首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dimeric GdAAZTA-like complex (AAZTA is 6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid) bearing an adamantyl group (Gd2 L1) able to form strong supramolecular adducts with specific hosts such as β-cyclodextrin (β-CD), poly-β-CD, and human serum albumin (HSA) is reported. The relaxometric properties of Gd2 L1 were investigated in aqueous solution by measuring the 1H relaxivity as a function of pH, temperature, and magnetic field strength. The relaxivity of Gd2 L1 (per Gd atom) at 40 MHz and 298 K is 17.6 mM?1 s?1, a value that remains almost constant at higher fields owing to the great compactness and rigidity of the bimetallic chelate, resulting in an ideal value for the rotational correlation time for high-field MRI applications (1.5–3.0 T). The noncovalent interaction of Gd2 L1 with β-CD, poly-β-CD, and HSA and the relaxometric properties of the resulting host–guest adducts were investigated using 1H relaxometric methods. Relaxivity enhancements of 29 and 108 % were found for Gd2 L1–β-CD and Gd2 L1–poly-β-CD, respectively. Binding of Gd2 L1 to HSA (K A = 1.2 × 104 M?1) results in a remarkable relaxivity of 41.4 mM?1 s?1 for the bound form (+248 %). The relaxivity is only limited by the local rotation of the complex within the binding site, which decreases on passing from Gd2 L1–β-CD to Gd2 L1–HSA. Finally, the applicability of Gd2 L1 as tumor-targeting agent through passive accumulation of the HSA-bound adduct was evaluated via acquisition of magnetic resonance images at 1 T of B16-tumor-bearing mice. These experiments indicate a considerable signal enhancement (+160 %) in tumor after 60 min from the injection and a very low hepatic accumulation.  相似文献   

2.
We report the preparation of a non-polymer coated superparamagnetic nanoparticle that is stable and biocompatible both in vitro and in vivo. The non-polymer, betaine, is a natural methylating agent in mammalian liver with active surface property. Upon systemic administration, the nanoparticle has preferential biodistribution in mammalian liver and exhibits good reduction of relaxivity time and negative enhancement for the detection of hepatoma nodules in rats using MRI. Our data demonstrate that the non-polymer coated superparamagnetic nanoparticle should have potential applications in biomedicine.  相似文献   

3.
A new low-molecular weight dendrimer-like MRI contrast agent (Gd-D1) has been synthesized and characterized in vitro by proton and oxygen-17 relaxometry. Its pharmacokinetic parameters and biodistribution patterns were evaluated on rats. Its in vitro and in vivo properties, that is, the longitudinal relaxivity (defined as the increase of the water proton longitudinal relaxation rate induced by one millimole per liter of Gd-D1) equal to 5.6s(-1)mM(-1) at 20 MHz and 310 K, the elimination half-time equal to 85 min, and its low accumulation in liver and spleen, underline its potential as a blood-pool MRI contrast agent.  相似文献   

4.
A novel gadolinium complex, derived from Gd-DTPA (DTPA: diethylenetriaminepentaacetic acid) and sulfaphenazole, intended to be a potential MRI contrast agent and to interact with human serum albumin (HSA), was synthesized and characterized. Its relaxometric properties were evaluated in water, and its binding to HSA was investigated by three techniques: proton relaxation rate analysis, NMR diffusometry, and electrospray mass spectrometry. The complex has a higher relaxivity than the parent compound (r(1)=7.8s(-1)mM(-1) at 310K and 0.47T and 7.7s(-1)mM(-1) at 310K and 1.41T), a fast water exchange, and a very good stability versus zinc(II) transmetallation. All techniques agree with a high affinity of the complex for HSA, and competition experiments indicate that this contrast agent competes with ibuprofen for HSA.  相似文献   

