首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alzheimer’s disease (AD) is a devastating disease characterized by synaptic and neuronal loss in the elderly. Compelling evidence suggests that soluble amyloid-β peptide (Aβ) oligomers induce synaptic loss in AD. Aβ-induced synaptic dysfunction is dependent on overstimulation of N-methyl-D-aspartate receptors (NMDARs) resulting in aberrant activation of redox-mediated events as well as elevation of cytoplasmic Ca2+, which in turn triggers downstream pathways involving phospho-tau (p-tau), caspases, Cdk5/dynamin-related protein 1 (Drp1), calcineurin/PP2B, PP2A, Gsk-3β, Fyn, cofilin, and CaMKII and causes endocytosis of AMPA receptors (AMPARs) as well as NMDARs. Dysfunction in these pathways leads to mitochondrial dysfunction, bioenergetic compromise and consequent synaptic dysfunction and loss, impaired long-term potentiation (LTP), and cognitive decline. Evidence also suggests that Aβ may, at least in part, mediate these events by causing an aberrant rise in extrasynaptic glutamate levels by inhibiting glutamate uptake or triggering glutamate release from glial cells. Consequent extrasynaptic NMDAR (eNMDAR) overstimulation then results in synaptic dysfunction via the aforementioned pathways. Consistent with this model of Aβ-induced synaptic loss, Aβ synaptic toxicity can be partially ameliorated by the NMDAR antagonists (such as memantine and NitroMemantine). PSD-95, an important scaffolding protein that regulates synaptic distribution and activity of both NMDA and AMPA receptors, is also functionally disrupted by Aβ. PSD-95 dysregulation is likely an important intermediate step in the pathological cascade of events caused by Aβ. In summary, Aβ-induced synaptic dysfunction is a complicated process involving multiple pathways, components and biological events, and their underlying mechanisms, albeit as yet incompletely understood, may offer hope for new therapeutic avenues.  相似文献   

2.
Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disorder with no known cure or clear understanding of the mechanisms involved in the disease process. Amyloid plaques, neurofibrillary tangles and neuronal loss, though characteristic of AD, are late stage markers whose impact on the most devastating aspect of AD, namely memory loss and cognitive deficits, are still unclear. Recent studies demonstrate that structural and functional breakdown of synapses may be the underlying factor in AD-linked cognitive decline. One common element that presents with several features of AD is disrupted neuronal calcium signaling. Increased intracellular calcium levels are functionally linked to presenilin mutations, ApoE4 expression, amyloid plaques, tau tangles and synaptic dysfunction. In this review, we discuss the role of AD-linked calcium signaling alterations in neurons and how this may be linked to synaptic dysfunctions at both early and late stages of the disease.  相似文献   

3.
4.
TREM2 in Alzheimer’s disease   总被引:1,自引:0,他引:1  
Recent works have demonstrated a rare functional variant (R47H) in triggering receptor expressed on myeloid cells (TREM) 2 gene, encoding TREM2 protein, increase susceptibility to late-onset Alzheimer’s disease (AD), with an odds ratio similar to that of the apolipoprotein E ε4 allele. The reduced function of TREM2 was speculated to be the main cause in the pathogenic effects of this risk variant, and TREM2 is highly expressed in white matter, as well as in the hippocampus and neocortex, which is partly consistent with the pathological features reported in AD brain, indicating the possible involvement of TREM2 in AD pathogenesis. Emerging evidence has demonstrated that TREM2 could suppress inflammatory response by repression of microglia-mediated cytokine production and secretion, which may prevent inflammation-induced bystander damage of neurons. TREM2 also participates in the regulation of phagocytic pathways that are responsible for the removal of neuronal debris. In this article, we review the recent epidemiological findings of TREM2 that related with late-onset AD and speculate the possible roles of TREM2 in progression of this disease. Based on the potential protective actions of TREM2 in AD pathogenesis, targeting TREM2 might provide new opportunities for AD treatment.  相似文献   

5.
Alzheimer’s Disease (AD), the most prevalent neurodegenerative disease of aging, affects one in eight older Americans. Nearly all drug treatments tested for AD today have failed to show any efficacy. There is a great need for therapies to prevent and/or slow the progression of AD. The major challenge in AD drug development is lack of clarity about the mechanisms underlying AD pathogenesis and pathophysiology. Several studies support the notion that AD is a multifactorial disease. While there is abundant evidence that amyloid plays a role in AD pathogenesis, other mechanisms have been implicated in AD such as tangle formation and spread, dysregulated protein degradation pathways, neuroinflammation, and loss of support by neurotrophic factors. Therefore, current paradigms of AD drug design have been shifted from single target approach (primarily amyloid-centric) to developing drugs targeted at multiple disease aspects, and from treating AD at later stages of disease progression to focusing on preventive strategies at early stages of disease development. Here, we summarize current strategies and new trends of AD drug development, including pre-clinical and clinical trials that target different aspects of disease (mechanism-based versus non-mechanism based, e.g. symptomatic treatments, lifestyle modifications and risk factor management).  相似文献   

