首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

This study evaluated how iron nutrition affect leaf anatomical and photosynthetic responses to low cadmium and its accumulation in peanut plants.

Methods

Seedlings were treated with Cd (0 and 0.2 μM CdCl2) and Fe (0, 10, 25, 50 or 100 μM EDTA-Na2Fe) in hydroponic culture.

Results

Cadmium accumulation is highest in Fe-deficient plants, and dramatically decreased with increasing Fe supply. The biomass, gas exchange, and reflectance indices were highest at 25 μM Fe2+ treatments, indicating the concentration is favorable for the growth of peanut plants. Both Fe deficiency and Cd exposure impair photosynthesis and reduce reflectance indices. However, they show different effects on leaf anatomical traits. Fe deficiency induces more and smaller stomata in the leaf surface, but does not affect the inner structure. Low Cd results in a thicker lamina with smaller stomata, thicker palisade and spongy tissues, and lower palisade to spongy thickness ratio. The stomatal length and length/width ratio in the upper epidermis, spongy tissue thickness, and palisade to spongy thickness ratio were closely correlated with net photosynthetic rate, stomatal conductance, and transpiration rate.

Conclusions

Cd accumulation rather than Fe deficiency alters leaf anatomy that may increase water use efficiency but inhibit photosynthesis.  相似文献   

2.

Key message

Using an extensive dataset for 39 subtropical broadleaved tree species, we found traits of the leaf economics spectrum to be linked to mean stomatal conductance but not to stomatal regulation.

Abstract

The aim of our study was to establish links between stomatal control and functional leaf traits. We hypothesized that mean and maximum stomatal conductance (g s) varies with the traits described by the leaf economics spectrum, such as specific leaf area and leaf dry matter content, and that high g s values correspond to species with tender leaves and high photosynthetic capacity. In addition, we hypothesized that species with leaves of low stomata density have more limited stomatal closure than those with high stomata density. In order to account for confounding site condition effects, we made use of a common garden situation in which 39 deciduous and evergreen species of the same age were grown in a biodiversity ecosystem functioning experiment in Jiangxi (China). Daily courses of g s were measured with porometry, and the species-specific g s~vpd relationships were modeled. Our results show that mean stomatal conductance can be predicted from leaf traits that represent the leaf economics spectrum, with a positive relationship being related to leaf nitrogen content and a negative relationship with the leaf carbon: nitrogen ratio. In contrast, parameters of stomatal control were related to traits unassociated with the leaf economics spectrum. The maximum of the conductance~vpd curve was positively related to leaf carbon content and vein length. The vpd at the point of inflection of the conductance~vpd curve was lower for species with higher stomata density and higher for species with a high leaf carbon content. Overall, stomata size and density as well as vein length were more effective at explaining stomatal regulation than traits used in the leaf economics spectrum.  相似文献   

3.

Aims

A simulation model to demonstrate that soil water potential can regulate transpiration, by influencing leaf water potential and/or inducing root production of chemical signals that are transported to the leaves.

Methods

Signalling impacts on the relationship between soil water potential and transpiration were simulated by coupling a 3D model for water flow in soil, into and through roots (Javaux et al. 2008) with a model for xylem transport of chemicals (produced as a function of local root water potential). Stomatal conductance was regulated by simulated leaf water potential (H) and/or foliar chemical signal concentrations (C; H?+?C). Split-root experiments were simulated by varying transpiration demands and irrigation placement.

Results

While regulation of stomatal conductance by chemical transport was unstable and oscillatory, simulated transpiration over time and root water uptake from the two soil compartments were similar for both H and H?+?C regulation. Increased stomatal sensitivity more strongly decreased transpiration, and decreased threshold root water potential (below which a chemical signal is produced) delayed transpiration reduction.

Conclusions

Although simulations with H?+?C regulation qualitatively reproduced transpiration of plants exposed to partial rootzone drying (PRD), long-term effects seemed negligible. Moreover, most transpiration responses to PRD could be explained by hydraulic signalling alone.  相似文献   

4.

