首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nitrogen (N) biogeochemistry of a mature Scots pine (Pinus sylvestris L.) stand subjected to an average total atmospheric N deposition of 48 kg ha?1 year?1 was studied during the period 1992–2007. The annual amount of dissolved inorganic nitrogen (DIN) in throughfall (TF) averaged 34 kg ha?1 year?1 over the 16-year monitoring period. The throughfall fluxes contained also considerable amounts of dissolved organic nitrogen (DON) (5–8.5 kg N ha?1 year?1), which should be incorporated in the estimate of N flux using throughfall collectors. Throughfall DIN fluxes declined at a rate of ?0.9 kg N ha?1 year?1, mainly due to the decreasing TF fluxes of ammonium (NH4), which accounted for 70% to TF DIN. The decrease in TF DIN was accompanied by a decrease in DIN leaching in the seepage water (?1.6 kg N ha?1 year?1), which occurred exclusively as nitrate (NO3 ?). Nitrate losses in the leachate of the forest floor (LFH) equalled the TF NO3 ? delivered to the LFH-layer. On the contrary, about half of the TF NH4 + was retained within the LFH-layer. Approximately 60% of the TF DIN fluxes were leached indicating that N inputs were far in excess of the N requirements of the forest. For DON, losses were only substantial from the LFH-layer, but no DON was leached in the seepage water. Despite the high N losses through nitrate leaching and NO x emission, the forest was still accumulating N, especially in the aggrading LFH-layer. The forest stand, on the contrary, was found to be a poor N sink.  相似文献   

2.
With the aim of increasing knowledge of community structure, dynamics and production of ectomycorrhizal fungi, edible sporocarp yields were monitored between 1995 and 2004 in a Pinus sylvestris stand in the northeast zone of the Iberian Peninsula. A random sampling design was performed by stand age class according to the forest management plan: 0–15, 16–30, 31–50, 51–70 and over 71-years-old. Eighteen 150 m plots were established and sampled weekly every year from September to December. One hundred and nineteen taxa belonging to 51 genera were collected, 40 of which were edible and represented 74% of the total biomass. Boletus edulis, Lactarius deliciosus, Cantharellus cibarius and Tricholoma portentosum sporocarps, which are considered to be of high commercial value, represented 34% of the total production. B. edulis and L. deliciosus were the most remarkable and abundant species, and both were collected in more than 60% of the samplings. B. edulis fructified every year of the experiment; its mean production was 40 kg/ha and year and its maximum productivity was more than 94 kg/ha in 1998. The age class with the largest production of this taxa was the fourth (51–70 years), with 70 kg/ha. L. deliciosus only failed to fructify one autumn (2000); its mean production was almost 10 kg/ha and its maximum productivity close to 30 kg/ha in 1997. The maximum productivity of this species was found in the second (16–30 years) and fifth (71–90 years) stand age classes, with 18 and 16 kg/ha, respectively. Advances in this field can certainly offer new insights into factors affecting sporocarp production.  相似文献   

3.
Wood ants (Formica rufa group) are regarded as keystone species in boreal and mountain forests of Europe and Asia by their effect on ecosystem carbon (C) and nutrient pools and fluxes. To quantify the impact of their activity on boreal forest ecosystems, C, nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) pools and fluxes in wood ant nests (WAN), and soil were assessed along a 5-, 30-, 60-, and 100-year-old Norway spruce (Picea abies L. Karsten) dominated successional gradient in eastern Finland. Amounts of C and nutrients in WAN increased with stand age, but contained less than 1% of total C and nutrient pools in these stands. The CO2-efflux from nests was also insignificant, as compared to CO2-efflux from the forest floor. Annually, the amount of C brought by wood ants into their nests as honeydew, prey and nest-building materials ranged from 2.7 to 49.3 kg ha?1 C, but this is only 0.1–0.7% of the combined net primary production of trees and understorey in boreal forests. The difference between wood ant nest C inputs and outputs was very small in the younger-aged stands, and increased in the older stands. Carbon accumulation rates in nests over a 100 year period are estimated to be less than 10 kg ha?1 a?1. In contrast to C, annual inputs of N, P, and K are larger compared to wood ant nest nutrient pool size, ranging from 3 to 6% of the annual tree stand and understorey uptake. This indicates a more rapid turnover and transport of N, P, and K out of WAN, and suggests that wood ants increase the cycling rate of these nutrients in boreal forests.  相似文献   