5.
ABSTRACT: BACKGROUND: The upregulation of intercellular adhesion molecule-1 (ICAM-1) on the endothelium of bloodvessels in response to pro-inflammatory stimuli is of major importance for the regulation oflocal inflammation in cardiovascular diseases such as atherosclerosis, myocardial infarctionand stroke. In vivo molecular imaging of ICAM-1 will improve diagnosis and follow-up ofpatients by non-invasive monitoring of the progression of inflammation. RESULTS: A paramagnetic liposomal contrast agent functionalized with anti-ICAM-1 antibodies formultimodal magnetic resonance imaging (MRI) and fluorescence imaging of endothelialICAM-1 expression is presented. The ICAM-1-targeted liposomes were extensivelycharacterized in terms of size, morphology, relaxivity and the ability for binding to ICAM-1-expressing endothelial cells in vitro. ICAM-1-targeted liposomes exhibited strong binding toendothelial cells that depended on both the ICAM-1 expression level and the concentration ofliposomes. The liposomes had a high longitudinal and transversal relaxivity, which enableddifferentiation between basal and upregulated levels of ICAM-1 expression by MRI. Theliposome affinity for ICAM-1 was preserved in the competing presence of leukocytes andunder physiological flow conditions. CONCLUSION: This liposomal contrast agent displays great potential for in vivo MRI of inflammation-relatedICAM-1 expression.  相似文献   

6.
《IRBM》2009,30(4):197-200
The synthesis and the physicochemical characterization of a new contrast agent for magnetic resonance imaging (MRI), Gd-C4-thyroxin-DTPA, which has a high affinity for human serum albumin (HSA), are reported. The results show that this chelate is characterized by a relatively high relaxivity, which increases moreover with the concentration. This reflects an aggregation of the molecules in solution. It is also characterized by a better stability versus the transmetallation with the zinc ion than the parent compound, the Gd-DTPA (Magnevist®, Bayer Schering Pharma). The study of its interaction with human serum albumin was performed by the proton relaxometry technique, which has revealed a relatively high affinity (Ka of the order of 10,000 M−1, with two binding sites). Finally, competition experiments with ibuprofen and salicylate, of which the binding sites on HSA are known, were performed by the NMR diffusometry method. The results suggest that the chelate shares one of the binding sites of ibuprofen.  相似文献   

7.
Most currently evaluated macromolecular contrast agents for magnetic resonance imaging (MRI) are not biodegradable. The goal of this study is to synthesize and characterize poly(l-glutamic acid) (PG) gadolinium chelates as biodegradable blood-pool MRI contrast agents. Two PG chelates of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) were synthesized through the use of difunctional and monofunctional DTPA precursors. The conjugates were characterized with regard to molecular weight and molecular weight distribution, gadolinium content, relaxivity, and degradability. Distributions of the polymeric MRI contrast agents in various organs were determined by intravenous injection of (111)In-labeled polymers into mice bearing murine breast tumors. MRI scans were performed at 1.5 T in mice after bolus injection of the polymeric chelates. PG-Hex-DTPA-Gd, obtained from aminohexyl-substituted PG and DTPA-dianhydride, was partially cross-linked and was undegradable in the presence of cathepsin B. On the other hand, PG-Bz-DTPA-Gd synthesized directly from PG and monofunctional p-aminobenzyl-DTPA(acetic acid-tert-butyl ester) was a linear polymer and was degradable. The relaxivities of the polymers at 1.5 T were 3-8 times as great as that of Gd-DTPA. Both polymers had high blood concentrations and were primarily accumulated in the kidney. However, PG-Bz-DTPA-Gd was gradually cleared from the body and had significantly less retention in the blood, the spleen, and the kidney. MRI with PG-Bz-DTPA-Gd in mice showed enhanced vascular contrast at up to 2 h after the contrast agent injection. The ability of PG-Bz-DTPA-Gd to be degraded and cleared from the body makes it a favorable macromolecular MRI contrast agent.  相似文献   

8.
Two mono-substituted manganese polyoxometalates, K(6)MnSiW(11)O(39) (MnSiW(11)) and K(8)MnP(2)W(17)O(61) (MnP(2)W(17)), have been evaluated by in vivo and in vitro experiments as the candidates of potential tissue-specific contrast agents for magnetic resonance imaging (MRI). T1-relaxivities of 12.1mM(-1)s(-1) for MnSiW(11) and 4.7 mM(-1)s(-1) for MnP(2)W(17) (400 MHz, 25 degrees C) were higher than or similar to that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in BSA and hTf solutions were also reported. After administration of MnSiW(11) and MnP(2)W(17) to Wistar rats, MR imaging showed longer and remarkable enhancement in rat liver and favorable renal excretion capability. The signal intensity increased by 74.0+/-4.9% for the liver during the whole imaging period (90 min) and by 67.2+/-5.3% for kidney within 20-70 min after injection at 40+/-3 micromol kg(-1) dose for MnSiW(11). MnP(2)W(17) induced 71.5+/-15.1% enhancement for the liver in 10-45 min range and 73.1+/-3.2% enhancement for kidney within 5-40 min after injection at 39+/-3 micromol kg(-1) dose. In vitro and in vivo study showed MnSiW(11) and MnP(2)W(17) being favorable candidates as the tissue-specific contrast agents for MRI.  相似文献   