Backgrounds and Aims

The stem growth habit, determinate or indeterminate, of soybean, Glycine max, varieties affects various plant morphological and developmental traits. The objective of this study is to identify the effect of stem growth habit in soybean on the stomatal conductance of single leaves in relation to their leaf morphology in order to better understand the ecological and agronomic significance of this plant trait.

Methods

The stomatal conductance of leaves on the main stem was measured periodically under favourable field conditions to evaluate gmax, defined as the maximum stomatal conductance at full leaf expansion, for four varieties of soybean and their respective determinate or indeterminate near isogenic lines (NILs). Leaf morphological traits including stomatal density, guard cell length and vein density were also measured.

Key Results

The value of gmax ranged from 0·383 to 0·754 mol H2O m−2 s−1 across all the genotypes for both years. For the four pairs of varieties, the indeterminate lines exhibited significantly greater gmax, stomatal density, numbers of epidermal cells per unit area and total vein length per unit area than their respective determinate NILs in both years. The guard cell length, leaf mass per area and single leaf size all tended to be greater in the determinate types. The variation of gmax across genotypes and years was well explained by the product of stomatal density and guard cell length (r = 0·86, P < 0·01).

Conclusions

The indeterminate stem growth habit resulted in a greater maximum stomatal conductance for soybean than the determinate habit, and this was attributed to the differences in leaf structure. This raises the further hypothesis that the difference in stem growth habit results in different water use characteristics of soybean plants in the field. Stomatal conductance under favourable conditions can be modified by leaf morphological traits.Key words: Soybean, Glycine max, stem growth habit, stomatal conductance, stomatal density, guard cell length, near isogenic lines  相似文献   

5.

Aims

To evaluate the impact of the amount and distribution of soil water on xylem anatomy and xylem hydraulics of current-year shoots, plant water status and stomatal conductance of mature ‘Manzanilla’ olive trees.

Methods

Measurements of water potential, stomatal conductance, hydraulic conductivity, vulnerability to embolism, vessel diameter distribution and vessel density were made in trees under full irrigation with non-limiting soil water conditions, localized irrigation, and rain-fed conditions.

Results

All trees showed lower stomatal conductance values in the afternoon than in the morning. The irrigated trees showed water potential values around ?1.4 and ?1.6 MPa whereas the rain-fed trees reached lower values. All trees showed similar specific hydraulic conductivity (K s) and loss of conductivity values during the morning. In the afternoon, K s of rain-fed trees tended to be lower than of irrigated trees. No differences in vulnerability to embolism, vessel-diameter distribution and vessel density were observed between treatments.

Conclusions

A tight control of stomatal conductance was observed in olive which allowed irrigated trees to avoid critical water potential values and keep them in a safe range to avoid embolism. The applied water treatments did not influence the xylem anatomy and vulnerability to embolism of current-year shoots of mature olive trees.  相似文献   

6.

Key message

The present work with transgenic poplar lines producing varying levels of trans -zeatin suggests the existence of a switching threshold for triggering ckx gene expression or suppressing cytokinin-induced auxin.

Abstract

Cytokinins have an important role in growth and developmental processes of plants. Transgenic plants with varying levels of cellular cytokinin are convenient tools for studying its role in morphogenetic as well as molecular responses. In this work, the transgenic lines producing either high level of cellular trans-zeatin (HX lines) or moderate level (MX lines) were compared with regard to their cytokinin oxidase activities and cellular auxin content. The HX lines showed typical cytokinin phenotypes including leafy shoots and spontaneous shoot formation on hormone free medium. In contrast, the MX lines did not show any striking phenotypes. However, in leaf disk culture on hormone free medium, they regenerated roots and subsequently formed shoots from the roots. Determination of cellular IAA content revealed a significant increase in the level in MX lines but not in HX lines. Of nine cytokinin oxidase genes (ckx) examined by qPCR, five were activated in HX lines but not in MX lines. Among them, ckx4 appeared to play a key role in maintaining cellular cytokinin level since it showed more than 1,000-fold increase in HX lines and in the leaf disks of untransformed control exposed to exogenous cytokinins. Although low level of cellular cytokinin did not induce the expression of ckx genes, it appeared to trigger cellular IAA biosynthesis.  相似文献   

7.