6.
Chasing genes in Alzheimer’s and Parkinson’s disease   总被引:4,自引:0,他引:4  
Alzheimers disease (AD), the most common type of dementia, and Parkinsons disease (PD), the most common movement disorder, are both neurodegenerative adult-onset diseases characterized by the progressive loss of specific neuronal populations and the accumulation of intraneuronal inclusions. The search for genetic and environmental factors that determine the fate of neurons during the ageing process has been a widespread approach in the battle against neurodegenerative disorders. Genetic studies of AD and PD initially focused on the search for genes involved in the aetiological mechanisms of monogenic forms of these diseases. They later expanded to study hundreds of patients, affected relative-pairs and population-based studies, sometimes performed on special isolated populations. A growing number of genes (and pathogenic mutations) is being identified that cause or increase susceptibility to AD and PD. This review discusses the way in which strategies of gene hunting have evolved during the last few years and the significance of finding genes such as the presenilins, -synuclein, parkin and DJ-1. In addition, we discuss possible links between these two neurodegenerative disorders. The clinical, pathological and genetic presentation of AD and PD suggests the involvement of a few overlapping interrelated pathways. Their imbricate features point to a spectrum of neurodegeneration (tauopathies, synucleinopathies, amyloidopathies) that need further intense investigation to find the missing links.  相似文献   

7.
Purinergic Signalling - Alzheimer’s disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment challenges. Despite a better understanding of the...  相似文献   

8.
Molecular Biology Reports - Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for...  相似文献   

9.
Alzheimer’s disease (AD) is the most common form of dementia. At the diagnostic stage, the AD brain is characterized by the accumulation of extracellular amyloid plaques, intracellular neurofibrillary tangles and neuronal loss. Despite the large variety of therapeutic approaches, this condition remains incurable, since at the time of clinical diagnosis, the brain has already suffered irreversible and extensive damage. In recent years, it has become evident that AD starts decades prior to its clinical presentation. In this regard, transgenic animal models can shed much light on the mechanisms underlying this “pre-clinical” stage, enabling the identification and validation of new therapeutic targets. This paper summarizes the formidable efforts to create models mimicking the various aspects of AD pathology in the rat. Transgenic rat models offer distinctive advantages over mice. Rats are physiologically, genetically and morphologically closer to humans. More importantly, the rat has a well-characterized, rich behavioral display. Consequently, rat models of AD should allow a more sophisticated and accurate assessment of the impact of pathology and novel therapeutics on cognitive outcomes.  相似文献   

10.
The review discusses the functional role of sphingolipids in the pathogenesis of Alzheimer’s disease (AD). Certain evidence exists that the imbalance of sphingolipids such as sphingomyelin, ceramide, sphingosine, sphingosine-1-phosphate and galactosylceramide in the brain of animals and humans, in the cerebrospinal fluid and blood plasma of AD patients plays a crucial role in neuronal function by regulating growth, differentiation and cell death in CNS. Activation of sphingomyelinase (Smase), which leads to the accumulation of the proapoptotic agent, ceramide, can be considered as a new mechanism for AD and may be a prerequisite for the treatment of this disease by using drugs that inhibit SMase activity. The role of sphingolipids as biomarkers for the diagnosis of the early stage of Alzheimer’s disease and monitoring the effectiveness of treatment with new drugs is discussed.  相似文献   

11.
Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. The brain is particularly vulnerable to oxidative damage induced by unregulated redox-active metals such as copper and iron, and the brains of AD patients display evidence of metal dyshomeostasis and increased oxidative stress. The colocalisation of copper and amyloid β (Aβ) in the glutamatergic synapse during NMDA-receptor-mediated neurotransmission provides a microenvironment favouring the abnormal interaction of redox-potent Aβ with copper under conditions of copper dysregulation thought to prevail in the AD brain, resulting in the formation of neurotoxic soluble Aβ oligomers. Interactions between Aβ oligomers and copper can further promote the aggregation of Aβ, which is the core component of extracellular amyloid plaques, a central pathological hallmark of AD. Copper dysregulation is also implicated in the hyperphosphorylation and aggregation of tau, the main component of neurofibrillary tangles, which is also a defining pathological hallmark of AD. Therefore, tight regulation of neuronal copper homeostasis is essential to the integrity of normal brain functions. Therapeutic strategies targeting interactions between Aβ, tau and metals to restore copper and metal homeostasis are discussed.  相似文献   

