of bubbling with no exogenous detergent. The bacteriolytic and optical activities of lysozyme from the foamate were nearly equivalent to those of the original lysozyme. This result indicated that lysozyme did not irreversibly denature during foam fractionation. We then performed protein separation using binary mixtures of lysozyme and α-amylase. When the two proteins were dissolved in bulk solution of pH 10.5, which is close to the isoelectric point (pI) of lysozyme (10.7), selective fractionation of lysozyme from the foam was observed. Indeed, this fractionation was identical to that from a single component solution of lysozyme. Similarly, selective fractionation of α-amylase was achieved in pH 3.0 buffer. Furthermore, circular dichroism (CD) and subsequent model fitting revealed that the protein had a reduced or nearly complete absence of α-helical content, whereas the amount of β-sheet structure and random coil was elevated in the buffer conditions that promoted protein adsorption. These results indicate that a pH-induced conformational transition might correlate with protein foaming.  相似文献   

5.
The effects of pH on protein interactions and protein phase behavior were investigated by measuring the reduced second osmotic virial coefficient (b2) for ovalbumin and catalase, and the aggregate and crystal solubilities for ovalbumin, beta-lactoglobulin A and B, ribonuclease A and lysozyme. The b2 trends observed for ovalbumin and catalase show that protein interactions become increasingly attractive with decreasing pH. This trend is in good agreement with ovalbumin phase behavior, which was observed to evolve progressively with decreasing pH, leading to formation of amorphous aggregates instead of gel bead-like aggregates, and spherulites instead of needle-like crystals. For both acidic and basic proteins, the aggregate solubility during protein salting-out decreased with decreasing pH, and contrary to what is commonly believed, neither aggregate nor crystal solubility had a minimum at the isoelectric point. beta-Lactoglobulin B was the only protein investigated to show salting-in behavior, and crystals were obtained at low salt concentrations in the vicinity of its isoelectric point. The physical origin of the different trends observed during protein salting-in and salting-out is discussed, and the implications for protein crystallization are emphasized.  相似文献   

6.
Lysozyme: a major secretory product of a human colon carcinoma cell line   总被引:3,自引:0,他引:3  
One of the major proteins secreted by an established human colon adenocarcinoma cell line has been isolated in 25% yield from the serum-free medium in which the cells were grown and identified as lysozyme. Its purification was achieved by sequential steps of acidification, cation-exchange chromatography, and reversed-phase high-performance liquid chromatography. It was recognized to be a human lysozyme on the basis of its molecular weight (14 000), isoelectric point (10.5), amino acid composition, and enzymatic activity. Its identity with previously characterized human lysozymes was established by amino-terminal sequence, peptide composition, immunological properties, NMR, and crystallography. A 4-day, 7-L collection of conditioned medium contained 20.3 mg of secreted protein of which 4.9 mg or approximately 24% of the total was tumor-derived lysozyme. The intracellular level of lysozyme was approximately 18 ng per 10(6) carcinoma cells. The possible significance of these findings in regard to the malignant process and tumor maintenance is discussed.  相似文献   

7.
Distribution of bovine serum albumin and ferritin inside polyelectrolyte microcapsules was studied by transmission electron and confocal microscopy at the pH range 2-5. It was estimate that protein's distribution depends on isoelectric point (pI) and first polyelectrolyte used for preparation of capsule shell. So peptide is placed in the bulk of capsule if pH values of medium are lower isoelectric point of protein and polycation was used as a first polyelectrolyte layer. If the first polyelectrolyte was polyanion, the protein is located near internal surface of the shell. The protein is situated near internal surface of the shell for both polyelectrolytes when pH is equal to pI.  相似文献   