Key message

Total leaf hydraulic dysfunction during severe drought could lead to die-back in N. dombeyi , while hydraulic traits of A. chilensis allow it to operate far from the threshold of total hydraulic failure.

Abstract

Die-back was observed in South America temperate forests during one of the most severe droughts of the 20th century (1998–1999). During this drought Austrocedrus chilensis trees survived, whereas trees of the co-occurring species (Nothofagus dombeyi) experienced symptoms of water stress, such as leaf wilting and abscission, before tree die-back occurred. We compared hydraulic traits of these two species (a conifer and an angiosperm species, respectively) in a forest stand located close to the region with records of N. dombeyi mass mortality. We asked whether different hydraulic traits exhibited by the two species could help explain their contrasting survivorship rates. Austrocedrus chilensis had wide leaf safety margins, which appear to be the consequence of relatively high leaf-and-stem capacitance, large stored water use, strong stomatal control and ability to recover from embolism-induced loss of leaf hydraulic capacity. On the other hand, N. dombeyi even though had a stem hydraulic threshold of ?6.7 MPa before reaching substantial hydraulic failure (P88), leaf P88 occurred at leaf water potentials of only ?2 MPa, which probably are reached during anomalous droughts. Massive mortality in N. dombeyi appears to be the result of the total loss of leaf hydraulic conductance leading to leaf dehydration and leaf drop. Drought occurs during the summer and it is highly likely that N. dombeyi cannot recover its photosynthetic surface to produce carbohydrates required to avoid tissue injury in the winter season with subfreezing temperatures. Strong hydraulic segmentation in N. dombeyi does not seem to have an adaptive value to survive severe droughts.  相似文献   

8.

Aims

All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes in liquid- and gas-phase hydraulic conductance.

Methods

To reach our objectives, determinations of shoot growth, berry size and sugar content, leaf gas exchange, predawn leaf water potential (as a proxy of soil water potential), midday stem water potential and leaf water potential were performed in conjunction with anatomical measurements of shoot xylem. All measurements were conducted in two different cultivars (Cabernet franc and Merlot) and on three different soil types (clayey, gravelly, and sandy).

Results

Shoot xylem morphometric characteristics and whole-plant hydraulic conductance were influenced by cultivar and soil type. Differences in leaf gas exchange parameters and water potentials were determined by soil type significantly more than by cultivar. Between the two extremes (gravelly soil imposing drought conditions and sandy soil with easily accessible water) the clayey soil expressed an intermediate plant water consumption and highest sugar accumulation in berry.

Conclusions

Hydraulic and non hydraulic limitations to vine/berry interactions supported the conclusion that water availability in the soil overrides differences due to cultivar in determining the productive potential of the vineyard. Non hydraulic stomatal control was expected to be an important component on plants grown on the clayey soil, which experienced a moderate water stress. Possible links between hydraulic traits and berry development and quality are discussed.  相似文献   

9.

Key message

Overexpression of CsHis in tobacco promoted chromatin condensation, but did not affect the phenotype. It also conferred tolerance to low-temperature, high-salinity, ABA, drought and oxidative stress in transgenic tobacco.

Abstract

H1 histone, as a major structural protein of higher-order chromatin, is associated with stress responses in plants. Here, we describe the functions of the Camellia sinensis H1 Histone gene (CsHis) to illustrate its roles in plant responses to stresses. Subcellular localization and prokaryotic expression assays showed that the CsHis protein is localized in the nucleus, and its molecular size is approximately 22.5 kD. The expression levels of CsHis in C. sinensis leaves under various conditions were investigated by qRT-PCR, and the results indicated that CsHis was strongly induced by various abiotic stresses such as low-temperature, high-salinity, ABA, drought and oxidative stress. Overexpression of CsHis in tobacco (Nicotiana tabacum) promoted chromatin condensation, while there were almost no changes in the growth and development of transgenic tobacco plants. Phylogenetic analysis showed that CsHis belongs to the H1C and H1D variants of H1 histones, which are stress-induced variants and not the key variants required for growth and development. Stress tolerance analysis indicated that the transgenic tobacco plants exhibited higher tolerance than the WT plants upon exposure to various abiotic stresses; the transgenic plants displayed reduced wilting and senescence and exhibited greater net photosynthetic rate (Pn), stomatal conductance (Gs) and maximal photochemical efficiency (Fv/Fm) values. All the above results suggest that CsHis is a stress-induced gene and that its overexpression improves the tolerance to various abiotic stresses in the transgenic tobacco plants, possibly through the maintenance of photosynthetic efficiency.  相似文献   

10.

