首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Covalent modification is an important strategy for introducing new functions into proteins. As engineered proteins become more sophisticated, it is often desirable to introduce multiple, modifications involving several different functionalities in a site-specific manner. Such orthogonal labeling schemes require independent labeling of differentially reactive nucleophilic amino acid side chains. We have developed two protein-mediated protection schemes that permit independent labeling of multiple thiols. These schemes exploit metal coordination or disulfide bond formation to reversibly protect cysteines in a Cys(2)His(2) zinc finger domain. We constructed a variety of N- and C-terminal fusions of these domains with maltose-binding protein, which were labeled with two or three different fluorophores. Multiple modifications were made by reacting an unprotected cysteine in MBP first, deprotecting the zinc finger, and then reacting the zinc finger cysteines. The fusion proteins were orthogonally labeled with two different fluorophores, which exhibited intramolecular fluorescene resonance energy transfer (FRET). These conjugates showed up to a threefold ratiometric change in emission intensities in response to maltose binding. We also demonstrated that the metal- and redox-mediated protection methods can be combined to produce triple independent modifications, and prepared a protein labeled with three different fluorophores that exhibited a FRET relay. Finally, labeled glucose-binding protein was covalently patterned on glass slides using thiol-mediated immobilization chemistries. Together, these experiments demonstrated that reversible thiol protection schemes provide a rapid, straightforward method for producing multiple, site-specific modifications.  相似文献   

2.
3.
The regulation of purified glutathione S-transferase from rat liver microsomes was studied by examining the effects of various sulfhydryl reagents on enzyme activity with 1-chloro-2,4-dinitrobenzene as the substrate. Diamide (4 mM), cystamine (5 mM), and N-ethylmaleimide (1 mM) increased the microsomal glutathione S-transferase activity by 3-, 2-, and 10-fold, respectively, in absence of glutathione; glutathione disulfide had no effect. In presence of glutathione, microsomal glutathione S-transferase activity was increased 10-fold by diamide (0.5 mM), but the activation of the transferase by N-ethylmaleimide or cystamine was only slightly affected by presence of glutathione. The activation of microsomal glutathione S-transferase by diamide or cystamine was reversed by the addition of dithiothreitol. Glutathione disulfide increased microsomal glutathione S-transferase activity only when membrane-bound enzyme was used. These results indicate that microsomal glutathione S-transferase activity may be regulated by reversible thiol/disulfide exchange and that mixed disulfide formation of the microsomal glutathione S-transferase with glutathione disulfide may be catalyzed enzymatically in vivo.  相似文献   

4.
Penicillamine selenotrisulfides formed by the reaction of selenite with D-, L-, and DL-penicillamines in the aqueous solution have been isolated and submitted to the spectroscopic and chromatographic analyses. FAB-MS spectra indicated the molecular ion peak (M+1)+ at m/z 377, which confirmed the molecular formula (C10H20N2O4S2Se) for all these selenotrisulfides. The [77Se]NMR and HPLC results showed that symmetric selenotrisulfides (DD and LL) were formed from D- and L-penicillamines, respectively, while asymmetric selenotrisulfide (DL) in addition to symmetric ones was formed from DL-penicillamine. The occurrence of thiol exchange reaction of selenotrisulfides was verified.  相似文献   

5.
A sensitive and selective assay for the determination of mesna and total mesna in tissue was developed and validated. After a simple homogenization, extraction and deproteinization step, mesna could be measured immediately by HPLC with an electrochemical detector provided with a sensitive wall-jet gold electrode. Total mesna (i.e., free mesna and mesna present in mesna disulfides and mixed mesna disulfides) could be measured after pre-column reduction with sodium borohydride to free mesna. The lower limit of quantification of mesna and total mesna was for both compounds 10 nmol/g. The assays for mesna and total mesna in tissue were linear over the ranges of 10-3000 and 10-10000 nmol/g, respectively. The within-day and between-day precisions of both methods were better than 9%. The within-day and between-day accuracy of the mesna assay ranged from 103.7 to 113.6%, whereas the accuracies of the total mesna assay ranged from 97.8 to 106.7%. Mesna in an EDTA containing tissue homogenate or in deproteinized tissue homogenate stored at -80 degrees C was stable for at least 12 weeks. Total mesna was stable under all conditions measured. The developed assays will be applied for the determination of the distribution of mesna and total mesna in tissues of the rat after administration of mesna or BNP7787.  相似文献   

