首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Des-, mono-, and diacetylated melanotropin (des-, mono-, and di-Ac MSH, respectively) were compared for their dose-related effects on content of adenosine 3':5'-monophosphate (cAMP) and tyrosinase activity in the Cloudman S91 mouse melanoma tumor. Des-Ac MSH was more potent than the acetylated forms of MSH at increasing cellular levels of cAMP; mono- and di-Ac MSHs, however, were more potent than des-Ac MSH at elevating the activity of the enzyme, tyrosinase. Lysine-gamma1 MSH, a melanotropin from the amino terminus of pro-opiomelanocortin, exhibited slight stimulatory effects on tyrosinase and these actions were less than additive to those of mono-Ac MSH. Unlike their actions on amphibian skin-darkening or in mammalian behavior, neither beta-endorphin1-31 nor its derivatives, N-Ac-beta-endorphin1-27 or beta-endorphin30-31 (glycylglutamine), exhibited any influence on tyrosinase activity evoked by mono-Ac MSH in the tumor cells.  相似文献   

2.
With the idea to give further support that Pro-Leu-Gly-NH2 (PLG) acts as MIF (the inhibitor factor of MSH), this paper reports the effect of PLG on the secretion of MSH release using a recently developed radioimmunoassay for α-MSH.Pro-Leu-Gly-NH2 was effective in inhibiting the release of MSH induced by the injection of acid extracts of median eminence (MRF). The rise in plasma MSH by these extracts was not due to their intrinsic content of MSH. Pro-Leu-Gly-NH2 also inhibited the basal secretion of MSH in male rats. Since PLG also blocked the release of MSH induced by the injection of haloperidol, it is suggested that its effect is not mediated by dopamine.  相似文献   

3.
The effects of neurotensin on the activity of hypothalamic tuberoinfundibular and periventricular-hypophysial dopaminergic (DA) neurons, and on the secretion of pituitary hormones that are tonically regulated by these neurons (i.e. prolactin and alpha-melanocyte-stimulating hormone [alpha MSH], respectively) were examined in estrogen-primed ovariectomized rats. The activity of tuberoinfundibular and periventricular-hypophysial DA neurons was estimated by measuring concentrations of the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the terminals of these neurons in the median eminence and intermediate lobe of the posterior pituitary, respectively. Intracerebroventricular administration of neurotensin caused a dose- and time-related increase in DOPAC concentrations in both the median eminence and intermediate lobe, and a concurrent decrease in plasma levels of prolactin and alpha MSH. These results suggest that neurotensin-induced inhibition of secretion of prolactin and alpha MSH from the pituitary may be due to the stimulatory action of this neuropeptide on the release of dopamine from tuberoinfundibular and periventricular-hypophysial neurons.  相似文献   

4.
Sei C  Toneff T  Aaron W  Hook VY 《Peptides》2002,23(8):1409-1418
The regulation of cellular levels of alpha-melanocyte stimulating factor (alpha-MSH) and beta-endorphin in response to stimulated secretion from intermediate pituitary cells in primary culture was investigated in this study. Regulation of the cell content of alpha-MSH and beta-endorphin occurred in two phases consisting of (a) initial depletion of cellular levels of these peptide hormones during short-term secretion (3 h) induced by isoproterenol, forskolin, or phorbol myristate acetate (PMA) which was followed by (b) long-term (24 h) increases in cellular levels of alpha-MSH and beta-endorphin in response to stimulated secretion induced by isoproterenol and PMA. In short-term experiments (3 h), cellular levels of alpha-MSH and beta-endorphin were reduced by 30-50% during stimulated secretion of these peptide hormones by isoproterenol (agonist for the beta-adrenergic receptor), forskolin that activates protein kinase A (PKA), and PMA that activates protein kinase C (PKC). Moreover, dopamine inhibited isoproterenol-induced depletion of cellular alpha-MSH and beta-endorphin. During long-term incubation of cells (24 h) with isoproterenol, cellular alpha-MSH and beta-endorphin were increased to twice that of controls (unstimulated cells). Treatment with PMA for 24 h also increased cellular levels of alpha-MSH and beta-endorphin. Moreover, cellular levels of alpha-MSH and beta-endorphin were decreased during long-term treatment of cells with an aspartyl protease inhibitor, pepstatin A, and with the cysteine protease inhibitor E64c. These results implicate aspartyl and cysteine proteases in the cellular production of alpha-MSH and beta-endorphin that requires proteolytic processing of their common precursor proopiomelanocortin (POMC). These findings demonstrate the parallel regulation of cellular levels of alpha-MSH and beta-endorphin during their cosecretion, which may involve aspartyl and cysteine proteases in the metabolism of these peptide hormones.  相似文献   