4.
Increasing demand for food and fibre by the growing human population is driving significant land use (LU) change from forest into intensively managed land systems in tropical areas. But empirical evidence on the extent to which such changes affect the soil-atmosphere exchange of trace gases is still scarce, especially in Africa. We investigated the effect of LU on soil trace gas production in the Mau Forest Complex region, Kenya. Intact soil cores were taken from natural forest, commercial and smallholder tea plantations, eucalyptus plantations and grazing lands, and were incubated in the lab under different soil moisture conditions. Soil fluxes of nitrous oxide (N2O), nitric oxide (NO) and carbon dioxide (CO2) were quantified, and we approximated annual estimates of soil N2O and NO fluxes using soil moisture values measured in situ. Forest and eucalyptus plantations yielded annual fluxes of 0.3–1.3 kg N2O–N ha?1 a?1 and 1.5–5.2 kg NO–N ha?1 a?1. Soils of commercial tea plantations, which are highly fertilized, showed higher fluxes (0.9 kg N2O–N ha?1 a?1 and 4.3 kg NO–N ha?1 a?1) than smallholder tea plantations (0.1 kg N2O–N ha?1 a?1 and 2.1 kg NO–N ha?1 a?1) or grazing land (0.1 kg N2O–N ha?1 a?1 and 1.1 kg NO–N ha?1 a?1). High soil NO fluxes were probably the consequence of long-term N fertilization and associated soil acidification, likely promoting chemodenitrification. Our experimental approach can be implemented in understudied regions, with the potential to increase the amount of information on production and consumption of trace gases from soils.  相似文献   

5.
The quantification of silicon (Si) uptake by tree species is a mandatory step to study the role of forest vegetations in the global cycle of Si. Forest tree species can impact the hydrological output of dissolved Si (DSi) through root induced weathering of silicates but also through Si uptake and restitution via litterfall. Here, monospecific stands of Douglas fir, Norway spruce, Black pine, European beech and oak established in identical soil and climate conditions were used to quantify Si uptake, immobilization and restitution. We measured the Si contents in various compartments of the soil–tree system and we further studied the impact of the recycling of Si by forest trees on the DSi pool. Si is mainly accumulated in leaves and needles in comparison with other tree compartments (branches, stembark and stemwood). The immobilization of Si in tree biomass represents less than 15% of the total Si uptake. Annual Si uptake by oak and European beech stands is 18.5 and 23.3 kg ha?1 year?1, respectively. Black pine has a very low annual Si uptake (2.3 kg ha?1 year?1) in comparison with Douglas fir (30.6 kg ha?1 year?1) and Norway spruce (43.5 kg ha?1 year?1). The recycling of Si by forest trees plays a major role in the continental Si cycle since tree species greatly influence the uptake and restitution of Si. Moreover, we remark that the annual tree uptake is negatively correlated with the annual DSi output at 60 cm depth. The land–ocean fluxes of DSi are certainly influenced by geochemical processes such as weathering of primary minerals and formation of secondary minerals but also by biological processes such as root uptake.  相似文献   