9.
A binary targeting vector that consists of peptide sequences of Arg-Gly-Asp (RGD) and Asn-Gly-Arg (NGR) motifs has been designed and synthesized using solid-phase peptide synthesis procedure. The vector is then coupled with Gd-DOTA to work as a targeting contrast agent (CA1) for magnetic resonance imaging of human lung adenocarcinoma cells A549. Its longitudinal relaxivity is measured to be 7.55 mM?1 s?1 in aqueous solution at a magnetic field of 11.7 T, which is higher than that of Magnevist (4.25 mM?1 s?1) in the same conditions. The cell experiment shows, at the same concentration, uptake quantity of CA1 by A549 is much more than Magnevist and also superior over CA2 (a single targeting contrast agent contains only RGD). The uptake can be blocked by the targetable peptide containing RGD or NGR without coupling Gd. To summarize, CA1 has very good ability to target A549 and higher relaxivity than that of Magnevist. So CA1 is promising MRI contrast agent for high-resolution MR molecular imaging of human lung adenocarcinoma A549 cells.  相似文献   

10.
Gd(III) complexes are used as magnetic resonance imaging (MRI) contrast agents because they greatly enhance the relaxation rate of water protons of tissues in which they distribute, an effect that is much more marked if the paramagnetic complex is part of a macromolecular system. Furthermore applications in molecular imaging, require that as many units of contrast agent as possible be directed to the site of interest. To this end we synthesised a polymer made of chitosan functionalized with beta- and gamma-cyclodextrins (CDs) that is able to form high-affinity adducts with suitably functionalized Gd(III) complexes. beta- and gamma-CDs were first treated with maleic anhydride to afford 6-monosubstituted derivatives that reacted regioselectively with the amino groups of chitosan. Reaction times and yields were markedly improved by carrying out these reactions under high-intensity ultrasound or microwave irradiation. Compared to the CD monomers, beta- and gamma-CD-chitosan adducts show large increases both in terms of their binding affinity towards Gd(III) complexes and in relaxivity values and they appear promising carriers for the in vivo vehiculation of Gd(III) complexes.  相似文献   

11.
The aim of this study is to describe the synthesis of, relaxometric characterization of, pharmacokinetic properties of, and animal imaging experiments with a new, low molecular weight gadolinium complex with high binding affinity toward serum albumin. The gadolinium(III) chelate (B25716/1) is based on the structure of the heptadentate ligand 1,4-bis(hydroxycarbonylmethyl)-6-[bis(hydroxycarbonylmethyl)]amino-6 methylperhydro-1,4-diazepine (AAZTA) covalently conjugated to an analogue of deoxycholic acid. The study was conducted as a comparison with that of an analogous complex based on the octadentate diethylenetriaminepentaacetic acid ligand B22956/1 (whose albumin binding properties were previously assessed). The structural modification with respect to B22956/1 leads to a system that can host two coordinated water molecules in fast exchange with bulk water with potential higher efficiency as an MRI contrast agent. On interaction with human serum albumin the expected—field-independent—relaxation enhancement is not observed, possibly as a consequence of the displacement of one of the two inner-sphere water molecules of the gadolinium complex. At clinically relevant magnetic fields, however, the plasma relaxivity of B25716/1 is markedly higher than that shown by B22956/1, owing to concomitant synergistic contributions from the electronic correlation time and water molecules in the second coordination sphere. The capability of B25716/1 to enhance tumor regions in magnetic resonance images was assessed in vivo at 3 T on a xenograft tumor mouse model prepared with PC-3 cells. B25716/1 displays signal enhancements approximately double those observed for B22956/1, in agreement with the findings of the in vitro relaxivity investigations.  相似文献   