6.
7.
Activation of p21-activated kinases (Paks) is achieved through binding of the GTPases Rac or Cdc42 to a conserved domain in the N-terminal regulatory region of Pak. Additional signaling components are also likely to be important in regulating Pak activation. Recently, a family of Pak-interacting guanine nucleotide exchange factors (Pix) have been identified and which are good candidates for regulating Pak activity. Using an active, truncated form of alphaPix (amino acids 155-545), we observe stimulation of Pak1 kinase activity when alphaPix155-545 is co-expressed with Cdc42 and wild-type Pak1 in COS-1 cells. This activation does not occur when we co-express a Pak1 mutant unable to bind alphaPix. The activation of wild-type Pak1 by alphaPix155-545 also requires that alphaPix155-545 retain functional exchange factor activity. However, the Pak1(H83,86L) mutant that does not bind Rac or Cdc42 is activated in the absence of GTPase by alphaPix155-545 and by a mutant of alphaPix155-545 that no longer has exchange factor activity. Pak1 activity stimulated in vitro using GTPgammaS-loaded Cdc42 was also enhanced by recombinant alphaPix155-545 in a binding-dependent manner. These data suggest that Pak activity can be modulated by physical interaction with alphaPix and that this specific effect involves both exchange factor-dependent and -independent mechanisms.  相似文献   

8.
Thrombospondin (Tsp), a protein secreted by activated platelets, forms disulfide-linked complexes with thrombin [K. J. Danishefsky, R. J. Alexander and T. C. Detwiler (1984) Biochemistry 23, 4984]. Thiols and disulfide bonds of Tsp were analyzed, and a search was made for other Tsp covalent complexes. Platelets in 1 mM EDTA were activated with ionophore A23187, and the secreted proteins were analyzed by gel electrophoresis in sodium dodecyl sulfate. One millimolar dithioerythritol (DTE) decreased the electrophoretic mobility of Tsp, indicating reduction of an intrachain disulfide bond; Ca2+ prevented this effect. Electrophoresis of single-chain Tsp prepared with 50 mM DTE in either EDTA or Ca2+ also revealed a Ca2+-stabilized intrachain disulfide bond. Ca2+ prevented the retention of Tsp on an activated thiol-Sepharose column, indicating protection of a thiol by Ca2+. Incubation at 37 degrees C for 60 min resulted in complexes with apparent mass much greater than 500 kDa. Formation of complexes was prevented by N-ethylmaleimide, by a temperature less than 25 degrees C, and by Ca2+ or Mg2+. From pH 6 to 9, complexes formed better at lower pH. Two-dimensional (nonreduced/reduced) electrophoresis revealed Tsp but no other constituents of the complexes. With 10 nM thrombin, complexes formed faster and included thrombin; Ca2+ only partially inhibited. The complex was very susceptible to dissociation by low concentrations (2.5 mM) of DTE. It is concluded that Tsp has a reactive thiol and an intrachain disulfide bond that are protected by Ca2+. When these groups are unprotected, there is intermolecular thiol-disulfide exchange.  相似文献   