8.
Human migration inhibitory factor (MIF) produced by peripheral blood mononuclear cells stimulated with purified protein derivative, tetanus toxoid, streptokinase-streptodornase, or Candida albicans antigen was analyzed by gel filtration and isoelectrofocusing. In all cases, supernatants harvested after a 24-hr exposure of the mononuclear cells to the antigen yielded only one MIF species with an isoelectric point of 5. In contrast, isoelectrofocusing of supernatants obtained from cells exposed to the antigen for an additional 24 hr demonstrated that different antigens induce the elaboration of different MIF species. Streptokinase-streptodornase and tetanus toxoid induced the production of one MIF species with an isoelectric point of 5 (pH 5-MIF). Stimulation of cells with Candida antigen elaborated a MIF species with an isoelectric point of 3 (pH 3-MIF). In contrast, stimulation of cells with purified protein derivative induced the production of both pH 3-MIF and pH 5-MIF.  相似文献   

9.
Chemically modified lysozymes, namely: N-succinyl lysozyme, glycine methyl ester of N-succinyl lysozyme and oxoindole lysozyme have been prepared. Aggregation, fusion and leakage of phospholipid vesicles induced by these derivatives have been studied in comparison with the effect of the unmodified protein. The experiments were carried out with negatively charges 9PC/ PA, 9:1) and uncharged (PC and PC/DOPE/Chol (10:5:5)) lipid vesicles of different packing. Fusion and aggregation of negatively charged phospholipid vesicles is induced by proteins positively charged at pH 7·0 involving electrostatic interactions. a similar pattern on fusion and aggregation of the least stably packed lipid vesicles points also to hydrophobic forces playing a role in the lipid-protein interaction. A conformational change of the protein involved increasing β-turns, loops and unordered structure at the expenses of β-sheet without affecting λhelix content. The conformational effect is necessary to provoke the effects studied, since one of the derivatives (N-succinyl lysozyme) neither changes conformation nor causes aggregation and fusion of vesicles. However, there is no relationship between lysozyme activity and fusion or aggregation of lipid vesicles that catalytic and fusogenci sites of, indicating lysozyme are topographically different  相似文献   

10.
Reduced viscosity of a dilute aqueous solution of hen egg white lysozyme is measured in the pH range from 1.4 to 12.7 for various NaCI concentrations. The viscosity decreases with increasing pH below the isoelectric point (pH 11) on account of diminution in the electroviscous effect, reaches a minimum at pH 11, and then increases at high pH's because of coagulation. The electroviscous effect is depressed by the increase in the small ion concentration. The dependence of reduced viscosity on small ion concentration and pH is discussed on the basis of Booth's theory and a partial agreement between theory and experiment is obtained. The discrepancy between theory and experiment is attributed to non-spherical distribution of charges in the protein. The volume of lysozyme obtained through Einstein's equation by extrapolating the reduced viscosity to a sufficiently high ion concentration compares well with the molecular volume in the crystal.  相似文献   

11.
The distribution of bovine serum albumin and ferritin within polyelectrolyte microcapsules was studied by transmission electron and confocal microscopy at the pH range 2–5. It was estimated that the protein’s distribution depends on the isoelectric point (pI) and first polyelectrolyte used for the preparation of the capsule shell. The peptide is placed in the bulk of capsule if the pH values of the medium are close to the isoelectric point of the protein and polycation was used as a first polyelectrolyte layer. If the first polyelectrolyte was polyanion, the protein is located near the internal surface of the shell. The protein is situated near the internal surface of the shell for both polyelectrolytes when pH is equal to pI.  相似文献   