12.
Water-soluble gadolinium (Gd) endohedral metallofullerenes have been synthesized as polyhydroxyl forms (Gd@C(82)(OH)(n)(), Gd-fullerenols) and their paramagnetic properties were evaluated by in vivo as well as in vitro for the novel magnetic resonance imaging (MRI) contrast agents for next generation. The in vitro water proton relaxivity, R(1) (the effect on 1/T(1)), of Gd-fullerenols is significantly higher (20-folds) than that of the commercial MRI contrast agent, Magnevist (gadolinium-diethylenetriaminepentaacetic acid, Gd-DTPA) at 1.0 T close to the common field of clinical MRI. This unusually high proton relaxivity of Gd-fullerenols leads to the highest signal enhancement at extremely lower Gd concentration in MRI studies. The strong signal was confirmed in vivo MRI at lung, liver, spleen, and kidney of CDF1 mice after i.v. administration of Gd-fullerenols at a dose of 5 micromol Gd/kg, which was 1/20 of the typical clinical dose (100 micromol Gd/kg) of Gd-DTPA.  相似文献   

13.
A new approach to enzyme-responsive MRI agents based on the use of liposomes loaded with a high number of paramagnetic metal complexes (Gd-HPDO3A) is presented. It relies on the disruption of low relaxivity aggregates formed by liposomes and a macromolecular substrate that is selectively cleaved by the enzyme of interest. The interaction of anionic liposomes composed of POPC:CHOL:DPGS and the cationic protein protamine yields a poorly soluble supramolecular assembly endowed with a low relaxivity. The action of the serine protease trypsin causes the digestion of protamine and the consequent de-assembly of the supramolecular adduct. The process is accompanied by an overall relaxation enhancement of solvent water protons as consequence of the dissolution of the aggregated liposomes. The observed increase of relaxivity is linearly dependent on the enzyme concentration.An illustrative example of the possible use of the herein presented responsive agent has been reported. It consists of the entrapment of the supramolecular assembly in alginate microcapsules that have often been used as envelopes for in vivo applications of stem cells and pancreatic islets. The change in the observed longitudinal relaxation rate R1 (leading to an hyperintense signal in the corresponding MR images) may act as a sensor of the protease activity in the biological environment in which the capsules is located.  相似文献   

14.
Qiao J  Li S  Wei L  Jiang J  Long R  Mao H  Wei L  Wang L  Yang H  Grossniklaus HE  Liu ZR  Yang JJ 《PloS one》2011,6(3):e18103
The application of magnetic resonance imaging (MRI) to non-invasively assess disease biomarkers has been hampered by the lack of desired contrast agents with high relaxivity, targeting capability, and optimized pharmacokinetics. We have developed a novel MR imaging probe targeting to HER2, a biomarker for various cancer types and a drug target for anti-cancer therapies. This multimodal HER20targeted MR imaging probe integrates a de novo designed protein contrast agent with a high affinity HER2 affibody and a near IR fluorescent dye. Our probe can differentially monitor tumors with different expression levels of HER2 in both human cell lines and xenograft mice models. In addition to its 100-fold higher dose efficiency compared to clinically approved non-targeting contrast agent DTPA, our developed agent also exhibits advantages in crossing the endothelial boundary, tissue distribution, and tumor tissue retention over reported contrast agents as demonstrated by even distribution of the imaging probe across the entire tumor mass. This contrast agent will provide a powerful tool for quantitative assessment of molecular markers, and improved resolution for diagnosis, prognosis and drug discovery.  相似文献   