9.
Glutaredoxin (Grx) and protein-disulfide isomerase (PDI) are members of the thioredoxin superfamily of thiol/disulfide exchange catalysts. Thermodynamically, rat PDI is a 600-fold better oxidizing agent than Grx1 from Escherichia coli. Despite that, Grx1 is a surprisingly good protein oxidase. It catalyzes protein disulfide formation in a redox buffer with an initial velocity that is 30-fold faster than PDI. Catalysis of protein and peptide oxidation by the individual catalytic domains of PDI and by a Grx1-PDI chimera show that differences in active site chemistry are fundamental to their oxidase activity. Mutations in the active site cysteines reveal that Grx1 needs only one cysteine to catalyze rapid substrate oxidation, whereas PDI requires both cysteines. Grx1 is a good oxidase because of the high reactivity of a Grx1-glutathione mixed disulfide, and PDI is a good oxidase because of the high reactivity of the disulfide between the two active site cysteines. As a protein disulfide reductase, Grx1 is also superior to PDI. It catalyzes the reduction of nonnative disulfides in scrambled ribonuclease and protein-glutathione mixed disulfides 30-180 times faster than PDI. A multidomain structure is necessary for PDI to catalyze effective protein reduction; however, placing Grx1 into the PDI multidomain structure does not enhance its already high reductase activity. Grx1 and PDI have both found mechanisms to enhance active site reactivity toward proteins, particularly in the kinetically difficult direction: Grx1 by providing a reactive glutathione mixed disulfide to supplement its oxidase activity and PDI by utilizing its multidomain structure to supplement its reductase activity.  相似文献   

10.
Molecular mechanisms of sister-chromatid exchange   总被引:1,自引:0,他引:1  
Sister-chromatid exchange (SCE) is the process whereby, during DNA replication, two sister chromatids break and rejoin with one another, physically exchanging regions of the parental strands in the duplicated chromosomes. This process is considered to be conservative and error-free, since no information is generally altered during reciprocal interchange by homologous recombination. Upon the advent of non-radiolabel detection methods for SCE, such events were used as genetic indicators for potential genotoxins/mutagens in laboratory toxicology tests, since, as we now know, most forms of DNA damage induce chromatid exchange upon replication fork collapse. Much of our present understanding of the mechanisms of SCE stems from studies involving nonhuman vertebrate cell lines that are defective in processes of DNA repair and/or recombination. In this article, we present a historical perspective of studies spearheaded by Dr. Anthony V. Carrano and colleagues focusing on SCE as a genetic outcome, and the role of the single-strand break DNA repair protein XRCC1 in suppressing SCE. A more general overview of the cellular processes and key protein "effectors" that regulate the manifestation of SCE is also presented.  相似文献   

11.
Newcastle disease virus (NDV) entry into host cells is mediated by the hemagglutinin-neuraminidase (HN) and fusion (F) glycoproteins. We previously showed that production of free thiols in F protein is required for membrane fusion directed by F protein (S. Jain et al., J. Virol. 81:2328-2339, 2007). In the present study we evaluated the oxidation state of F protein in virions and virus-like particles and its relationship to activation of F protein by HN protein, F protein conformational intermediates, and virus-cell fusion. F protein, in particles, does not have free thiols, but free thiols were produced upon binding of particles to target cells. Free thiols were produced at 16°C in F protein in virions bound to the target cells. They also appeared in different fusion defective mutant F proteins. Free thiols were produced in the presence of mutant HN proteins that are defective in F protein activation but are attachment competent. These results suggest that free thiols appear prior to any of the proposed major conformational changes in F protein which accompany fusion activation. These results also indicate that HN protein binding to its receptor likely facilitates the interaction between F protein and host cell isomerases, leading to reduction of disulfide bonds in F protein. Taken together, these results show that free thiols are produced in F protein at a very early stage during the onset of fusion and that the production of free thiols is required for fusion in addition to activation by HN protein.  相似文献   

