首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of transition metals in biological processes has been well established. Copper (Cu) is a transition metal that can exist in oxidised and reduced states. This allows it to participate in redox and catalytic chemistry, making it a suitable cofactor for a diverse range of enzymes and molecules. Cu deficiency or toxicity is implicated in a variety of pathological conditions; therefore inorganic complexes of Cu have been investigated for their therapeutic and diagnostic potential. These Cu complexes have been shown to be effective in cancer treatment due to their cytotoxic action on tumour cells. Alternatively, Cu complexes can also modulate Cu homeostasis in the brain, resulting in protective effects in several models of neurodegeneration. In other diseases such as coronary heart disease and skin disease, the success of Cu complexes as potential therapeutics will most likely be due to their ability to increase SOD activity, leading to relief of oxidative stress. This review seeks to provide a broad insight into some of the diverse actions of Cu complexes and demonstrate the strong future for these compounds as potential therapeutic agents.  相似文献   

2.
Both diethylenetriaminepentaacetic acid (DTPA) and sulfadiazine (SD) were incorporated into polyaspartamides with different side chains, including poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA), poly-alpha,beta-[N- (3-hydroxypropyl)-L-aspartamide] (PHPA), poly-alpha,beta-[N-(2-aminoethy1)-L-aspartamide] (PAEA), poly-alpha,beta-[N-(4-aminobuty1)-L-aspartamide] (PABA), and poly-alpha,beta-[N-(6-aminohexyl)-L-aspartamide] (PAHA). The polyaspartamide ligands containing DTPA and SD groups were further reacted with gadolinium chloride to give the corresponding macromolecular gadolinium complexes. Experimental data of 1H NMR, IR, UV, and elemental analysis exhibited the formation of the polyaspartamide ligands and gadolinium complexes. Relaxivity studies indicated that the macromolecular chelates possess higher relaxivities than that of the clinically used Gd-DTPA. MR imaging showed that the macromolecular chelate PAEA-Gd-DTPA-SD greatly enhanced the contrast of MR images of hepatoma in the lower limb of mice and provided prolonged intravascular duration. Thus the polyaspartamide gadolinium complex containing SD groups is expected to be used as the potential macromolecular MRI contrast agents for hepatoma in mice.  相似文献   

3.
Mixed supramolecular aggregates, obtained by assembling together two amphiphilic monomers (C18H37)2NCO(CH2)2CO(AdOO)5-G-CCK8 (AdOO is 8-amino-3,6-dioxaoctanoic acid, CCK8 is C-terminal octapeptide of cholecystokinin) and (C18H37)2NCO(CH2)2COLys(DTPAGlu)CONH2 (DTPAGlu is N,N-bis[2-[bis(carboxyethyl)amino]ethyl]-l-glutamic acid), are characterized for their structural parameters by dynamic light scattering and for their relaxometric properties, in the absence and in the presence of 0.9 wt% NaCl. Two different aggregates (micelles and bilayer structures) are present in the absence of NaCl, while only bilayer structures are observed at physiological ionic strength. The presence of NaCl increases the ionic strength, promoting a decrease in the repulsions between the polar heads and among the aggregates in solution, thus supporting the formation of large-curvature aggregates such as bilayer structures like vesicles. In these conditions the closed, vesicular shape and the large size (hydrodynamic radius of about 300 Å) of the aggregates allow a high number of paramagnetic gadolinium complexes and bioactive peptides to be accommodated on the inner and external surfaces . The presence of the salt causes a variation in the structural arrangement of the molecules and a partial rigidification of the assembled Gd(III) complexes on the surface vesicles, reducing their internal motions and giving an approximately 15% higher relaxivity value (r 1p = 21.0 and 18.6 Mm?1 s?1 in the presence and in the absence of NaCl, respectively). The vesicles obtained, for the high relaxivity of each gadolidium complex and for the presence of a surface-exposed bioactive peptide, are very promising candidates as target-selective MRI contrast agents.  相似文献   

4.
Gadolinium-based carbon nanostructures are poised to make a significant impact as advanced contrast agents (CAs) for magnetic resonance imaging (MRI) in medicine. This paper reviews and forecasts gadonanotubes as synthons for the design of high-performance MRI CA probes with efficacies up to 100 times greater than current clinical CAs. This level of performance is vital for achieving the goal of cellular and molecular imaging with MRI. These new materials will be useful for in vivo MRI applications as circulating drug nanocapsules because of their low toxicities, extremely high relaxivities, and potential for cellular targeting and induced cell death by magnetic hyperthermia.  相似文献   