6.
Napiergrass (Pennisetum purpureum Schum.) is a high-yielding perennial biomass crop that is well adapted to the Southeast USA where poultry litter is readily available. This research was conducted to compare biomass production and nutrient utilization of napiergrass fertilized with either poultry litter or inorganic fertilizer. Each spring, approximately 100 kg ha?1 of N, 40 kg ha?1 P, and 90 kg ha?1 K were applied as poultry litter or equivalent inorganic fertilizer. Biomass was harvested each winter after senescence. For the first 2 years, dry matter yield did not differ among treatments, but in the third and fourth years, yields declined in all treatments and were lowest in the unfertilized treatment. Biomass N concentration and N removal were greatest in the inorganic treatment. In general, N removal exceeded the amount applied, suggesting that higher application rates may be necessary to maintain yields. Biomass P concentration and total P uptake were greatest in the litter fertilized treatment, demonstrating that napiergrass can remove some of the excess P from applied litter. Soil cores were taken periodically to assess changes in soil properties. After 2 years of production, soil pH in the surface layer (0–15 cm) was lower in the inorganic treatment than in the other treatments. After 4 years, total soil C had increased by an average of 3,180 kg ha?1 though fertilizer treatments did not differ. Yield declined in all treatments after 4 years and N supplementation is recommended for production in upland fields.  相似文献   

7.
The study of factors influencing the production and development of wild edible mushroom sporocarps is extremely important in the characterization of the fungi life cycle. The main objective of this work is to determine how tree age influences the speed of sporocarp growth of edible ectomycorrhizal fungi Boletus edulis and Lactarius deliciosus in a Pinus sylvestris stand. This study is based on information recorded on a weekly basis every autumn between 1995 and 2008 in a set of permanent plots in Spain. Sporocarps are collected weekly, and as a result, specimens may not have reached their maximum size. The study area is a monospecific P. sylvestris stand. Three age classes were considered: under 30 years, between 31 and 70 years, and over 70 years. Sporocarps of B. edulis and L. deliciosus grow faster in the first age class stands than in the other two, and in the second age class stands, sporocarps are more than 50% smaller. The average weight of the picked B. edulis sporocarps clearly varies in the three age classes considered, with its maximum in the first age class (127 g and 6.8 cm cap diameter), minimum in the second age class (68 g and 4.7 cm cap diameter), and showing a relative maximum in the third (79 g and 4.3 cm cap diameter). L. deliciosus sporocarps are on average larger in the first age class (48 g and 7.4 cm cap diameter), decreasing in the second (20 g and 5.8 cm cap diameter) and also in the third (21 g and 5.3 cm cap diameter). The results show the influence of tree age in speed of sporocarp growth for the two ectomycorrhizal species.  相似文献   

8.
The present study aims to monitor the long-term changes in forest structure, productivity, nutrient cycling, and to accumulate ecological information on forest ecosystem in Korea. There are six long-term ecological research sites and seven flux measurement sites in Korea. The Gwangneung experimental forest (GEF) located in the central cool-temperate forest sub zone is known as a model site where many interdisciplinary researches have been ongoing actively since mid-1990s over all other Korea long-term ecological research sites (KLTER). Collected data and information through monitoring and investigation of changes in forest ecosystem have been stored in a database for analyses. The relative importance of tree species (%) of GEF was in the order Quercus serrata (20)?=?Euonymus oxyphyllus (20)?>?Carpinus laxiflora (12). The total biomass and basal area were 249.53 t ha?1 and 26.66 m2 ha?1, respectively. There were 136 taxa with 49 families, with 97 genera, 11 varieties, 3 forma, and 1 subspecies in 1 ha permanent plot. The increase in temperature has been estimated to have negative effects on tree growth. The litter decomposition rate was in the order Cornus controversa?<?C. cordata?<?C. laxiflora?<?Q. serrata. The average litterfall and soil respiration were 5803 kg ha?1 and 8600 kg C ha?1, respectively. Further, the GEF, a KLTER site tended to be almost carbon neutral with an annual growth average of 51,000?±?78,000 kg ha?1. The data from six LTER sites are digitalized and classified to build data catalogs on the ecological information system. The information on stand dynamics and materials and energy budget in the forest ecosystem is utilized for impact assessment and the study of adaptation strategy for forest ecosystem to climate change.  相似文献   