12.
Dethiolation experiments of thiolated albumin with thionitrobenzoic acid and thiols (glutathione, cysteine, homocysteine) were carried out to understand the role of albumin in plasma distribution of thiols and disulfide species by thiol/disulfide (SH/SS) exchange reactions. During these experiments we observed that thiolated albumin underwent thiol substitution (Alb-SS-X+RSH<-->Alb-SS-R+XSH) or dethiolation (Alb-SS-X+XSH<-->Alb-SH+XSSX), depending on the different pK(a) values of thiols involved in protein-thiol mixed disulfides (Alb-SS-X). It appeared in these reactions that the compound with lower pK(a) in mixed disulfide was a good leaving group and that the pK(a) differences dictated the kind of reaction (substitution or dethiolation). Thionitrobenzoic acid, bound to albumin by mixed disulfide (Alb-TNB), underwent rapid substitution after thiol addition, forming the corresponding Alb-SS-X (peaks at 0.25-1 min). In turn, Alb-SS-X were dethiolated by the excess nonprotein SH groups because of the lower pK(a) value in mixed disulfide with respect to that of other thiols. Dethiolation of Alb-SS-X was accompanied by formation of XSSX and Alb-SH up to equilibrium levels at 35 min, which were different for each thiol. Structures by molecular simulation of thiolated albumin, carried out for understanding the role of sulfur exposure in mixed disulfides in dethiolation process, evidenced that the sulfur exposure is important for the rate but not for determining the kind of reaction (substitution or dethiolation). Our data underline the contribution of SH/SS exchanges to determine levels of various thiols as reduced and oxidized species in human plasma.  相似文献   

13.
Nitric oxide is an endogenous thiol-reactive molecule that modulates the functions of many regulatory proteins by a thiol-redox mechanism. NO has now been shown to inhibit the activation of apoptosis signal-regulating kinase 1 (ASK1) in murine fibrosarcoma L929 cells through such a mechanism. Exposure of L929 cells to interferon-gamma resulted in the endogenous production of NO and in inhibition of the activation of ASK1 by hydrogen peroxide. The interferon-gamma-induced inhibition of ASK1 activity was blocked by N(G)-nitro-l-arginine, an inhibitor of NO synthase. Furthermore, the NO donor S-nitro-N-acetyl-dl-penicillamine (SNAP) inhibited ASK1 activity in vitro, and this inhibition was reversed by thiol-reducing agents such as dithiothreitol and beta-mercaptoethanol. SNAP did not inhibit the kinase activities of MKK3, MKK6, or p38 in vitro. The inhibition of ASK1 by interferon-gamma was not changed by 1H- (1,2,4)oxadiazolo[4,3-alpha]quinoxalin-1-one, an inhibitor of guanylyl cyclase nor was it mimicked by 8-bromo-cyclic GMP. Site-directed mutagenesis revealed that replacement of cysteine 869 of ASK1 by serine rendered this protein resistant to the inhibitory effects both of interferon-gamma in intact cells and of SNAP in vitro. Co-immunoprecipitation data showed that NO production inhibited a binding of ASK1, but not ASK1(C869S), to MKK3 or MKK6. Moreover, interferon-gamma induced the S-nitrosylation of endogenous ASK1 in L929 cells. Together, these results suggest that NO mediates the interferon-gamma-induced inhibition of ASK1 in L929 cells through a thiolredox mechanism.  相似文献   

14.
In this work we studied the reaction of four quinones, 1,4-benzoquinone (1,4-BQ), 2,5-dimethyl-1,4-benzoquinone (2,5-DM-1,4-BQ), tetrachloro-1,4-benzoquinone (TC-1,4-BQ) and 1,4-naphthoquinone (1,4-NQ) with jack bean urease in phosphate buffer, pH 7.8. The enzyme was allowed to react with different concentrations of the quinones during different incubation times in aerobic conditions. Upon incubation the samples had their residual activities assayed and their thiol content titrated. The titration carried out with use of 5,5'-di-thiobis(2-nitrobenzoic) acid was done to examine the involvement of urease thiol groups in the quinone-induced inhibition. The quinones under investigation showed two distinct patterns of behaviour, one by 1,4-BQ, 2,5-DM-1,4-BQ and TC-1,4-BQ, and the other by 1,4-NQ. The former consisted of a concentration-dependent inactivation of urease where the enzyme-inhibitor equilibrium was achieved in no longer than 10min, and of the residual activity of the enzyme being linearly correlated with the number of modified thiols in urease. We concluded that arylation of the thiols in urease by these quinones resulting in conformational changes in the enzyme molecule is responsible for the inhibition. The other pattern of behaviour observed for 1,4-NQ consisted of time- and concentration-dependent inactivation of urease with a nonlinear residual activity-modified thiols dependence. This suggests that in 1,4-NQ inhibition, in addition to the arylation of thiols, operative are other reactions, most likely oxidations of thiols provoked by 1,4-NQ-catalyzed redox cycling. In terms of the inhibitory strength, the quinones studied formed a series: 1,4-NQ approximately 2,5-DM-1,4-BQ<1,4-BQ相似文献   