Background and aims

The beneficial effects of Si have mainly been observed in herbaceous plants, while little is known about its role in deciduous trees. The aim of this work was to evaluate the effect of foliar application of Si on chestnut leaf growth, photosynthesis and water relations in the presence of short, but intense water deficit.

Methods

Sili-K® solution (containing 0.12 % Si and 0.15 % K) was repeatedly (× 3) sprayed onto leaves of potted chestnut plantlets and irrigation was suspended 7 weeks later, for 8 days. Leaf growth, anatomy, as well as physiological and biochemical traits of the plantlets were studied.

Results

Si application enhanced chestnut growth, due to increased photosynthetic traits, including higher chlorophyll content and chlorophyll a to b ratio, photochemical efficiency of PSII, gas exchange (stomatal conductance, transpiration rate, net CO2 assimilation) and oxygen evolution rate. Meanwhile, Si yielded larger and thinner leaves, higher xylem, specific leaf area and transpiration rate, thus being beneficial to the tree in absorbing sunlight energy for photosynthesis and in alleviating heat stress. However, Si also lowered leaf sap osmotic pressure, causing the plant to lose water more quickly, thus being more susceptible to water stress.

Conclusions

Si improved chestnut photosynthesis, growth, and heat stress tolerance, but it also increased the susceptibility to drought.  相似文献   

11.
An induction-dependent empirical model was developed to simulate the C3 leaf photosynthesis under fluctuating light and different temperatures. The model also takes into account the stomatal conductance when the light intensity just exceeds the compensation point after a prolonged period of darkness (initial stomatal conductance, $ g_{{{\text{S}}_{\text{ini}} }} $ ). The model was parameterized for both Chrysanthemum morifolium and Spinacia oleracea by artificially changing the induction states of the leaves in the climate chamber. The model was tested under natural conditions that were including frequent light flecks due to partial cloud cover and varying temperatures. The temporal course of observed photosynthesis rate and the carbon gain was compared to the simulation. The ability of the current model to predict the carbon assimilation rate was assessed using different statistical indexes. The model predictions were accurate but the model slightly underestimated the actual overall carbon gain. The accuracy of the simulation was largely dependent on the parameters that were calculated for the particular plant species, of which the simulation is intended for. In particular, the rate of change of induction and the initial stomatal conductance were found to be highly important and these were species-specific parameters for the predictions. The model is suitable for estimating instantaneous leaf CO2 assimilation for different herbaceous plant species under dynamic environmental conditions. It can be simply calibrated for other crops, by estimating the individual parameters.  相似文献   

12.

Background and aims

Drought-associated vegetation declines are increasingly observed worldwide. We investigated whether differences in water relations can potentially explain the distribution and vulnerability to drought-induced decline of four common tree species in Mediterranean southwestern Australia.

Methods

We compared seasonal and daily water relations of four eucalypt species (i.e. C. calophylla, E. accedens, E. marginata, E. wandoo) when co-occurring as well as on nearby typical sites for each species.

Results

When co-occurring, species generally inhabiting drier regions (i.e. E. accedens, E. wandoo) had lower summer leaf water potentials, osmotic potential, and vulnerability to cavitation and higher stomatal conductance and relative sapflow velocity. Both wetter zone species (e.g. C. calophylla and E. marginata) had remarkably high vulnerabilities to cavitation for Mediterranean woody species but showed greatly improved leaf water status on nearby sites where they dominate. Using local soil moisture retention curves of saprolitic clay layers underlying southwestern Australia we show the large disadvantage that the wetter zone species have in terms of accessing tightly bound water in these layers.

