首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The nucleotide sequence of the Clostridium thermocellum F7 cbhA gene, coding for the cellobiohydrolase CbhA, has been determined. An open reading frame encoding a protein of 1,230 amino acids was identified. Removal of a putative signal peptide yields a mature protein of 1,203 amino acids with a molecular weight of 135,139. Sequence analysis of CbhA reveals a multidomain structure of unusual complexity consisting of an N-terminal cellulose binding domain (CBD) homologous to CBD family IV, an immunoglobulin-like β-barrel domain, a catalytic domain homologous to cellulase family E1, a duplicated domain similar to fibronectin type III (Fn3) modules, a CBD homologous to family III, a highly acidic linker region, and a C-terminal dockerin domain. The cellulosomal localization of CbhA was confirmed by Western blot analysis employing polyclonal antibodies raised against a truncated enzymatically active version of CbhA. CbhA was identified as cellulosomal subunit S3 by partial amino acid sequence analysis. Comparison of the multidomain structures indicates striking similarities between CbhA and a group of cellulases from actinomycetes. Average linkage cluster analysis suggests a coevolution of the N-terminal CBD and the catalytic domain and its spread by horizontal gene transfer among gram-positive cellulolytic bacteria.  相似文献   

2.
The crystal structure of the carbohydrate-binding module (CBM) 4 Ig fused domain from the cellulosomal cellulase cellobiohydrolase A (CbhA) of Clostridium thermocellum was solved in complex with cellobiose at 2.11 Å resolution. This is the first cellulosomal CBM4 crystal structure reported to date. It is similar to the previously solved noncellulosomal soluble oligosaccharide-binding CBM4 structures. However, this new structure possesses a significant feature—a binding site peptide loop with a tryptophan (Trp118) residing midway in the loop. Based on sequence alignment, this structural feature might be common to all cellulosomal clostridial CBM4 modules. Our results indicate that C. thermocellum CbhA CBM4 also has an extended binding pocket that can optimally bind to cellodextrins containing five or more sugar units. Molecular dynamics simulations and experimental binding studies with the Trp118Ala mutant suggest that Trp118 contributes to the binding and, possibly, the orientation of the module to soluble cellodextrins. Furthermore, the binding cleft aromatic residues Trp68 and Tyr110 play a crucial role in binding to bacterial microcrystalline cellulose (BMCC), amorphous cellulose, and soluble oligodextrins. Binding to BMCC is in disagreement with the structural features of the binding pocket, which does not support binding to the flat surface of crystalline cellulose, suggesting that CBM4 binds the amorphous part or the cellulose “whiskers” of BMCC. We propose that clostridial CBM4s have possibly evolved to bind the free-chain ends of crystalline cellulose in addition to their ability to bind soluble cellodextrins.  相似文献   

3.
The gene cbhA from the cellulolytic bacterium Cellulomonas fimi encodes a protein of 872 amino acids designated cellobiohydrolase A (CbhA). Mature CbhA contains 832 amino acid residues and has a predicted molecular mass of 85 349 Da. It is composed of five domains: an N-terminal catalytic domain, three repeated sequences of 95 amino acids, and a C-terminal cellulose-binding domain typical of other C. fimi glycanases. The structure and enzymatic activities of the CbhA cataiytic domain are closely related to those of CBH ll, an exocelloblohydrolase in the glycosyl hydrolase family B from the fungus Trichoderma reesel. CbhA is the first such enzyme to be characterized in bacteria. The data support the proposal that extended loops around the active site distinguish exohydrolases from endohydrolases in this enzyme family.  相似文献   

4.
5.
The partial DNA sequence corresponding to the N-terminal amino acid sequence of cellobiohydrolase derived from a thermophilic anaerobe NA10 was determined. The cellobiohydrolase gene fused to the secretion signal (signal peptide and T-S region) from Saccharomyces diastaticus was expressed in an ethanologenic yeast, S. cerevisiae YIY345, under control of the glucoamylase promoter. The recombinant yeast produced cellobiohydrolase: approximately 40% of the total cellobiohydrolase activity was detected in the medium, and the remaining cellobiohydrolase was localized in the intracellular fraction. An analysis of the N-terminal amino acid sequence of the main intracellular cellobiohydrolase revealed that the signal peptide and T-S region were removed proteolytically. Alteration of the amino acid residues at the cleavage site by insertion of a Bgl II linker led to an approximately 3.5-fold increase in the total cellobiohydrolase production, but did not affect the efficiency of secretion into the medium. Cellobiohydrolase production was not repressed in the presence of glucose. The recombinant yeast hydrolyzed carboxymethyl cellulose in the medium. The results suggest the possibility of the direct bioconversion of cellulose to ethanol by the recombinant yeast.  相似文献   