15.
Magnetic Resonance Imaging (MRI) is a noninvasive radiology technique used to examine the internal organs of human body. It is useful for the diagnosis of structural abnormalities in the body. Contrast agents are used to increase the sensitivity of this technique. 1,4,7,10-Tetraazacyclododecane (cyclen) is a macrocyclic tetraamine. Its derivatives act as useful ligands to produce stable complexes with Gd3+ ion. Such chelates are investigated as MRI contrast agents. Free Gd3+ ion is extremely toxic for in vivo use. Upon complexation with a cyclen-based ligand, it is trapped in the preformed central cavity of the ligand resulting in the formation of a highly stable Gd3+-chelate. Better kinetic and thermodynamic stability of cyclen-based MRI contrast agents decrease their potential toxicity for in vivo use. Consequently, such agents have proved to be safest for clinical applications. Relaxivity is the most important parameter used to measure the effectiveness of a contrast agent. A number of factors influence this parameter. This article elucidates detailed strategies to increase relaxivity of cyclen-based MRI contrast agents. 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) are two key ligands derived from cyclen. They also act as building blocks for the synthesis of novel ligands. A few important methodologies for the synthesis of DOTA and DO3A derivatives are described. Moreover, the coordination geometry of chelates formed by these ligands and their derivatives is discussed as well. Novel ligands can be developed by the appropriate derivatization of DOTA and DO3A. Gd3+-chelates of such ligands prove to be useful MRI contrast agents of enhanced relaxivity, greater stability, better clearance, lesser toxicity and higher water solubility.  相似文献   

16.
Virus-like particles are powerful platforms for the development of functional hybrid materials. Here, we have grown a cross-linked polymer (cross-linked aminoethyl methacrylate) within the confines of the bacteriophage P22 capsid (P22–xAEMA) and functionalized the polymer with various loadings of paramagnetic manganese(III) protoporphyrin IX (MnPP) complexes for evaluation as a macromolecular magnetic resonance imaging contrast agent. The resulting construct (P22–xAEMA–MnPP) has r 1,particle = 7,098 mM?1 s?1 at 298 K and 2.1 T (90 MHz) for a loading of 3,646 MnPP molecules per capsid. The Solomon–Bloembergen–Morgan theory for paramagnetic relaxivity predicts conjugating MnPP to P22, a supramolecular structure, would result in an enhancement in ionic relaxivity; however, all loadings experienced low ionic relaxivities, r 1,ionic, ranging from 1.45 to 3.66 mM?1 s?1, similar to the ionic relaxivity of free MnPP. We hypothesize that intermolecular interactions between neighboring MnPP molecules block access of water to the metal site, resulting in low r 1,ionic relaxivities. We investigated the effect of MnPP interactions on relaxivity further by either blocking or exposing water binding sites on MnPP. On the basis of these results, future design strategies for enhanced r 1,ionic relaxivity are suggested. The measured r 2,ionic relaxivities demonstrated an inverse relationship between loading and relaxivity. This results in a loading-dependent r 2/r 1 behavior of these materials indicating synthetic control over the relaxivity properties, making them interesting alternatives to current magnetic resonance imaging contrast agents.  相似文献   

17.
Two gadolinium polyoxometalates, Gd(2)P(2)W(18)O(62) and K(15)[(GdO)(3)(PW(9)O(34))(2)], have been evaluated by in vivo as well as in vitro experiments as the candidates of tissue-specific magnetic resonance imaging (MRI) contrast agents. T(1)-relaxivities of 28.4 mM(-1).s(-1) for Gd(2)P(2)W(18)O(62) and 11.2 mM(-1).s(-1) for K(15)[(GdO)(3)(PW(9)O(34))(2)] (400 MHz, 25 degrees C) were higher than that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in bovine serum albumin and human serum transferrin were also reported. The favorable liver-specific contrast enhancement and renal excretion capability in in vivo MRI with Sprague-Dawley rats after i.v. administration of K(15)[(GdO)(3)(PW(9)O(34))(2)] was demonstrated. In vivo and in vitro assay showed that K(15)[(GdO)(3)(PW(9)O(34))(2)] is a promising liver-specific MRI contrast agent. However, Gd(2)P(2)W(18)O(62) did not show the favorable quality in vivo as expected from its high relaxivity in vitro, which was attributed to low bioavailability, indicating that it is of limited value as tissue-specific MRI contrast agent.  相似文献   