9.
Grassland canopy management (spring burn, mowing and residue removal in late-summer, or no management) and native tallgrass species composition (cool season mixture, warm season mixture, or combined cool and warm mixture) effects on C and N in aboveground biomass and soil were investigated at Brookings SD on a previously-plowed Barnes clay loam (fine-loamy, superactive, frigid Calcic Hapludoll). During the last 2 yr of the 9-yr experiment, shoot biomass was affected by canopy management with the burn (2,730 kg ha?1) and mow (3,421 kg ha?1) treatments containing less than no management (4,655 kg ha?1). Burn treatment biomass contained 1,189 kg ha?1 and 25 kg ha?1 of C and N, mow contained 1,433 kg ha?1 and 33 kg ha?1 of C and N, while no management contained 2,014 kg ha?1 and 39 kg ha?1 of C and N, respectively. Soil C accumulation was independent of grass species composition. Soil C accumulation rates, which increased in strong linear fashion (r 2 of 0.89 to 0.92) after initial grass establishment, were 387 kg C ha?1 yr?1, 503 kg C ha?1 yr?1, and 711 kg C ha?1 yr?1 for burn, mow, and no management treatments, respectively. Thus, grassland management methods used after conversion of cropland to grassland have important effects on grass biomass and soil C accumulation.  相似文献   

10.
The annual belowground dynamics of extraradical soil mycelium and sporocarp production of two ectomycorrhizal fungi, Boletus edulis and Lactarius deliciosus, have been studied in two different pine forests (Pinar Grande and Pinares Llanos, respectively) in Soria (central Spain). Soil samples (five per plot) were taken monthly (from September 2009 to August 2010 in Pinar Grande and from September 2010 to September 2011 in Pinares Llanos) in eight permanent plots (four for each site). B. edulis and L. deliciosus extraradical soil mycelium was quantified by real-time polymerase chain reaction, with DNA extracted from soil samples, using specific primers and TaqMan® probes. The quantities of B. edulis soil mycelium did not differ significantly between plots, but there was a significant difference over time with a maximum in February (0.1576 mg mycelium/g soil) and a minimum in October (0.0170 mg mycelium/g soil). For L. deliciosus, significant differences were detected between plots and over time. The highest amount of mycelium was found in December (1.84 mg mycelium/g soil) and the minimum in February (0.0332 mg mycelium/g soil). B. edulis mycelium quantities were positively correlated with precipitation of the current month and negatively correlated with the mean temperature of the previous month. Mycelium biomass of L. deliciosus was positively correlated with relative humidity and negatively correlated with mean temperature and radiation. No significant correlation between productivity of the plots with the soil mycelium biomass was observed for any of the two species. No correlations were found between B. edulis sporocarp production and weather parameters. Sporocarp production of L. deliciosus was positively correlated with precipitation and relative humidity and negatively correlated with maximum and minimum temperatures. Both species have similar distribution over time, presenting an annual dynamics characterized by a seasonal variability, with a clear increase on the amounts of biomass during the coldest months of the year. Soil mycelial dynamics of both species are strongly dependent on the weather.  相似文献   

11.
Litterfall production, decomposition and nutrient use efficiency in three different tropical forest ecosystems in SW China were studied for 10 years. Annual mean litterfall production in tropical seasonal forest (TSF) (9.47?±?1.65 Mg ha?1) was similar to that in man-made tropical forest (MTF) (9.23?±?1.29 Mg ha?1) (P?>?0.05) but both were significantly lower than that in secondary tropical forest (STF) (12.96?±?1.71 Mg ha?1) (P?<?0.05). The annual variation of litterfall was greater in TSF (17.4%, P?<?0.05) than in MTF (14.0%) or STF (13.2%). The annual mean decomposition rate of litterfall increased followed the order of MTF (2.72)?<?TSF (3.15)?<?STF (3.50) (P?<?0.05), which was not correlated with annual precipitation or annual mean temperature, but was rather related to litter quality. The nutrient use efficiency was found to be element-dependent and to vary significantly among the three forest types (P?<?0.05). These results indicate that litterfall production and decomposition rates in different tropical forest systems are related to plant species composition and are influenced strongly by coexisting species and their life stage (age) but less so by the species richness. Constructing multi-species and multistory man-made tropical forest is an effective way to enhance biological productivity and maintain soil nutrients on degraded tropical land.  相似文献   