12.
The precipitating of effect of sodium dodecyl sulphate (SDS) on the egg white proteins ovalbumin, conalbumin and lysozyme was studied at 25 degrees C and at different pH values. The proteins precipitated below their respective isolectric points, provided the detergent to protein ratio was appropriate. The pH profile of precipitation was different for the three proteins reflecting net charge differences. The binding of SDS to the proteins was studied with [35S]-labelled SDS and for ovalbumin a ratio of 21--28 SDS molecules/protein molecule, dependent on the concentration of SDS initially used, seem to be required for precipitation at pH 4.5. This number, however, is dependent on pH and increases with an increased positive net charge of the protein. The precipitating effect of SDS was identical for ovalbumin, conalbumin and lysozyme when compared on a gram to gram basis (0.1--0.15 g SDS/g precipitated protein). The precipitated protein was denatured as measured by differential scanning calorimetry, but was also completely redissolved if pH was increased to above the isoelectric point. The precipitating effecto f SDS was also examined at elevated temperatures. The two-phase systems of the proteins induced by SDS at 25 degrees C were heated from 25 degrees C to 90 degrees C at a rate of 1.25 degrees C/min. The precipitation behaviour was similar for the three proteins upon heating. When the SDS concentration was increased the precipitation curves were transferred towards lower temperatures and the courses of precipitation became less sharp. The synergistic effect of SDS and heat on protein precipitation was differentiated by denaturation measurements and radioactive labelling. The ratio SDS to precipitated protein gradually diminished towards higher temperatures but no purely thermal precipitation was found.  相似文献   

13.
Polyethylene glycol (PEG) is extensively employed for protein purification by fractional precipitation. Efficiency of precipitation is highest when the solution pH is near the isoelectric point of the target protein. At pH values far from the isoelectric point of the target protein, proteins develop a net positive or negative charge and are not more resistant to precipitation. We have found that divalent cations (Ba2+, Sr2+, and Ca2+) or divalent anions (SO4(2-)) significantly change the pattern of PEG precipitation when the ion is chosen so as to counteract the expected net charge on the target protein. At moderate (5-50 mM) concentrations of Ba2+, negatively charged proteins can be precipitated from solution at pH values as high as 10 with efficiency unchanged from precipitation at pH values near their isoelectric point values. The mechanism of PEG precipitation of protein at these high pH values appears to be unchanged from the mechanism operative at the protein isoelectric point. Precipitation is rapid and the capacity for protein precipitation is high. There is no detectable coprecipitation of small molecules (AMP, ATP, and NADH) or soluble proteins (carbonic anhydrase) induced when large quantities of protein are precipitated by this method. The purification of bovine carbonic anhydrase from erythrocyte lysate is more efficient at pH 10 in the presence of Ba2+ than is conventional PEG precipitation carried out at the isoelectric point of carbonic anhydrase. Application of these observations should broaden the utility of protein purification by fractional precipitation with PEG.  相似文献   

14.
Using particle bombardment-mediated transformation, a codon-optimized synthetic gene for human lysozyme was introduced into the calli of rice (Oryza sativa) cultivar Taipei 309. The expression levels of recombinant human lysozyme in the transformed rice suspension cell culture approached approximately 4% of total soluble protein. Recombinant human lysozyme was purified to greater than 95% homogeneity using a two-step chromatography process. Amino acid sequencing verified that the N-terminus of the mature recombinant human lysozyme was identical to native human lysozyme. This indicates that the rice RAmy3D signal peptide was correctly cleaved off from the human lysozyme preprotein by endogenous rice signal peptidase. Recombinant human lysozyme was found to have the same molecular mass, isoelectric point and specific activity as native human lysozyme. The bactericidal activity of recombinant human lysozyme was determined by turbidimetric assay using Micrococcus lysodeikticus in 96-well microtiter plates. The bactericidal activity of lysozyme on Gram-negative bacteria was examined by adding purified lysozyme to mid-log phase cultures of E. coli strain JM109. In this study, significant bactericidal activity was observed after E.coli cells were exposed to recombinant human lysozyme for 60min. Both native and recombinant human lysozyme displayed the same thermostability and resistance to degradation by low pH. The potential for using rice-derived lysozyme as an antimicrobial food supplement, particularly for infant formula and baby foods, is discussed.  相似文献   