5.
L C Saland  J A Carr  A Samora  D Tejeda 《Peptides》1992,13(5):913-917
Dopamine and gamma-aminobutyric acid (GABA) inhibit POMC peptide release from the pituitary intermediate lobe, via interaction with D2 or GABA-A/benzodiazepine receptors. Here, we examined the effects of an antianxiety triazolobenzodiazepine, adinazolam, on corticotropin-releasing factor (CRF)-stimulated POMC peptide secretion from the rat neurointermediate pituitary. Neurointermediate lobes (NILS) were incubated with CRF (10(-7) M), then adinazolam (10(-8) or (10(-9) M) was added, with CRF remaining in the medium. Aliquots were removed at 15-min intervals and frozen for radioimmunoassay of beta-endorphin. Adinazolam alone did not significantly affect secretion as compared to controls or CRF alone. Adinazolam incubated with CRF led to significant inhibition of beta-endorphin secretion, as compared to CRF alone. In addition, adinazolam was as effective as dopamine or the CRF antagonist, alpha-helical CRF, in preventing CRF-induced beta-endorphin release. Adinazolam appears to act directly on the pituitary to suppress hormone release induced by a stress-related hypothalamic peptide.  相似文献   

6.
The intravenous administration of αMSH (25 μg/kg) to 11 lambs (3 to 29 days of age) suppressed plasma PRL by 15 minutes. The mean basal concentration was 15.3 ± 2.9 ng/ml and the mean nadir was 4.9 ± 0.8 ng/ml (p<0.01). In chronically catheterized fetuses (128–140 days), intravenous administration of αMSH (25 μg/kg) decreased basal PRL levels (89.6 ± 12.4 ng/ml) significantly at 15–30 minutes to levels of 74.3 ± 11.4 ng/ml (p<.01). The degree of suppression of basal PRL levels was less in fetusus (76.9 ± 4.1%) than that induced in the neonates (40.5 ± 7.1%). In younger fetuses <120 days in whom basal PRL levels are low (3.0 ± 2.1 ng/ml), administration of αMSH was without effect. Plasma GH concentrations were not altered by administration of αMSH. The suppression of PRL secretion by αMSH administration could result from increased release of hypothalamic dopamine or be a direct effect on secretion of prolactin by the pituitary.  相似文献   

7.
It has been disclosed that beta-endorphin exerts marked effect on the secretion of ACTH, prolactin, corticosterone, aldosterone and somatotrophin formation in the pituitary but does not produce any effect on blood thyrotropin. Maximal rise in the concentration of the hormones was seen at the 20th minute, despite the fact that an elevation in the content of some hormones was recorded at the 5th minute following intravenous injection of beta-endorphin. At the 60th minute after beta-endorphin injection the content of prolactin, corticosterone and aldosterone in the blood dropped to the control level, while ACTH content remained significantly higher than in intact animals. One of the possible mechanisms underlying the action of beta-endorphin on the secretion of the hormones indicated might be the changes in the ratio of brain monoamines (a decrease in dopamine).  相似文献   