15.
Biofilms envelop all surfaces in aquatic ecosystems. They possess an extremely efficient nutrient entrapment mechanism which is widely believed to be mediated through ion exchange processes. During a field experiment, potassium and bromide were transported along a 105 m reach at different rates. The distance between the two solute pulses increased with increasing distance downstream. And, in a laboratory experiment, changing the ionic composition of waters overlying the biofilm influenced the retention of (phenolic) material by that biofilm. An analogy was drawn with ion chromatography (IC): In IC, different ions show different rates of progress through the column (retention times), and also show increasing separation between peaks with increasing distance from the point of injection (column length). Likewise, the affinity of a given ion for the column can be modified by manipulation of the ionic composition of overlying waters (eluent). The observed similarities between IC columns and the biofilm-coated stream channel may therefore represent a degree of experimental support for the putative involvement of ion exchange in the biofilm nutrient entrapment mechanism.  相似文献   

16.
Enteropathogenic Escherichia coli (EPEC) subverts actin dynamics in eukaryotic cells by injecting effector proteins via a type III secretion system. First, WxxxE effector Map triggers transient formation of filopodia. Then, following recovery from the filopodial signals, EPEC triggers robust actin polymerization via a signalling complex comprising Tir and the adaptor proteins Nck. In this paper we show that Map triggers filopodia formation by activating Cdc42; expression of dominant-negative Cdc42 or knock-down of Cdc42 by siRNA impaired filopodia formation. In addition, Map binds PDZ1 of NHERF1. We show that Map–NHERF1 interaction is needed for filopodia stabilization in a process involving ezrin and the RhoA/ROCK cascade; expression of dominant-negative ezrin and RhoA or siRNA knock-down of RhoA lead to rapid elimination of filopodia. Moreover, we show that formation of the Tir-Nck signalling complex leads to filopodia withdrawal. Recovery from the filopodial signals requires phosphorylation of a Tir tyrosine (Y474) residue and actin polymerization pathway as both infection of cells with EPEC expressing TirY474S or infection of Nck knockout cells with wild-type EPEC resulted in persistence of filopodia. These results show that EPEC effectors modulate actin dynamics by temporal subverting the Rho GTPases and other actin polymerization pathways for the benefit of the adherent pathogen.  相似文献   

17.
Pb2+ is thought to enter erythrocytes through anion exchange (AE) and to remain in the cell by binding to thiol groups. To define the role of AE mechanism and thiol groups in Pb2+ toxicity, we studied the effects of drugs and conditions that modify AE and that modify thiol groups on the ability of Pb2+ to stimulate potassium efflux as measured with 86Rb. The most potent stimulation of 86Rb efflux by Pb2+ occurred when conditions were optimal for the AE mechanism—that is, when bicarbonate was included in the buffer or a buffer made with Nal or NaCl rather than NaClO4 or NaNO3 was used. Furthermore, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid and 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid, potent inhibitors of the AE mechanism, completely inhibited stimulation of the 86Rb efflux by Pb2+. These conditions or inhibitors did not affect stimulation of the 86Rb efflux by ionomycin plus Ca2+. A role for Ca2+ channels was dismissed because the inorganic Ca2+ channel blockers, Cd2+ or Mn2+, did not prevent stimulation of 86Rb efflux by Pb2+ but did inhibit stimulation by ionomycin plus Ca2+. 86Rb efflux was more sensitive to Pb2+ if erythrocytes were treated for 15 min with thiol-modifying reagents that enter cells, such as iodoacetamide, N-ethylmaleimide, or dithiothreitol, than to reduced glutathione, a thiol-modifying reagent that is not permeable to the cell. Thus, in erythrocytes the AE mechanism and internal thiol groups are critical factors that affect the stimulation of a Ca2+-dependent process by Pb2+. © 1996 Wiley-Liss, Inc.  相似文献   