6.
Fibronectin type 3 homology domains (Fn3) as found in the cellobiohydrolase CbhA of Clostridium thermocellum are common among bacterial extracellular glycohydrolases. The function of these domains is not clear. CbhA is modular and composed of an N-terminal family IV carbohydrate-binding domain (CBDIV), an immunoglobulin-like domain, a family 9 glycosyl hydrolase catalytic domain (Gh9), two Fn3-like domains (Fn31,2), a family III carbohydrate-binding domain (CBDIII), and a dockerin domain. Efficiency of cellulose hydrolysis by truncated forms of CbhA increased in the following order: Gh9 (lowest efficiency), Gh9-Fn31,2 (more efficient), and Gh9-Fn31,2-CBDIII (greatest efficiency). Thermostability of the above constructs decreased in the following order: Gh9 (most stable), Gh9-Fn31,2, and then Gh9-Fn31,2-CBDIII (least stable). Mixing of Orpinomyces endoglucanase CelE with Fn31,2, or Fn31,2-CBDIII increased efficiency of hydrolysis of acid-swollen cellulose (ASC) and filter paper. Scanning electron microscopic studies of filter paper treated with Fn31,2, Fn31,2-CBDIII, or CBDIII showed that the surface of the cellulose fibers had been loosened up and crenellated by Fn31,2 and Fn31,2-CBDIII and to a lesser extent by CBDIII. X-ray diffraction analysis did not reveal changes in the crystallinity of the filter paper. CBDIII bound to ASC and filter paper with capacities of 2.45 and 0.73 μmoles g−1 and relative affinities (Kr) of 1.12 and 2.13 liters g−1, respectively. Fn31,2 bound weakly to both celluloses. Fn31,2-CBD bound to ASC and filter paper with capacities of 3.22 and 0.81 μmoles g−1 and Krs of 1.14 and 1.98 liters g−1, respectively. Fn31,2 and CBDIII contained 2 and 1 mol of calcium per mol, respectively. The results suggest that Fn31,2 aids the hydrolysis of cellulose by modifying its surface. This effect is enhanced by the presence of CBDIII, which increases the concentration of Fn31,2 on the cellulose surface.  相似文献   

7.
8.
9.
Four β-1,4-glucanases (cellulases) of the cellulolytic bacterium Cellulomonas fimi were purified from Escherichia coli cells transformed with recombinant plasmids. Previous analyses using soluble substrates had suggested that CenA and CenC were endoglucanases while CbhA and CbhB resembled the exo-acting cellobiohydrolases produced by cellulolytic fungi. Analysis of molecular size distributions during cellulose hydrolysis by the individual enzymes confirmed these preliminary findings and provided further evidence that endoglucanase CenC has a more processive hydrolytic activity than CenA. The significant differences between the size distributions obtained during hydrolysis of bacterial microcrystalline cellulose and acid-swollen cellulose can be explained in terms of the accessibility of β-1,4-glucan chains to enzyme attack. Endoglucanases and cellobiohydrolases were much more easily distinguished when the acid-swollen substrate was used.Cellulose hydrolysis by aerobic fungi, such as Trichoderma reesei, is usually explained in terms of the synergistic activities of endo-β-1,4-glucanases and exocellobiohydrolases. Models that describe the attack of cellulose at susceptible regions by endoglucanases, followed by cellobiohydrolase attack at the newly formed chain ends, continue to form the basis of most discussions of enzymatic cellulose hydrolysis (2, 24).Although the occurrence of endoglucanases and cellobiohydrolases in fungi is firmly established, the extent to which the cellulase systems of aerobic bacteria resemble those from fungi was unclear until recently, because there was little evidence for the presence of cellobiohydrolases in bacteria. However, it now appears that at least some cellulolytic bacteria produce enzymes similar to the fungal cellobiohydrolases. For example, Cellulomonas fimi produces at least six β-1,4-glucanases, of which four (CenA, CenB, CenC, and CenD) are endoglucanases and two (CbhA and CbhB) appear to be cellobiohydrolases that are the functional equivalents of T. reesei CBHI and CBHII (6, 15, 21, 22). Similar cellobiohydrolases have been described for the actinomycete Thermomonospora fusca (9).