8.
Catecholamines and GABA are neurotransmitters involved in the regulation of release of pro-opiomelanocortin (POMC) derived peptides from the neurointermediate lobe of Xenopus laevis. The present study concerns the relation of these neurotransmitters to the adenylate cyclase system of the melanotrope cell. During in vitro incubation of isolated melanotrope cells it was found that dopamine, adrenaline and LY 171555 induced inhibition of forskolin-stimulated cAMP production and concomitantly inhibited MSH release. Activation of the GABAb receptors by baclofen also induced inhibition of cAMP production and alpha MSH secretion. Activation of the GABAa receptors evoked stimulation of cAMP production, while alpha MSH release was slightly inhibited, indicating that the GABAa mechanism may prove to be complex. A dual regulation through two subtypes of this receptor might be involved, one stimulating release through the adenylate cyclase system, while the other would inhibit secretion.  相似文献   

9.
Administration of gamma-butyrolactone (GBL), an anesthetic which reduces dopaminergic neuronal activity, decreased the concentration of the dopamine (DA) metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the intermediate lobe of the pituitary gland, and increased alpha-melanocyte stimulating hormone (alpha MSH) concentrations in the serum of male rats. Bilateral electrical stimulation of the rostral arcuate nucleus, which contains perikarya of tuberohypophysial DA neurons, increased DOPAC concentrations in the intermediate lobe and decreased alpha MSH concentrations in the serum of GBL-anesthetized rats. Administration of the DA antagonist haloperidol prevented the decline in serum alpha MSH levels following arcuate nucleus stimulation, but had no effect on serum alpha MSH concentrations in sham-stimulated GBL-treated rats. These results indicate that GBL-induced decreases or stimulation-induced increases in the activity of tuberohypophysial DA neurons are accompanied by corresponding changes in the metabolism of DA in the intermediate lobe of the rat pituitary gland, and by reciprocal changes in the secretion of alpha MSH.  相似文献   

10.
Temporal characteristics of ACTH and beta-endorphin secretion induced by bovine hypothalamic CRF-A (void volume) and CRF-B (Kav = 0.583) separated by Sephadex G-100 were compared to those of synthetic ovine or rat CRF, sauvagine and vasopressin. Dispersed cells or minced fragments of rat adenohypophyses perifused in a column were exposed to various secretagogues, and ACTH and/or beta-endorphin concentrations of the effluent were measured by radioimmunoassays. CRF-A or CRF-B induced an immediate brisk rise of ACTH and beta-endorphin within 1 min after initiation of CRF perifusion. The maximum rate of ACTH or beta-endorphin secretion was reached 1-2 min later. Hormone secretion persisted throughout a 10-min exposure to these secretagogues. More than 80% of the total ACTH or beta-endorphin secretion induced by 10-min perifusion with bovine CRF occurred during exposure to CRF. With 10-min perifusion with 300 ng/ml ovine or rat CRF, the onset of the major CRF-stimulated ACTH or beta-endorphin secretion was markedly delayed compared to that following bovine CRF. During perifusion with ovine or rat CRF, a modest slow increase in ACTH or beta-endorphin secretion was observed. More than 60-70% of the total ACTH or beta-endorphin secretion induced by 10-min perifusion with rat or ovine CRF occurred after CRF withdrawal. The ACTH secretory patterns for sauvagine were very similar to those for synthetic rat or ovine CRF. These results suggest some qualitative differences between partially purified bovine CRF and synthetic ovine or rat CRF.  相似文献   