18.
S A Silverberg  Y Nemerson 《Biochemistry》1975,14(12):2636-2644
It is known that the activation of prothrombin to thrombin can proceed via two pathways: one initiated by the prothrombin-converting complex (factor Xa, factor V, phospholipid, and CA2+ ions) and the other initiated by the product, thrombin. A kinetic study has shown that the pathways do not proceed with equal ease under all conditions. At high levels of the converting complex, both go to completion: some prothrombin is always cleaved by thrombin, but the resulting intermediate is then activated to give quantitative conversion to thrombin. At slower rates of activation, the product-initiated pathway occurs to a relatively greater extent. Moreover, the intermediate then is not cleaved further but accumulates, so that the generation of thrombin is curtailed. The reason the intermediate is productive only at higher levels of activator may be partly that it is a poorer substrate for the converting complex than prothrombin. More importantly, the activity of the complex is also modulated by thrombin, which rapidly destroys the activity of factor V and factor Xa in a feedback reaction. These concerted controls ensure that prothrombin activation damps itself. Thus thrombin production occurs as a burst, the size of which is regulated by the amounts of factor Xa and factor V initially available.  相似文献   

19.
We have examined the interaction of photoperiod and temperature in regulating the parr-smolt transformation and its endocrine control. Atlantic salmon juveniles were reared at a constant temperature of 10 degrees C or ambient temperature (2 degrees C from January to April followed by seasonal increase) under simulated natural day length. At 10 degrees C, an increase in day length [16 h of light and 8 h of darkness (LD 16:8)] in February accelerated increases in gill Na(+)-K(+)-ATPase activity, whereas fish at ambient temperature did not respond to increased day length. Increases in gill Na(+)-K(+)-ATPase activity under both photoperiods occurred later at ambient temperature than at 10 degrees C. Plasma growth hormone (GH), insulin-like growth factor, and thyroxine increased within 7 days of increased day length at 10 degrees C and remained elevated for 5-9 wk; the same photoperiod treatment at 2 degrees C resulted in much smaller increases of shorter duration. Plasma cortisol increased transiently 3 and 5 wk after LD 16:8 at 10 degrees C and ambient temperature, respectively. Plasma thyroxine was consistently higher at ambient temperature than at 10 degrees C. Plasma triiodothyronine was initially higher at 10 degrees C than at ambient temperature, and there was no response to LD 16:8 under either temperature regimen. There was a strong correlation between gill Na(+)-K(+)-ATPase activity and plasma GH; correlations were weaker with other hormones. The results provide evidence that low temperature limits the physiological response to increased day length and that GH, insulin-like growth factor I, cortisol, and thyroid hormones mediate the environmental control of the parr-smolt transformation.  相似文献   

20.
Elevated concentration of homocysteine (Hcy) in human tissues, definied as hyperhomocysteinemia has been correlated with some diseases, such as cardiovascular, neurodegenerative, and kidney disorders. Homocysteine occurs in human blood plasma in several forms, including the most reactive one, the homocysteine thiolactone (HTL) - a cyclic thioester, which represents up to 0.29% of total plasma Hcy. In the article, the effects of hyperhomocysteinemia on the complex process of hemostasis, which regulates the flowing properties of blood, are described. Possible interactions of homocysteine and its different derivatives, including homocysteine thiolactone, with the major components of hemostasis such as endothelial cells, blood platelets, plasmatic fibrinogen and plasminogen, are also discussed. Modifications of hemostatic proteins (N-homocysteinylation or S-homocysteinylation) induced by Hcy or its thiolactone seem to be the main cause of homocysteine biotoxicity in hemostatic abnormalities. It is suggested that Hcy and HTL may also act as oxidants, but various polyphenolic antioxidants are able to inhibit the oxidative damage induced by Hcy or HTL. We also discuss the role of phenolic antioxidants in hyperhomocysteinemia -induced changes in hemostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号