5.
Magnetic Resonance Imaging (MRI) is a noninvasive radiology technique used to examine the internal organs of human body. It is useful for the diagnosis of structural abnormalities in the body. Contrast agents are used to increase the sensitivity of this technique. 1,4,7,10-Tetraazacyclododecane (cyclen) is a macrocyclic tetraamine. Its derivatives act as useful ligands to produce stable complexes with Gd3+ ion. Such chelates are investigated as MRI contrast agents. Free Gd3+ ion is extremely toxic for in vivo use. Upon complexation with a cyclen-based ligand, it is trapped in the preformed central cavity of the ligand resulting in the formation of a highly stable Gd3+-chelate. Better kinetic and thermodynamic stability of cyclen-based MRI contrast agents decrease their potential toxicity for in vivo use. Consequently, such agents have proved to be safest for clinical applications. Relaxivity is the most important parameter used to measure the effectiveness of a contrast agent. A number of factors influence this parameter. This article elucidates detailed strategies to increase relaxivity of cyclen-based MRI contrast agents. 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) are two key ligands derived from cyclen. They also act as building blocks for the synthesis of novel ligands. A few important methodologies for the synthesis of DOTA and DO3A derivatives are described. Moreover, the coordination geometry of chelates formed by these ligands and their derivatives is discussed as well. Novel ligands can be developed by the appropriate derivatization of DOTA and DO3A. Gd3+-chelates of such ligands prove to be useful MRI contrast agents of enhanced relaxivity, greater stability, better clearance, lesser toxicity and higher water solubility.  相似文献   

6.
7.
The aggregation behavior of an amphiphilic supramolecular system, with potential application as a tumor-specific magnetic resonance imaging contrast agent, has been studied in detail by dynamic light scattering, small-angle neutron scattering and cryotransmission electron microscopy. The system was constituted of mixed aggregates formed by an anionic unimer containing the DTPAGlu, a chelating agent for the paramagnetic Gd(3+) ion, and an uncharged unimer containing the bioactive peptide CCK8, capable of directing the assembly toward tumor cells. Mixed aggregates formed by both unimers, and in the case of the DTPAGlu unimer with the chelating agent as free base or as Gd(3+) complex, have been investigated. A number of interesting features of the aggregation behavior were revealed: at physiological pH, micelles and bilayer structures were present, whereas upon decreasing solution pH or increasing ionic strength, the formation of bilayer structures was favored. On the basis of the above observations, the aggregating mechanism has been elucidated by considering the screening effect on intra- and interaggregate electrostatic repulsions.  相似文献   

8.
Interactions of paramagnetic metal complexes with their biological environment can modulate their magnetic resonance imaging (MRI) contrast–enhancing properties in different ways, and this has been widely exploited to create responsive probes that can provide biochemical information. We survey progress in two rapidly growing areas: the MRI detection of biologically important metal ions, such as calcium, zinc, and copper, and the use of transition metal complexes as smart MRI agents. In both fields, new imaging technologies, which take advantage of other nuclei (19F) and/or paramagnetic contact shift effects, emerge beyond classical, relaxation-based applications. Most importantly, in vivo imaging is gaining ground, and the promise of molecular MRI is becoming reality, at least for preclinical research.  相似文献   

9.
Li W  Li Z  Jing F  Deng Y  Wei L  Liao P  Yang X  Li X  Pei F  Wang X  Lei H 《Carbohydrate research》2008,343(4):685-694
Arabinogalactan derivatives conjugated with gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) by ethylenediamine (Gd-DTPA-CMAG-A2) or hexylamine (Gd-DTPA-CMAG-A6) have been synthesized and characterized by means of Fourier transform infrared spectra (FTIR), 13C nuclear magnetic resonance (13C NMR), size exclusion chromatography (SEC), and inductively coupled plasma atomic emission spectrometry (ICP-AES). Relaxivity studies showed that arabinogalactan-bound complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA, and the influence of the spacer arm lengths on the T1 relaxivities was studied. Their stability was investigated by competition study with Ca2+, EDTA, and DTPA. MR imaging of Wistar rats showed remarkable enhancement in rat liver and kidney after i.v. injection of Gd-DTPA-CMAG-A2 (0.079+/-0.002 mmol/kg Gd3+): The mean percentage enhancement of the liver parenchyma and kidney was 38.7+/-6.4% and 69.4+/-4.4% at 10-30 min. Our preliminary in vivo and in vitro study indicates that the arabinogalactan-bound complexes are potential liver-specific contrast agents for MRI.  相似文献   

10.
Two gadolinium polyoxometalates, Gd(2)P(2)W(18)O(62) and K(15)[(GdO)(3)(PW(9)O(34))(2)], have been evaluated by in vivo as well as in vitro experiments as the candidates of tissue-specific magnetic resonance imaging (MRI) contrast agents. T(1)-relaxivities of 28.4 mM(-1).s(-1) for Gd(2)P(2)W(18)O(62) and 11.2 mM(-1).s(-1) for K(15)[(GdO)(3)(PW(9)O(34))(2)] (400 MHz, 25 degrees C) were higher than that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in bovine serum albumin and human serum transferrin were also reported. The favorable liver-specific contrast enhancement and renal excretion capability in in vivo MRI with Sprague-Dawley rats after i.v. administration of K(15)[(GdO)(3)(PW(9)O(34))(2)] was demonstrated. In vivo and in vitro assay showed that K(15)[(GdO)(3)(PW(9)O(34))(2)] is a promising liver-specific MRI contrast agent. However, Gd(2)P(2)W(18)O(62) did not show the favorable quality in vivo as expected from its high relaxivity in vitro, which was attributed to low bioavailability, indicating that it is of limited value as tissue-specific MRI contrast agent.  相似文献   