12.
The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD.  相似文献   

13.
Alzheimer’s disease (AD) is characterized by cognitive impairment, progressive neurodegeneration, and Aβ accumulation. Aβ oligomers can lead to synaptic damage via alterations in glutamate receptors and excitotoxicity, as well as mitochondrial dysfunction. AD is associated with various biological indicators, including (1) predisposing factors such as genetic risk factors, (2) laboratory markers such as Aβ and tau protein, and (3) diagnostic markers such as MRI and PET findings. However, these markers are not confirmed, invasive, or expensive. In the present study, we employed nuclear magnetic resonance (NMR) methods that are inexpensive, time-efficient, and can be performed using samples obtained from various easily accessible sources such as cerebrospinal fluid, plasma, and peripheral tissue, thus highlighting the clinical utility of this approach. NMR analyses of blood metabolites showed that glutamine, glutamate, leucine, oxaloacetate, aspartate, isoleucine, and 3-hydroxyisovalerate are increased in patients with AD compared with control individuals. These metabolites seem to be related to mitochondrial dysfunction. Our data indicated that 3-hydroxyisovalerate, which is linked to known pathologic processes associated with mitochondrial dysfunction and accelerated neurodegeneration, was increased in the blood samples of patients with AD.  相似文献   

14.
15.
16.
Various innovative diagnostic methods for Alzheimer’s disease (AD) have been developed in view of the increasing preva-lence and consequences of later-life dementia. Biomarkers in cerebrospinal fluid (CSF) and blood for AD are primarily based on the detection of components derived from amyloid plaques and neurofibrillary tangles (NFTs). Published reports on CSF and blood biomarkers in AD indicate that although biomarkers in body fluids may be utilized in the clinical diagnosis of AD, there are no specific markers that permit accurate and reliable diagnosis of early-stage AD or the monitoring of disease pro-gression.  相似文献   

17.
18.
Alzheimer’s disease (AD) is the most prevalent chronic neurodegenerative disease. Current approved therapies are symptomatic treatments having some effect on cognitive function. Therapies that target β-amyloid (Aβ) have been the focus of efforts to develop a disease modification treatment for AD but these approaches have failed to show any clinical benefit so far. Beyond the ‘Aβ hypothesis’, there are a number of newer approaches to treat AD with neuroinflammation emerging as a very active area of research based on risk gene analysis. This short review will summarize approved drug therapies, recent clinical trials and new approaches for the treatment of AD.  相似文献   

19.
Alzheimer’s disease (AD) is the most common form of dementia, afflicting more than 30 million people worldwide. Currently, there is no cure or way to prevent this devastating disease. Extracellular plaques, containing various forms of amyloid-β protein (Aβ), and intracellular neurofibrillary tangles (NFTs), composed of hyper-phosphorylated tau protein, are two major pathological hallmarks of the AD brain. Aggregation, deposition, and N-terminal modification of Aβ protein and tau phosphorylation and aggregation are thought to precede the onset of cognitive decline, which is better correlated with tangle formation and neuron loss. Active and passive vaccines against various forms of Aβ have shown promise in pre-clinical animal models. However, translating these results safely and effectively into humans has been challenging. Recent clinical trials showed little or no cognitive efficacy, possibly due to the fact that the aforementioned neurodegenerative processes most likely pre-existed in the patients well before the start of immunotherapy. Efforts are now underway to treat individuals at risk for AD prior to or in the earliest stages of cognitive decline with the hope of preventing or delaying the onset of the disease. In addition, efforts to immunize against tau and other AD-related targets are underway.  相似文献   

20.
The 3-hydroxypyran-4-one moiety (maltol) was incorporated into the structure of resveratrol to achieve a series of resveratrol-maltol hybrids (8a8k) as novel multi-target-directed ligands (MTDLs). In vitro biological evaluation of the MTDLs revealed these compounds to have a triple function, namely inhibition of self-induced Aβ1–42 aggregation, antioxidation, and metal chelating activity. Among all the evaluated MTDLs, compounds 8i and 8j showed the most promise, demonstrating micromolar IC50 values for Aβ1–42 aggregation inhibition, more potent ABTS+ scavenging activity than Trolox, and good metal chelating activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号