12.
Nitrogen (N) deficiency is a major constraint to the productivity of the African smallholder farming systems. Grain, green manure and forage legumes have the potential to improve the soil N fertility of smallholder farming systems through biological N2-fixation. The N2-fixation of bean (Phaseolus vulgaris), soyabean (Glycine max), groundnut (Arachis hypogaea), Lima bean (Phaseolus lunatus), lablab (Lablab purpureus), velvet bean (Mucuna pruriens), crotalaria (Crotalaria ochroleuca), jackbean (Canavalia ensiformis), desmodium (Desmodium uncinatum), stylo (Stylosanthes guianensis) and siratro (Macroptilium atropurpureum) was assessed using the 15N natural abundance method. The experiments were conducted at three sites in western Kenya, selected on an agro-ecological zone (AEZ) gradient defined by rainfall. On a relative scale, Museno represents high potential AEZ 1, Majengo medium potential AEZ 2 and Ndori low potential AEZ 3. Rainfall in the year of experimentation was highest in AEZ 2, followed by AEZ 1 and AEZ 3. Experimental fields were classified into high, medium and low fertility classes, to assess the influence of soil fertility on N2-fixation performance. The legumes were planted with triple super phosphate (TSP) at 30 kg P ha?1, with an extra soyabean plot planted without TSP (soyabean-P), to assess response to P, and no artificial inoculation was done. Legume grain yield, shoot N accumulation, %N derived from N2-fixation, N2-fixation and net N inputs differed significantly (P<0.01) with rainfall and soil fertility. Mean grain yield ranged from 0.86 Mg ha?1, in AEZ 2, to 0.30 Mg ha?1, in AEZ 3, and from 0.78 Mg ha?1, in the high fertility field, to 0.48 Mg ha?1, in the low fertility field. Shoot N accumulation ranged from a maximum of 486 kg N ha?1 in AEZ 2, to a minimum of 10 kg N ha?1 in AEZ 3. Based on shoot biomass estimates, the species fixed 25–90% of their N requirements in AEZ 2, 23–90% in AEZ 1, and 7–77% in AEZ 3. Mean N2-fixation by green manure legumes ranged from 319 kg ha?1 (velvet bean) in AEZ 2 to 29 kg ha?1 (jackbean) in AEZ 3. For the forage legumes, mean N2-fixation ranged from 97 kg N ha?1 for desmodium in AEZ 2 to 39 kg N ha?1 for siratro in AEZ 3, while for the grain legumes, the range was from 172 kg N ha?1 for lablab in AEZ 1 to 3 kg N ha?1 for soyabean-P in AEZ 3. Lablab and groundnut showed consistently greater N2-fixation and net N inputs across agro-ecological and soil fertility gradients. The use of maize as reference crop resulted in lower N2-fixation values than when broad-leaved weed plants were used. The results demonstrate differential contributions of the green manure, forage and grain legume species to soil fertility improvement in different biophysical niches in smallholder farming systems and suggest that appropriate selection is needed to match species with the niches and farmers’ needs.  相似文献   