Conclusions

Our work shows that species distribution and local dominance of four dominant overstorey species in southwestern Australia is largely a function of plant water relations interacting with local soil profiles. The observed differences in water relations amongst species are consistent with some of the declines that have been observed in recent decades.  相似文献   

13.
The role of xyloglucan endotransglycosylases in the regulation and promotion of plant growth in response to such widespread stress factors as drought, salinization, and hypothermia remains poorly understood. The tXET-B2 (SlXTH10) gene encodes one of the xyloglucan endotransglycosylases of tomato, which is most closely related in the nucleotide sequence to the AtXTH15 and AtXTH16 genes of Arabidopsis thaliana. At present, the specific functions of the tXET-B2 gene, as well as of its homologs, AtXTH15 and AtXTH16, remain obscure. To study the role of tXET-B2 in the regulation of growth and adaptation to abiotic stress factors, transgenic tobacco plants with estradiol-inducible expression of the tomato tXET-B2 gene were generated. Overexpression of this gene promoted tobacco root growth in a medium containing 50 mM NaCl. Under drought conditions, exogenous treatment with estradiol resulted in a considerable increase in fresh and dry weight in many of the studied transgenic lines. Under normal conditions, as well as under salinization and hypothermia stress, such positive effect was detected only for some transgenic lines. The obtained data point to the possibility of using genetically engineered constructs of the tXET-B2 gene to correct growth parameters of transgenic plants under the influence of stress factors.  相似文献   

14.

Key message

Our study shows that the expression of AtCBF3 and AtCOR15A improved the chilling tolerance in transgenic eggplant.

Abstract

In an attempt to improve chilling tolerance of eggplant (Solanum melongena L) plants, Arabidopsis C-repeat binding factor 3 (AtCBF3) and cold-regulated 15A (AtCOR15A) genes both driven by an Arabidopsis RESPONSIVE TO DESSICATION 29A promoter (AtRD29A) were transferred into the plants of eggplant cultivar Sanyueqie. Two independent homozygous transgenic lines were tested for their cold tolerance. The leaves of the transgenic plants in both lines withered much slower and slighter than the wild-type plants after exposure to cold stress treatment at 2 ± 1 °C. The gene expression of AtCBF3 and AtCOR15A was significantly increased as well as the proline content and the levels of catalase and peroxidase activities, while the relative electrical conductivity and the malondialdehyde content were remarkably decreased in the transgenic plants compared with the wild type at 4 ± 0.5 °C. The results showed that the expression of the exogenous AtCBF3 and AtCOR15A could promote the cold adaptation process to protect eggplant plants from chilling stress.  相似文献   

15.
Though mulberry (Morus alba) tree shows great adaptations to various climate conditions, their leaf water status and photosynthesis are sensitive to climate changes. In the current study, seven widely planted mulberry cultivars in Chongqing, Southwest China, were selected to analyze leaf cuticular wax characteristics, gas exchange index, post-harvest leaf water status and their relationships, aiming to provide new theory in screening high resistant mulberry cultivars. Mulberry trees formed rounded cap-type idioblasts on the adaxial leaf surface. Film-like waxes and granule-type wax crystals covered leaf surfaces, varying in crystal density among cultivars. The stomatal aperture on the abaxial surface of cultivars with high wax amount was smaller than that of cultivars with low wax amount. The amount of total wax was negatively correlated with the net photosynthetic rate (P N), transpiration rate (E) and stomatal conductance (g s) and positively correlated with the moisture retention capacity. It suggested that both cuticular wax and stomatal factor might be involved in regulating water loss in mulberry leaves under field conditions. The variability in moisture retention capacity and cuticular wax characteristics might be important in evaluating and screening mulberry cultivars for increasing silk quality and silkworm productivity.  相似文献   

16.
17.
18.

Key message

The P SAG12 -ipt gene was transferred to miniature rose, as the first woody species, resulting in increased ethylene resistance due to specific up-regulation of the ipt gene under senescence promoting conditions.