11.
Endogenous opioid peptides appear to have neurotransmitter or neuromodulator functions in brain mediating a wide variety of effects. We have reported that intracisternal administration of synthetic human beta-endorphin increases plasma concentration of catecholamines, apparently by acting at unknown brain sites to increase sympathetic outflow to the adrenal medulla and sympathetic nerves. In the present study we examined the possibility that angiotensin II, acting in brain, modulates endorphin-induced catecholamine secretion. Simultaneous intracisternal administration of angiotensin II 1.0 nmol together with synthetic human beta-endorphin 1.45 nmol potentiated the plasma epinephrine, norepinephrine and dopamine responses to intracisternal beta-endorphin. In contrast, simultaneous intracisternal administration of the angiotensin II antagonist, [Sar1, Val5, Ala8]-angiotensin II (saralasin), 1.1 nmol together with beta-endorphin, blunted the plasma epinephrine, norepinephrine and dopamine responses to beta-endorphin. These data are consistent with the hypothesis that activation of angiotensin II receptors in brain potentiates the endorphin-induced stimulation of central sympathetic outflow. It remains to be demonstrated whether angiotensin II acting in brain to modulate activity of opioid neurons is synthesized in brain or is derived peripherally.  相似文献   

12.
Epinephrine (E) and norepinephrine (NE) levels were measured simultaneously in the adrenal veins of 6 patients before and after stimulation with 0.25 mg beta 1-24 ACTH. In 1 patient with Cushing's syndrome, E and NE were also measured before and 30 min after dexamethasone. There was a significant increase in NE and E secretion (p less than 0.002) from both adrenal glands after ACTH stimulation. In the patient with Cushing's syndrome, there was also a slight increase in plasma E levels after dexamethasone. It is postulated that ACTH stimulated NE and E secretion by augmenting blood flow through the adrenals and by induction of tyrosine hydroxylase and dopamine beta-hydroxylase, although a direct effect of ACTH on NE and E secretion cannot be excluded. It is also possible that the increase in adrenal catecholamine secretion after ACTH may be due to ACTH augmentation of catecholamine secretion by endogenous opioids such as beta-endorphin.  相似文献   

13.
Stimulation of insulin secretion by beta-endorphins (1-27 & 1-31)   总被引:1,自引:0,他引:1  
D L Curry  L L Bennett  C H Li 《Life sciences》1987,40(21):2053-2058
Synthetic human beta-endorphin potentiates insulin secretion by the isolated perfused rat pancreas when glucose is present in the perfusate at concentrations of either 125 or 200 mg/dl, whereas it fails to exert any effect on insulin secretion in the presence of a substimulatory concentration of 100 mg/dl. Similar potentiation of insulin secretion occurred in response to the 1-27 fragment (beta-endorphin1-27) of beta-endorphin. This transient potentiation lasts only 3 to 4 minutes, whereupon secretion returns toward control levels. Thus beta-endorphin produces only a transient spike-like secretory profile similar to the first phase of glucose-induced insulin secretion and it fails to produce any chronic insulin secretory response comparable to the second phase of insulin secretion. The insulinotropic effect of beta-endorphins occurred at concentrations varying from 0.1 to 5.0 ug/ml. These data suggest that beta-endorphin and beta-endorphin1-27 potentiate insulin secretion via a common beta cell opioid receptor, and that beta-endorphin may exert a paracrine control of insulin secretion. However, any such regulation appears to be via short-term alterations in the secretory process per se.  相似文献   

14.
The content of two pituitary tropins (MSH and ACTH) has been determined in rats which were injected by the synthetic melanostatin to suppress MSH of the intermediate part of pituitary by radioimmune analysis. Besides, the function of the adrenal cortex according the content of corticosterone in various tissues was estimated. It has been revealed that the pituitary-adrenal complex activation is caused by the hypothalamic melanostatin suppression of the MSH secretion. All these testify the ACTH and MSH definite role in organisms adaptive reactions at different evolution steps.  相似文献   