13.
The Gallery forests of the Cerrado biome play a critical role in controlling stream chemistry but little information about biogeochemical processes in these ecosystems is available. This work describes the fluxes of N and P in solutions along a topographic gradient in a gallery forest. Three distinct floristic communities were identified along the gradient: a wet community nearest the stream, an upland dry community adjacent to the woodland savanna and an intermediate community between the two. Transects were marked in the three communities for sampling. Fluxes of N from bulk precipitation to these forests resulted in deposition of 12.6 kg ha?1 y?1 of total N of which 8.8 kg ha?1 was as inorganic N. The throughfall flux of total N was generally <8.4 kg ha?1 year?1. Throughfall NO3?CN fluxes were higher (7?C32%) while NH4?CN and organic N fluxes were lower (54?C69% and 5?C46%) than those in bulk precipitation. The throughfall flux was slightly lower for the wet forest community compared to other communities. Litter leachate fluxes differed among floristic communities with higher NH4?CN in the wet community. The total N flux was greater in the wet forest than in the dry forest (13.5 vs. 9.4 kg ha?1 year?1, respectively). The stream water had total N flux of 0.3 kg ha?1 year?1. The flux of total P through bulk precipitation was 0.7 kg ha?1 year?1 while the mean fluxes of total P in throughfall (0.6 kg ha?1 year?1) and litter leachate (0.5 kg ha?1 year?1) declined but did not differ between communities. The low concentrations presented in soil solution and low fluxes in stream water (0.3 and 0.1 kg ha?1 year?1 for N and P, respectively) relative to other flowpaths emphasize the conservative nutrient cycling of these forests and the importance of internal recycling processes for the maintenance and conservation of riparian and stream ecosystems in the Cerrado.  相似文献   

14.
Secondary mixed forests are one of the dominant forest cover types in human-dominated temperate regions. However, our understanding of how secondary succession affects carbon cycling and carbon sequestration in these ecosystems is limited. We studied carbon cycling and net ecosystem production (NEP) over 4 years (2004–2008) in a cool-temperate deciduous forest at an early stage of secondary succession (18 years after clear-cutting). Net primary production of the 18-year-old forest in this study was 5.2 tC ha?1 year?1, including below-ground coarse roots; this was partitioned into 2.5 tC ha?1 year?1 biomass increment, 1.6 tC ha?1 year?1 foliage litter, and 1.0 tC ha?1 year?1 other woody detritus. The total amount of annual soil surface CO2 efflux was 6.8 tC ha?1 year?1, which included root respiration (1.9 tC ha?1 year?1) and heterotrophic respiration (RH) from soils (4.9 tC ha?1 year?1). The 18-year forest at this study site exhibited a great increase in biomass pool as a result of considerable total tree growth and low mortality of tree stems. In contrast, the soil organic matter (SOM) pool decreased markedly (?1.6 tC ha?1 year?1), although further study of below-ground detritus production and RH of SOM decomposition is needed. This young 18-year forest was a weak carbon sink (0.9 tC ha?1 year?1) at this stage of secondary succession. The NEP of this 18-year forest is likely to increase gradually because biomass increases with tree growth and with the improvement of the SOM pool through increasing litter and dead wood production with stand development.  相似文献   

15.
The present study determined the plant biomass (aboveground and belowground) of Salicornia brachiata from six different salt marshes distributed in Indian coastal area over one growing season (September 2014–May 2015). The nutrients concentration and their pools were estimated in plant as well as soil. Belowground biomass in S. brachiata was usually lower than the aboveground biomass. Averaged over different locations, highest biomass was observed in the month of March (2.1 t ha?1) followed by May (1.64 t ha?1), February (1.60 t ha?1), November (0.82 t ha?1) and September (0.05 t ha?1). The averaged aboveground to belowground ratio was 12.0. Aboveground and belowground biomass were negatively correlated with pH of soil, while positively with soil electrical conductivity. Further, there were positive relationships between organic carbon and belowground biomass; and available sodium and aboveground biomass. The nutrient pools in aboveground were always higher than to belowground biomass. Aboveground pools of carbon (543 kg ha?1), nitrogen (48 kg ha?1), phosphorus (4 kg ha?1), sodium (334 kg ha?1) and potassium (37 kg ha?1) were maximum in the month of March 2015. Bioaccumulation and translocation factors for sodium of S. brachiata were more than one showing tolerance to salinity and capability of phytoremediation for the saline soil.  相似文献   