18.
 The non-covalent interaction between human serum albumin (HSA) and DOTA-like Gd(III) complexes containing hydrophobic benzyloxymethyl (BOM) substituents has been thoroughly investigated by measuring the solvent proton relaxation rates of their aqueous solutions. The binding association constants (K A) to HSA are directly related to the number of hydrophobic substituents present on the surface of the complexes. Furthermore, an estimation of ΔH° and ΔS° has been obtained by the temperature dependence of K A. Assays performed with the competitor probes warfarin and ibuprofen established that the complexes interact with HSA through two nearly equivalent binding sites located in the subdomains IIA and IIIA of the protein. Strong relaxation enhancements, promoted by the formation of slowly tumbling paramagnetic adducts, have been measured at 20 MHz for complexes containing two and three hydrophobic substituents. The macromolecular adduct with the latter species has a relaxivity of 53.2±0.7 mM–1 s–1, which represents the highest value so far reported for a Gd(III) complex. The temperature dependence of the relaxivity for the paramagnetic adducts with HSA indicates long exchange lifetimes for the water molecules dipolarly interacting with the paramagnetic centre. This is likely to be related to the formation, upon hydrophobic interaction of the complexes with HSA, of a clathrate-like, second-coordination-sphere arrangement of water molecules. Besides affecting the dissociative pathway of the coordinated water molecule, this water arrangement may itself significantly contribute to enhancement of the bulk solvent relaxation rate. Received: 6 November 1995 / Accepted: 17 April 1996  相似文献   

19.
Molecular magnetic resonance imaging with targeted contrast agents   总被引:6,自引:0,他引:6  
Magnetic resonance imaging (MRI) produces high-resolution three-dimensional maps delineating morphological features of the specimen. Differential contrast in soft tissues depends on endogenous differences in water content, relaxation times, and/or diffusion characteristics of the tissue of interest. The specificity of MRI can be further increased by exogenous contrast agents (CA) such as gadolinium chelates, which have been successfully used for imaging of hemodynamic parameters including blood perfusion and vascular permeability. Development of targeted MR CA directed to specific molecular entities could dramatically expand the range of MR applications by combining the noninvasiveness and high spatial resolution of MRI with specific localization of molecular targets. However, due to the intrinsically low sensitivity of MRI (in comparison with nuclear imaging), high local concentrations of the CA at the target site are required to generate detectable MR contrast. To meet these requirements, the MR targeted CA should recognize targeted cells with high affinity and specificity. They should also be characterized by high relaxivity, which for a wide variety of CA depends on the number of contrast-generating groups per single molecule of the agent. We will review different designs and applications of targeted MR CA and will discuss feasibility of these approaches for in vivo MRI.  相似文献   

20.
In this study, we synthesized a novel Cy5.5-labeled dimeric NGR peptide (Cy5.5-NGR2) via bioorthogonal click chemistry, and evaluated the utility of Cy5.5-NGR2 for near-infrared fluorescence imaging of CD13 receptor expression in vivo. The dimeric NGR peptide (NGR2) was conjugated with an alkyne-containing PEG unit followed by mixing with an azide-terminated Cy5.5 fluorophore (Cy5.5-N3) to afford Cy5.5-NGR2. The probe was subject to in vitro and in vivo evaluations. The bioorthogonal click chemistry provided a rapid conjugation of the alkyne-containing NGR2 with Cy5.5-N3 in a quantitative yield within 15 min. The laser confocal microscopy revealed that binding of Cy5.5-NGR2 to CD13 receptor is target-specific as demonstrated in CD13-positive HT-1080 cells, CD13-negative MCF-7 cells, and a blocking study in HT-1080 cells. For in vivo optical imaging, Cy5.5-NGR2 exhibited rapid HT-1080 tumor targeting at 0.5 h postinjection (pi), and highest tumor-to-background contrast at 2 h pi. The CD13-specific tumor accumulation of Cy5.5-NGR2 was accomplished by a blocking study with unlabeled NGR peptide in HT-1080 tumor bearing mice. The tumor-to-muscle ratio of Cy5.5-NGR2 at 2 h pi reached 2.65 ± 0.13 in the non-blocking group vs. 1.05 ± 0.06 in the blocking group. The results from ex vivo imaging were consistent with the in vivo findings. We concluded that Cy5.5-NGR2 constructed by bioorthogonal click chemistry is a promising molecular probe, not only allowing the NIR optical imaging of CD13 overexpressed tumors, but also having the potential to facilitate noninvasive monitoring of CD13-targeted tumor therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号