15.
This study was designed to examine the effects of i.p.-injected alpha-melanocyte stimulating hormone (MSH) on murine neutrophil migration into subcutaneously implanted sponges in response to IL-1-alpha, TNF-alpha, and C5a. The results show that as little as 0.1 ml of 5 x 10(-7) M MSH injected i.p. significantly blocked the accumulation of neutrophils in sponges in response to IL-1. This action of MSH was dose dependent, reversible, and was maximally effective if MSH was given at the same time as the injection of IL-1. This effect of MSH was not restricted to IL-1-induced neutrophil emigration, because MSH also antagonized the accumulation of neutrophils in response to both TNF and C5a. The proopiomelanocortin-derived peptide ACTH which contains the MSH sequence also significantly reduced neutrophil accumulation in response to IL-1, although less effectively than MSH. Similar studies with beta-endorphin showed that it had no effect on neutrophil accumulation in this system. The direct injection of MSH, beta-endorphin and ACTH into sponges or i.p. did not stimulate a neutrophil emigration and eliminated the possibility that MSH or ACTH suppressed the neutrophil influx in response to IL-1, TNF, or C5a by competing for circulating neutrophils. The action of MSH on IL-1, TNF, and C5a-induced neutrophil emigration suggests that this peptide may be an important regulator of the inflammatory response.  相似文献   

16.
J Ham  D G Smyth 《FEBS letters》1984,175(2):407-411
Acid extracts of rat pituitary neuro-intermediate lobes have been shown by ion-exchange chromatography and radio-immunoassay to contain predominantly the inactive derivatives of beta-endorphin, alpha, N-acetyl beta-endorphin 1-27 and alpha, N-acetyl beta-endorphin 1-26; the biologically active form, beta-endorphin 1-31, is a minor component. In contrast, it was found that beta-endorphin generated in neuro-intermediate lobe cells in monolayer culture was less processed: the principal peptides related to bioactive beta-endorphin 1-31. When the cultured cells were incubated in the presence of 10(-5) M dopamine or 10(-6) M alpha-ergocryptine there was a marked increase in the degree of proteolysis and acetylation: the processing pattern reverted to that characteristic of the neuro-intermediate lobe in situ, with alpha-N-acetyl beta-endorphin 1-26 and alpha, N-acetyl beta-endorphin 1-27 as the prominent peptides. The results demonstrate that dopaminergic agents can influence the processing of beta-endorphin-related peptides in rat pars intermedia, indicating a new level at which the bioactivity may be regulated.  相似文献   

17.
C A Sandman  N Yessaian 《Life sciences》1986,39(19):1755-1763
Fetal exposure of rats to beta-endorphin during the third trimester, either alone or with alpha-MSH, resulted in mild developmental delay and significant decreases in striatal dopamine receptor density (subsensitivity) persisting through maturity. The apparent paradoxical down-regulation of dopamine receptors in the presence of beta-endorphin was consistent with fetal exposure to dopamine receptor antagonists and synthesis inhibitors. These findings suggest biophysical properties of receptors which are unique to fetal development including loss of plasticity after exposure to antagonists. Permanent, down-regulation of the striatal dopamine system may be one mechanism underlying delayed development after fetal exposure to beta-endorphin which may accompany hypoxia. Even though there were no statistically significant differences between males and females in density of the dopamine receptor, the behavioral profile after peptide treatment was sexually demorphic. Behaviorally, female rats appeared sensitized to perinatal alpha-MSH and males to alpha-endorphin.  相似文献   