15.
Solubility of lysozyme chloride was determined in the absence of added salt and in the presence of 0.05-1.2 M NaCl, starting from isoionic lysozyme, which was then brought to pH values from 9 to 3 by addition of HCl. The main observation is the absence of a salting-in region whatever the pH studied. This is explained by a predominant electrostatic screening of the positively charged protein and/or by adsorption of chloride ions by the protein. The solubility increases with the protein net charge at low ionic strength, but the reverse is observed at high ionic strength. The solubility of lysozyme chloride seems to become independent of ionic strength at pH approximately 9.5, which is interpreted as a shift of the isoionic pH (10.8) to an isoelectric pH due to chloride binding. The crystallization at very low ionic strength, where lysozyme crystallizes at supersaturation values as low as 1.1, amplifies the effect of pH on protein solubility. Understanding the effect of the net charge and of ionic strength on protein-protein interactions is valuable not only for protein crystal growth but more generally also for the formation of protein-protein or protein-ligand complexes.  相似文献   

16.
Bioactive oligomannosyl lysozyme with improved surface functionalities was successfully prepared by using an extracellular pH-sensitive glycosylation system for heterogeneous protein in yeast cell. A recombinant Saccharomyces cerevisiae carrying a mutant lysozyme gene encoding the signal sequence of an N-linked glycosylation site at position 49 was cultivated in various pH conditions to investigate the effects of extracellular pH on the glycosylation patterns and the expression of the protein. A large polymannose (Man(310)GlcNAc(2)) chain-linked lysozyme was predominantly expressed accompanied by small amounts of a core-type oligomannose chain (Man(14)GlcNAc(2))-linked lysozyme in the yeast medium where the extracellular pH was kept at 3.5 or above, while an oligomannose chain lysozyme was preferentially expressed in the yeast medium where the pH was less than 3. The lytic activities of the oligomannosyl and the polymannosyl lysozymes were found to be 70.4 and 5.1%, respectively, of the wild-type lysozyme when Micrococcus lysodeikticus cells were used as the substrate. The enzymatic activity of the oligomannosyl lysozyme was totally conserved for the glycolysis assay with a soluble substrate, glycol chitin, whereas that of the polymannosyl lysozyme was not. After heating the sample up to 95 degrees C at pH 7.0 where no visible protein coagulation was observed, thermostability of the enzymatic activity of the oligomannosyl lysozyme was drastically improved with more than 60% of residual lytic activity. Emulsifying properties of the protein also were highly improved by the oligomannosylation, in which the emulsifying activity was 3.2 times higher than that of the wild-type protein. Corresponding to the increase of the surface functionalities, the surface tension of the oligomannosyl protein exhibited a significantly (p < 0.05) lower value compared to that of the wild-type. By using the lower pH medium at 3.0, it was revealed that a substantial amount (0.31 mg/L) of the oligomannosyl lysozyme was successfully obtained in the culture medium. Therefore, the extracellular pH-sensitive glycosylation system can be used to obtain bioactive and surface functional neoglycoproteins.  相似文献   

17.
A species of lysozyme (SE lysozyme) was purified from culture filtrate of Streptomyces erythraeus. The enzyme has a molecular weight of 18,500 as determined by ultracentrifugation. Its isoelectric point is 9.5, and it shows optimal activity at pH 4.0 with an optimal ionic strength of 0.1. Investigation of the substrate specificity showed SE lysozyme to be an N-acetyl-muramidase. The simplest product in the digest of cell walls of Micrococcus lysodeikticus was identified as a disaccharide, [GlcNAcbeta(1 leads to 4) MurNAc]. While S. aureus as well as M. lysodeikticus was lysed by this lysozyme, chitin and its derivatives were not.  相似文献   