C. fimi cellobiohydrolases.

The preferential attack of cellulose at the ends of glucan chains by C. fimi cellobiohydrolases CbhA and CbhB is strongly suggested by hydrolysis experiments using cellooligosaccharides or carboxymethylcellulose (CMC) (14, 15, 21, 22). However, we lack direct evidence for exohydrolytic activity on cellulose itself. Accordingly, we have examined the activities of CbhA and CbhB on cellulose by measurement of molecular size distributions during hydrolysis. Analysis of CenA was also included to allow comparison of cellobiohydrolase and endoglucanase activities.

C. fimi CenC.

Previous studies have indicated that CenA attacks susceptible linkages in soluble CMC in a relatively nonprocessive manner (7, 14); i.e., the enzyme dissociates from the substrate after each hydrolytic event. While CenB and CenD attack CMC in a similar way (14, 23), C. fimi CenC seems to act in a more processive fashion (16, 23). Therefore, CenC activity was analyzed in order to determine if the enzyme behaves in a similarly processive manner on cellulose.

Cellulose substrates.

Previous determinations of molecular size distribution during hydrolysis have shown that the choice of substrate is an important consideration (10). In this study we used two forms of cellulose: bacterial microcrystalline cellulose (BMCC) and phosphoric acid-swollen cellulose (PASC). These celluloses were chosen in order to simplify the interpretation of data by avoiding complications due to low surface/volume ratios and substrate heterogeneity, which are associated with the use of substrates like cotton or pulp fibers (24). Both BMCC and PASC have a high surface/volume ratio (17). BMCC is a highly crystalline form of cellulose I prepared from cellulose produced by Acetobacter xylinum. PASC is produced by swelling microcrystalline cellulose in concentrated phosphoric acid; although often described as amorphous, it is probably a low-crystallinity form of cellulose II (1). Recent data suggest that cellulose I and cellulose II contain glucan chains arranged in parallel orientation (12).  相似文献   

10.
The cellulase enzyme system of Trichoderma reesei RUT C-30 has been separated by DEAE ion exchange chromatography into four fractions. Their specificity towards substituted cellulose and cellooligosaccharides was revealed by analytical IEF and activity stains. Fraction EGI (26% of the total protein) exhibited mainly endoglucanase activity on carboxymethylcellulose (CMC) whereas endoglucanases EGII and EGIII (15% of the total protein) showed high activity towards CMC as well as xylan, 4-methylumbelliferyl cellobioside [MeUmb(Glc)2] and p-nitrophenyl lactoside (pNPL). A subfraction of EGI (pI 5.9) which has been described in the literature as a cellobiohydrolase (CBHII) was isolated by preparative isoelectric focusing, and was shown to have only 3 U CMCase activity per milligram. Turbidimetric measurements and phase contrast microscopy demonstrated differences between endoglucanase and cellobiohydrolase behaviour during the hydrolysis of purified cellulose (Solka Floc BW-40). Treatment of the purified cellulose with endoglucanases resulted in fibre breakdown into small particles. This was contrasted with no morphological change to the fibres when contacted with the cellobiohydrolase. By this technique it was revealed that the EGI subfraction (pI 5.9) behaves as an endoglucanase and not as a cellobiohydrolase. Incubation of this enzyme with acid-swollen cellulose resulted in cellotriose production, as it did with other endoglucanases which exhibited CMCase activities >; 100 U mg−1. Cellotriose was not present during the hydrolysis of acid-swollen cellulose with the CBHI fraction.  相似文献   