16.
The effects of nitrogen (N) deposition and management practices on leaf litterfall and N and P return in Moso bamboo forest are not yet known. In this study, we investigated the effects of four levels of simulated N deposition, including low-N (N30, 30 kg ha?1 year?1), medium-N (N60, 60 kg ha?1 year?1), and high-N (N90, 90 kg ha?1 year?1), and a control with no N (N-free addition). The experiment was performed in a Moso bamboo forest under conventional management (CM) and intensive management (IM). The results showed that leaf litterfall and N and P return occurred mainly from March to June and accounted for 78.2–82.2, 78.5–82.1, and 85.6–94.6% of annual leaf litterfall, N return, and P return, respectively. Unlike CM, IM significantly increased leaf litterfall and N and P return. The positive effects were further amplified by low- and medium-N deposition, but not high-N deposition. The combination of low- and medium-N deposition and IM significantly increased N and P return, but not litterfall. Our results indicated that the interaction of anthropogenic management practices and N deposition need to be considered when estimating the effects of N deposition on the biogeochemical cycle of a forest ecosystem.  相似文献   

17.
Y. T. Gan  B. C. Liang 《Plant and Soil》2010,332(1-2):257-266
A quantitative measurement of the mass and carbon (C) of nodules in legume crops will provide more accurate estimate of total C entering to the soil. This study quantified the ratios of C in roots and nodules in relation to above-ground plant tissue (AG) for chickpea (Cicer arietinum L.). The cultivars ‘CDC-Anna’ and ‘CDC-Frontier’ were grown in continuously-cropped no-till wheat stubble and conventionally-tilled summer fallow systems under three rates (0, 28 and 84 kg N ha?1) of N fertilizers in Swift Current and Shaunavon, Saskatchewan, Canada, in 2004, 2005 and 2006. The AG biomass ranged between 4,680 and 7,250 kg ha?1 and increased with the application of N fertilizer ≥28 kg N ha?1. The nodule mass measured at the early flowering stage ranged between 143 and 355 kg ha?1, accounting for 2 to 6% of the total AG biomass. Nodule mass decreased significantly from the early flowering to the late-flowering stages (3 wk between). The C value averaged from 1,970 to 2,640 kg ha?1 in the AG parts, 866 to 1,161 kg ha?1 in roots and 82 to 184 kg ha?1 in nodules. The C value in the nodules was 32% greater for chickpea grown in the no-till system than in the tilled-fallow system. CDC-Frontier had 34% greater C value in AG and roots, and 76% greater in nodules than CDC-Anna. Below-ground C (roots plus nodules) accounted for 50% that of the AG tissue at N?=?0 kg ha?1, and decreased to 45% as N increased to 84 kg ha?1. At N?=?0 kg ha?1, the C allocation among plant parts was in the ratio of 67: 29: 4, respectively, in the above-ground tissues: roots: nodules; at N?=?84 kg ha?1, this ratio was shifted to 69: 30: 1. The quantitative C allocation coefficients can be of great value to modellers in estimating total C contribution to the soil by annual legumes.  相似文献   

18.
Long-term yield studies in perennial crops like miscanthus are important to determine mean annual energy yield and the farmer’s economy. In two Danish field trials, annual yield of two miscanthus genotypes was followed over a 20-year period. The trials were established in 1993 on loamy sand in Foulum and on coarse sand in Jyndevad. Effects of genotype, row distance and fertilization were investigated. In both trials, yield development over time was characterized by an increase during the first years, optimum yields after 7–8 years and a decrease to a lower level which remained relatively constant from year 11 to 20. Spring harvest reduced the yield by 34–42 % compared to autumn harvest. In Foulum annual fertilization with 75 kg ha?1 N increased the yield of the genotype Goliath (Miscanthus sinensis) by 26 %. Additional N fertilization only increased the yield of Goliath little, and the genotype Giganteus (Miscanthus?×?giganteus) did not respond to fertilization at all. The highest mean yield in Foulum for the period 1997–2012 was obtained with the shortest row distance (~18,000 rather than ~12,000 plants ha?1) and harvested in late autumn, namely 13.1 and 12.0 Mg ha?1 DM annually for Giganteus and Goliath, respectively. In Jyndevad, where only Goliath was studied, the highest yield during 1995–2001 was obtained by short row distance, autumn harvest and annual fertilization with 75 kg ha?1 N, with yield increasing up to 116 % in response to fertilization. A mean yield of 14.4 Mg ha?1 DM was achieved over the period 1995–2012.  相似文献   