18.
Isoelectric focusing was used to study the multiple forms of acid phosphatase, arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase in lysosomes isolated from rat kidney. The isoelectric points of the main protein and hydrolase peaks were 1-1.5 units lower when electrofocusing was done in a pH 3-10 gradient than in a pH 10-3 gradient, apparently because the lysosomal constituents aggregated strongly at their isoelectric points and tended to settle somewhat in the gradient due to gravity. In the extended pH gradient the acidic form of each hydrolase occurred as asingle, relatively discrete peak. However, when pooled acidic fractions were refocused in a restricted pH gradient (pH 6-3 or 3-5) multiple acidic enzyme and protein components were resolved with isoelectric points between 2.7 and 5.1. When autolysis was minimized by extracting lysosomal fractions at alkaline pH (0.2% Triton X-100, 0.1%p-nitrophenyloxamic acid, 0.1 M glycine buffer, pH9) and including 0.1%p-NITROPHENYLOXAMIC ACID, AN INHIBITOR OF LYSOSOMAL NEURAMINIDASE AND CATHEPSIN D, in the pH gradient, arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase occurred in two forms, an acidic form with an isoelectric point of about 4.4, and a basic form with an isoelectric point close to 6.2, 6.7 and 8.0, respectively. Acid phosphatase occurred in three forms with isoelectric points of 4.1, 5.6 and 7.4. When some autolytic digestion was permitted by extracting lysosomal fractions in an acidic medium (0.2% Triton X-100, 0.1 M sodium acetate buffer, pH 5.2) AT 0-4DEGREES C and omitting p-nitrophenyloxamic acid from the gradient, the acidic form of beta-glucuronidase and the intermediate form of acid phosphatase were lost, the isoelectric points of the acidic forms of acid phosphatase, arylsulfatase and beta-N-acetylhexosaminidase were increased 0.6-1.2 units, and the isoelectric point of the basic forms of acid phosphatase, arylsulfatase and beta-glucuronidase was increased 0.5 unit. When lysosomal extracts were incubated with bacterial neuraminidase before electrofocusing, the acidic forms of acid phosphatase, arylsulfatase and beta-glucuronidase were largely lost, the isoelectric point of the acidic form of beta-N-acetylhexosaminidase was increased from 4.5 to 6.4, and the isoelectric points of the basic forms of all four hydrolases were increased 0.5-1.5 units. Autoincubation of lysosomal extracts in vitro at pH 5.2 PRODUCED SIMILAR, THOUGH LESS MARKED, effects. cont'd  相似文献   

19.
Osteosarcoma cells grown in normal culture medium secrete bone gamma-carboxyglutamic acid protein (BGP, osteocalcin) which is identical with BGP purified from the bone matrix. Two tests indicate that the secreted medium protein contains the full complement of three gamma-carboxyglutamate residues present on BGP purified from the bone matrix. First, the secreted protein from ROS 17/2 and bone matrix BGP have identical isoelectric points (pI = 4.0). Second, they have identical hydroxyapatite binding behavior. If warfarin is added to the culture medium, the secreted protein has a higher isoelectric point (pI = 4.6) and a lower affinity for hydroxyapatite characteristic of thermally decarboxylated or non-gamma-carboxylated BGP. The observed shift in isoelectric point of secreted BGP after warfarin treatment from pH 4.0 to 4.6 is also reflected in the presence of pI = 4.1 and pI = 4.6 species intracellularly. These isoelectric species correspond to fully carboxylated BGP and noncarboxylated BGP, which are in the process of secretion. Addition of 10 micrograms/ml of warfarin causes a specific 47% reduction in secretion rate of BGP, while at the same time, the intracellular BGP concentration increases 3-fold. These phenomena appear related to the interruption by warfarin of the normal sequence of processing of precursor BGP proteins, as a new, immunoreactive species with a higher isoelectric pH not present in control cells appears to be responsible for the increased intracellular antigen within warfarin-treated cells. Our results show that vitamin K-dependent processing is important for normal secretion of BGP from the cell.  相似文献   

20.
工程菌人溶菌酶的纯化和性质   总被引:14,自引:0,他引:14  
将人溶菌酶工程菌株在发酵培养、菌体经超声破碎、变性和复性后所得的粗酶液经ExpressIon S阳离子交换柱层析,得到电泳纯的酶,比活达到48KG*4]000u/mg。此酶的最适pH为6.5;等电点为8.91;对溶壁微球菌的米氏常数Km=0.0311mg/mL;60℃保温30〖KG*4]min,酶活力剩余48.3%。N末端氨基酸序列除了第一个Met,其余4个与预期相符。一些重金属离子对酶的活性影响不尽相同,在0.01  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号