Abstract

Transgenic plants of Rosa hybrida ‘Linda’ were obtained via transformation with Agrobacterium tumefaciens strain harboring the binary vector pSG529(+) containing the P SAG12 -ipt construct. A. tumefaciens strains AGL1, GV3850 and LBA4404 (containing P35S-INTGUS gene) were used for transformation of embryogenic callus, but transgenic shoots were obtained only when AGL1 was applied. The highest transformation frequency was 10 % and it was achieved when half MS medium was used for the dilution of overnight culture of Agrobacterium. Southern blot confirmed integration of 1–6 copies of the nptII gene into the rose genome in the tested lines. Four transgenic lines were obtained which were morphologically true-to-type and indistinguishable from Wt shoots while they were in in vitro cultures. Adventitious root induction was more difficult in transgenic shoots compared to the Wt shoots, however, one of the transgenic lines (line 6) was rooted and subsequently analyzed phenotypically. The ipt expression levels were determined in this line after exposure to exogenous ethylene (3.5 μl l?1) and/or darkness. Darkness resulted in twofold up-regulation of ipt expression, whereas darkness combined with ethylene caused eightfold up-regulation in line 6 compared to Wt plants. The transgenic line had significantly higher content of chlorophyll at the end of the treatment period compared to Wt plants.  相似文献   

19.

Background and aims

Liming is considered normal agricultural practise for remediating soil acidity and improving crop productivity; however recommended lime applications can reduce yield. We tested the hypothesis that elevated xylem sap Ca2+ limited gas exchange of Phaseolus vulgaris L. and Pisum sativum L. plants that exhibited reduced shoot biomass and leaf area when limed.

Methods

We used Scholander and whole-plant pressure chamber techniques to collect root and leaf xylem sap, a calcium-specific ion-selective electrode to measure xylem sap Ca2+, infra-red gas analysis to measure gas exchange of limed and unlimed (control) plants, and a detached leaf transpiration bioassay to determine stomatal sensitivity to Ca2+.

Results

Liming reduced shoot biomass, leaf area and leaf gas exchange in both species. Root xylem sap Ca2+ concentration was only increased in P. vulgaris and not in P. sativum. Detached leaves of both species required 5 mM Ca2+ supplied to via the transpiration stream to induce stomatal closure, however, maximum in vivo xylem sap Ca2+ concentrations of limed plants was only 1.7 mM and thus not high enough to influence stomata.

Conclusion

We conclude that an alternative xylem-borne antitranspirant other than Ca2+ decreases gas exchange of limed plants.  相似文献   

20.

Background

Plant phospholipase D (PLD), which can hydrolyze membrane phospholipids to produce phosphatidic acid (PA), a secondary signaling molecule, has been proposed to function in diverse plant stress responses. Both PLD and PA play key roles in plant growth, development, and cellular processes. PLD was suggested to mediate the regulation of stomatal movements by abscisic acid (ABA) as a response to water deficit. In this research, we characterized the roles of the cucumber phospholipase D alpha gene (CsPLDα, GenBank accession number EF363796) in the growth and tolerance of transgenic tobacco (Nicotiana tabacum) to drought stress.

Results

The CsPLDα overexpression in tobacco lines correlated with the ABA synthesis and metabolism, regulated the rapid stomatal closure in drought stress, and reduced the water loss. The NtNCED1 expression levels in the transgenic lines and wild type (WT) were sharply up-regulated after 16?days of drought stress compared with those before treatment, and the expression level in the transgenic lines was significantly higher than that in the WT. The NtAOG expression level evidently improved after 8 and 16?days compared with that at 0?day of treatment and was significantly lower in the transgenic lines than in the WT. The ABA content in the transgenic lines was significantly higher than that in the WT. The CsPLDα overexpression could increase the osmolyte content and reduce the ion leakage. The proline, soluble sugar, and soluble protein contents significantly increased. By contrast, the electrolytic leakage and malondialdehyde accumulation in leaves significantly decreased. The shoot and root fresh and dry weights of the overexpression lines significantly increased. These results indicated that a significant correlation between CsPLDα overexpression and improved resistance to water deficit.

Conclusions

The plants with overexpressed CsPLDα exhibited lower water loss, higher leaf relative water content, and heavier fresh and dry matter accumulation than the WT. We proposed that CsPLDα was involved in the ABA-dependent pathway in mediating the stomatal closure and preventing the elevation of intracellular solute potential.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号