19.
In this study we evaluated the ability of two wild strains of Azospirillum, A. lipoferum AZm5 and A. brasilense VS9, to produce ACC deaminase. We tested the effects of a deficiency and medium doses of nitrogenous fertilizers on the growth and physiology of tomato plants (Lycopersicon esculentum Mill cv. ACE VF55) inoculated with both Azospirillum strains independently. Tomato plants were evaluated by root elongation assay and grown in pot soil culture with different nitrogen levels (0 kg N ha–1 and 170 kg N ha–1). The root:shoot ratio (R:S) and some ecophysiological traits were determined after 42 days of plant growth. Results showed very different physiological characteristics in both strains. We found three relevant aspects related to the AZm5 strain: it produces high amounts of cytokinins, it contains the gene acdS, which encodes ACC deaminase, and it promotes plant growth. We conclude that AZm5 maybe useful to increase N uptake in N-deficient soil by production of cytokinins and the promotion of ACC deaminase activity, which favored leaf expansion and higher leaf N investment. Therefore, for tomato culture, a simultaneous biofertilization with AZm5 and a relatively low fertilization with N (170 kg N ha–1) to promote AZm5 activity could be advantageous.  相似文献   

20.
Cellulosic biofuels are an important source of renewable biomass within the alternative energy portfolio. Switchgrass (Panicum virgatum L.), a perennial C4 grass native to North America, is widely studied as a biofuel feedstock for its consistently high yields and minimal input requirements. The influences of precipitation amount and temporal variability on the fertilizer response of switchgrass productivity are not fully understood. Moreover, global climate models predict changes in rainfall patterns towards lower and increasingly variable soil water availability in several productive areas worldwide, which may impact net primary production of biofuel crops. We conducted a meta-analysis of aboveground net primary production of switchgrass from 48 publications encompassing 82 different locations, 11 soil types, 52 switchgrass cultivars, fertilizer inputs between 0 to 896 kg N ha?1 year?1, and 1 to 6 years of annual productivity measures repeated on the same stand. Productivity of the lowland ecotype doubled with N rates >?131 kg N ha?1 year?1, but upland ecotype productivity increased only by 50%. Results showed an optimum N rate of 30 to 60 kg N ha?1 year?1 for both ecotypes, after which biomass gain per unit of N added decreased. Growing season precipitation (GSPPT) and inter-annual precipitation variability (inter-PPTvar) affected both ecotypes similarly. Long-term mean annual precipitation (MAP) differentially affected lowland and upland productivity, depending on the N level. Productivity responses to MAP and GSPPT were similar for both upland and lowland ecotypes at none or low N rates. When N increased beyond 60 kg N ha?1 year?1, lowland cultivars had a greater growth response to MAP than uplands. Productivity increased with increasing GSPPT and MAP and had a positive linear response to MAP ranging from 600 to 1200 mm year?1. One third of the variability in switchgrass production was accounted for by inter-PPTvar. After accounting for MAP, sites with higher inter-PPTvar had lower switchgrass productivity than sites with lower inter-PPTvar. Increased inter-annual variation in precipitation reduced production of both ecotypes. Predicted changes in the amount and timing of precipitation thus likely will exert greater influence on production of upland than lowland ecotypes of switchgrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号