11.
12.
The white-rot basidiomycetes efficiently degrade all wood cell wall polymers. Generally, these fungi simultaneously degrade cellulose and lignin, but certain organisms, such as Ceriporiopsis subvermispora, selectively remove lignin in advance of cellulose degradation. However, relatively little is known about the mechanism of selective ligninolysis. To address this issue, C. subvermispora was grown in liquid medium containing ball-milled aspen, and nano-liquid chromatography-tandem mass spectrometry was used to identify and estimate extracellular protein abundance over time. Several manganese peroxidases and an aryl alcohol oxidase, both associated with lignin degradation, were identified after 3 days of incubation. A glycoside hydrolase (GH) family 51 arabinofuranosidase was also identified after 3 days but then successively decreased in later samples. Several enzymes related to cellulose and xylan degradation, such as GH10 endoxylanase, GH5_5 endoglucanase, and GH7 cellobiohydrolase, were detected after 5 days. Peptides corresponding to potential cellulose-degrading enzymes GH12, GH45, lytic polysaccharide monooxygenase, and cellobiose dehydrogenase were most abundant after 7 days. This sequential production of enzymes provides a mechanism consistent with selective ligninolysis by C. subvermispora.  相似文献   

13.
The biochemical mechanism underlying the development of fruiting bodies in Flammulina velutipes, an edible mushroom, was investigated using the YBLB colorimetric assay to distinguish between the normal strain (FVN-1) and the degenerate strain (FVD-1). In this assay, the color of the YBLB medium (blue-green) inoculated with FVN-1 exhibiting normal fruiting body development changed to yellow, while the color of the medium inoculated with FVD-1 changed to blue. In this study, we found that this color difference originated from extracellular laccase produced by FVN-1. Moreover, FVN-1 exhibited considerably higher extracellular laccase activity than FVD-1, under conditions facilitating fruiting body formation. Overall, these findings suggest that extracellular laccase is involved in the fruiting body development process in F. velutipes.  相似文献   

14.
In order to reduce the cost of bioethanol production from lignocellulosic biomass, we conferred the ability to ferment cellulosic materials directly on Zymobacter palmae by co-expressing foreign endoglucanase and β-glucosidase genes. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, the six genes encoding the cellulolytic enzymes (CenA, CenB, CenD, CbhA, CbhB, and Cex) from Cellulomonas fimi were introduced and expressed in Z. palmae. Of these cellulolytic enzyme genes cloned, CenA degraded carboxymethylcellulose and phosphoric acid-swollen cellulose (PASC) efficiently. The extracellular CenA catalyzed the hydrolysis of barley β-glucan and PASC to liberate soluble cello-oligosaccharides, indicating that CenA is the most suitable enzyme for cellulose degradation among those cellulolytic enzymes expressed in Z. palmae. Furthermore, the cenA gene and β-glucosidase gene (bgl) from Ruminococcus albus were co-expressed in Z. palmae. Of the total endoglucanase and β-glucosidase activities, 57.1 and 18.1 % were localized in the culture medium of the strain. The genetically engineered strain completely saccharified and fermented 20 g/l barley β-glucan to ethanol within 84 h, producing 79.5 % of the theoretical yield. Thus, the production and secretion of CenA and BGL enabled Z. palmae to efficiently ferment a water-soluble cellulosic polysaccharide to ethanol.  相似文献   

15.
Fungal cellobiohydrolases act at liquid-solid interfaces. They have the ability to hydrolyze cellulose chains of a crystalline substrate because of their two-domain structure, i.e. cellulose-binding domain and catalytic domain, and unique active site architecture. However, the details of the action of the two domains on crystalline cellulose are still unclear. Here, we present real time observations of Trichoderma reesei (Tr) cellobiohydrolase I (Cel7A) molecules sliding on crystalline cellulose, obtained with a high speed atomic force microscope. The average velocity of the sliding movement on crystalline cellulose was 3.5 nm/s, and interestingly, the catalytic domain without the cellulose-binding domain moved with a velocity similar to that of the intact TrCel7A enzyme. However, no sliding of a catalytically inactive enzyme (mutant E212Q) or a variant lacking tryptophan at the entrance of the active site tunnel (mutant W40A) could be detected. This indicates that, besides the hydrolysis of glycosidic bonds, the loading of a cellulose chain into the active site tunnel is also essential for the enzyme movement.  相似文献   