18.
Oxytocin (OT) is involved in the stimulation of secretion of anterior pituitary hormones in females during the periovulatory and periparturient periods. In the present study we examined the role of OT in control of ACTH, beta-endorphin, LH and PRL secretion in vitro from dispersed anterior pituitary cells collected from gilts during the luteal (Days 10-12; n=6) and follicular (Days 18-20; n=5) phases of the estrous cycle. Isolated anterior pituitary cells (1 x 10(6)/ml) were transferred into 24-well plates, separately for each animal, and were pre-incubated for three days at 37 degrees C in atmosphere of 5% CO(2) and 95% air. The cells which attached to the dishes were incubated (3.5 h, 37 degrees C) in McCoy's medium in the absence (control) or in the presence of the following factors: CRH alone (10(-10), 10(-9), 10(-8), 10(-7) M), OT alone (10(-8), 10(-7), 10(-6) M), LVP alone (10(-7) M), OT (10(-7) M) plus CRH (10(-9) M) and LVP (10(-7) M) plus CRH (10(-9) M) for studying ACTH and beta-endorphin secretion; OT alone (10(-8), 10(-7), 10(-6) M), GnRH alone (100 ng/ml), CRH alone (10(-9) M), OT (10(-7) M) plus GnRH (100 ng/ml) and OT (10(-7) M) plus CRH (10(-9) M) for studying LH and PRL secretion. Concentrations of the studied hormones in media were analyzed by RIA. Oxytocin alone increased ACTH (at doses 10(-7), 10(-6) M), beta-endorphin (at dose 10(-8) M), LH (at dose 10(-8) M) and PRL (at doses 10(-7), 10(-6) M) secretion by pituitary cells isolated only from luteal-phase gilts. None of the studied hormone concentrations in the medium was increased in response to OT when pituitary cells of follicular-phase gilts were examined. Oxytocin in combination with CRH exerted an additive effect on beta-endorphin secretion during the luteal phase. Summarizing, in the present study the stimulatory effect of oxytocin on ACTH, beta-endorphin, LH and PRL secretion by pituitary cells isolated from gilts during the luteal phase was demonstrated. However, the cells collected from follicular-phase gilts appeared to be unresponsive to OT. Moreover, interaction between OT and CRH in affecting beta-endorphin secretion was shown. These results suggest that OT may be transiently involved in the modulation of anterior pituitary hormone secretion in cyclic pigs.  相似文献   

19.
Effects of melanocyte-stimulating hormone (MSH) and beta-endorphin on lipid mobilization were examined in the rainbow trout (Oncorhynchus mykiss). Plasma levels of fatty acid (FA) were measured after intra-arterial administration of alpha-MSH, desacetyl-alpha-MSH, beta-MSH, or beta-endorphin through a cannula in the dorsal aorta. Desacetyl-alpha-MSH at 1 ng/g body weight resulted in an increase in plasma FA levels 1-3 hr after the injection, whereas the other three peptides showed no significant effect at the same dose. There was no significant change in plasma levels of cortisol after administration of any of the peptides. Lipolytic enzyme activity in the liver was significantly increased in a dose-related manner 1 hr after single intra-peritoneal injection of desacetyl-alpha-MSH. The direct effect of desacetyl-alpha-MSH on lipolysis was examined in liver slices incubated in vitro. Lipase activity in the liver slice was stimulated in the medium containing desacetyl-alpha-MSH in a dose-related manner. The results indicate that desacetyl-alpha-MSH is a potent stimulator of lipid mobilization in the rainbow trout.  相似文献   

20.
To evaluate to what extent opioid secretion in exercise induces the release of atrial natriuretic factor (ANF), six healthy male volunteers who were trained subjects, were submitted to two maximal exercise tests with and without (control) opioid receptor blockade by Naltrexone. Blood samples were drawn before (rest) and after exercise (post-exercise) in order to measure human ANF (alpha h ANF), beta-endorphin, plasma aldosterone concentration (PAC) plasma renin activity (PRA) and adreno-cortico trophic hormone (ATCH) by radio-immunological methods. Expired gas was collected during exercise to measure oxygen consumption. On average, the same maximal oxygen consumption (VO2max) during exercise was reached by all subjects with and without treatment. Plasma ANF level at rest slightly decreased after administration of Naltrexone; the response to physical exercise was significantly reduced by Naltrexone. There was no statistical difference between plasma levels of beta-endorphin, PRA and ACTH at rest nor in the post-exercise situation under the influence of Naltrexone. The PAC increased significantly at rest after Naltrexone administration but there was no statistical difference between both values after exercise. These data demonstrate that: (1) ANF secretion during exercise is influenced by the level of beta-endorphin in the plasma; (2) the possible inhibitory role of ANF on aldosterone secretion during exercise is probably over-ruled by the increase in plasma ACTH and PRA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号