16.
The C1 component from Fusarium solani cellulase was purified extensively by molecular-sieve chromatography on Ultrogel AcA-54 and ion-exchange chromatography on DEAE-Sephadex. The purified component showed little capacity for hydrolysing highly ordered substrates (e.g., cotton fibre), but poorly ordered substrates (e.g., H3PO4-swollen cellulose), and the soluble cello-oligosaccharides cellotetraose and cellohexaose, were readily hydrolysed; cellobiose was the principal product in each case. Attack on O-(carboxymethyl)cellulose, a substrate widely used for measuring the activity of the randomly acting enzymes (Cx enzymes) of the cellulase complex, was minimal, and ceased after the removal of a few unsubstituted residues from the end of the chain. These observations, and the fact that the rate of change of degree of polymerisation of H3PO4-swollen cellulose was very slow compared with that effected by the randomly acting endoglucanases (Cx, CM-cellulases), indicate that C1 is a cellobiohydrolase. Fractionation by a variety of methods gave no evidence for the non-identity of the cellobiohydrolase and the component that acted in synergism with the randomly acting Cx enzyme when solubilizing cotton fibre.  相似文献   

17.
18.
Degradation of 1—.10% crystalline cellulose and concentration of:free reducing sugars in the medium, were studied during cultivation of a wild coculture of obligately thermphilic bacteria in 3-L fermentors at 60°C and pH 7.0 under anaerobic conditions. The coculture was composed of five different species ofBacillus and a single cellulolytic species lof Clostridium. The proportion of degraded substrate was inversely proportional to the initial concentration of cellulose. The higher the initial substrate concentration the lower the proportion of its.degradation. Cellulose at 1 — 2 % concentration is best degraded (98 % in:5.d). The fermentation time increases with increasing cellulose concentration, the level of reducing saccharides increases together with the initial rate of substrate degradation. In the presence of 10 %) cellulose the rate of degradation within a period of a 1-d fermentation is close toV, being 0.455 g L-1 h-1withK m of 12.5 g/L. However, during further cultivation (1—3 d) the rate of degradation of 4—10 % cellulose decreases, probably due to the effect of accumulated reducing saccharides whose levels reach 55—60 mg/L.  相似文献   

19.
Four β-1,4-glucanases (cellulases) of the cellulolytic bacterium Cellulomonas fimi were purified from Escherichia coli cells transformed with recombinant plasmids. Previous analyses using soluble substrates had suggested that CenA and CenC were endoglucanases while CbhA and CbhB resembled the exo-acting cellobiohydrolases produced by cellulolytic fungi. Analysis of molecular size distributions during cellulose hydrolysis by the individual enzymes confirmed these preliminary findings and provided further evidence that endoglucanase CenC has a more processive hydrolytic activity than CenA. The significant differences between the size distributions obtained during hydrolysis of bacterial microcrystalline cellulose and acid-swollen cellulose can be explained in terms of the accessibility of β-1,4-glucan chains to enzyme attack. Endoglucanases and cellobiohydrolases were much more easily distinguished when the acid-swollen substrate was used.  相似文献   

20.
In a previous study we showed that the fusion of the cellulose-binding domain (CBD2) fromTrichoderma reesei cellobiohydrolase II to a β-glucosidase (BGL1) enzyme fromSaccharomycopsis fibuligera significantly hindered its expression and secretion inSaccharomyces cerevisiae. This suggests that the possible low secretion of heterologous cellulolytic enzymes inS. cerevisiae could be attributed to the presence of a cellulose-binding domain (CBD) in these enzymes. The aim of this study was to increase the extracellular production of the chimeric CBD2-BGL1 enzyme (designated CBGL1) inS. cerevisiae. To achieve this, CBGL1 was used as a reporter enzyme for screening mutagenisedS. cerevisiae strains with increased ability to secrete CBD-associated enzymes such as cellulolytic enzymes. A mutant strain ofS. cerevisie, WM91-CBGL1, which exhibited up to 200 U L?1 of total activity, was isolated. Such activity was approximately threefold more than that of the parental host strain. Seventy-five per cent of the activity was detected in the extracellular medium. The mutant strain transformed with theT. resei CBH2 gene produced up to threefold more cellobiohydrolase enzyme than the parental strain, but with 50% of the total activity retained intracellularly. The cellobiohydrolase enzymes from the parent and mutant strains were partially purified and the characteristic properties analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号