11.
Four neutral gadolinium complexes of diethylenetriaminepentaacetic acid (DTPA)-bisamide derivatives have been synthesized and characterized. Their potential application as tissue-specific and low-osmolarity MRI contrast agents has been evaluated by in vitro and in vivo experiments. Their measured relaxivities in D(2)O, bovine serum albumin and human serum transferrin solutions showed favorable relaxation ability. In vivo studies have proven that Gd(DTPA-BDMA), Gd(DTPA-BIN), and Gd(cyclic-DTPA-1,2-pn) could be promising liver-specific MRI contrast agents and Gd(DTPA-BDMA), and Gd(cyclic-DTPA-1,2-pn) have favorable renal excretion capability. Among them, Gd(cyclic-DTPA-1,2-pn) is a more powerful hepatic contrast agent and Gd(DTPA-BIN) provides the stable imaging contrast for several hours. They also show a lower toxicity.  相似文献   

12.
13.
Based on a commercially available hyperbranched aliphatic polyester, novel multifunctional gadolinium complexes were prepared bearing protective PEG chains, a folate targeting ligand and EDTA or DTPA chelate moieties. Their relatively high water relaxivity values coupled with biodegradability of the hyperbranched scaffold, folate receptor specificity render these non-toxic dendritic polymers promising candidates for MRI applications.  相似文献   

14.
Marine microorganisms as a source of bioactive agents   总被引:12,自引:0,他引:12  
Several ecological factors of the marine environment were used in developing a strategy for discovering useful bioactive agents from marine microorganisms. By consideration of sea water requirements, production and degradation of marine polymers, and plasmid content, several novel anti-malarial antibiotics, anti-tumor polysaccharides, glucan-degrading enzymes, and aminoglycoside antibiotics were found.  相似文献   

15.
Copper(II) bis(thiosemicarbazone) complexes labelled with Cu-60/62/64 are useful radiopharmaceuticals for imaging blood flow and hypoxic tissues in vivo. The aim of this study was to identify structure-activity relationships within a series of analogues with different alkyl substitution patterns in the ligand, in order to design improved hypoxia imaging agents and elucidate hypoxia selectivity mechanisms. Thirteen such complexes were synthesised and characterised spectroscopically and electrochemically. The uptake of each (labelled with Cu-64) in EMT6 tumour cells in vitro under normoxic and hypoxic conditions was studied. All complexes were taken up efficiently into cells, and some showed strong hypoxia selectivity, which was highly correlated with the Cu(II/I) redox potential. Redox potentials at the low end of the range were found to be essential for hypoxia selectivity. In turn, the redox potential was strongly correlated with alkyl substitution pattern, and the most important determinant of the redox potential was the number of alkyl groups on the diimine backbone of the ligand. Several complexes in the series warrant further evaluation as hypoxia imaging agents. The radioactivity uptake/release behaviour in the cells provides insight into possible mechanisms, and a model for hypoxia-selective intracellular trapping is discussed.  相似文献   

16.
Development of magnetic resonance imaging (MRI) contrast agents that can be readily applied for imaging of biological tissues under clinical settings is a challenging task. This is predominantly due to the expectation of an ideal MR agent being able to be synthesized in large quantities, possessing longer shelf life, reasonable biocompatibility, tolerance against its aggregation in biological fluids, and high relaxivity, resulting in better contrast during biological imaging. Although a repertoire of reports address various aforementioned issues, the previously reported results are far from optimal, which necessitates further efforts in this area. In this study, we demonstrate facile large-scale synthesis of sub-100 nm quasi-cubic magnetite and magnetite/silica core-shell (Mag@SiO2) nanoparticles and their applicability as a biocompatible T2 contrast agent for MRI of biological tissues. Our study suggests that silica-coated magnetite nanoparticles reported in this study can potentially act as improved MR contrast agents by addressing a number of aforementioned issues, including longer shelf life and stability in biological fluids. Additionally, our in vitro and in vivo studies clearly demonstrate the importance of silica coating towards improved applicability of T2 contrast agents for cancer imaging.  相似文献   

17.
Numerous macromolecular MRI contrast agents prepared employing relatively simple chemistry may be readily available that can provide sufficient enhancement for multiple applications. These agents operate using a approximately 100-fold lower concentration of gadolinium ions in comparison to the necessary concentration of iodine employed in CT imaging. Herein, we describe some of the general potential directions of macromolecular MRI contrast agents using our recently reported families of dendrimer-based agents as examples. Changes in molecular size altered the route of excretion. Smaller-sized contrast agents less than 60 kDa molecular weight were excreted through the kidney resulting in these agents being potentially suitable as functional renal contrast agents. Hydrophilic and larger-sized contrast agents were found better suited for use as blood pool contrast agents. Hydrophobic variants formed with polypropylenimine diaminobutane dendrimer cores created liver contrast agents. Larger hydrophilic agents are useful for lymphatic imaging. Finally, contrast agents conjugated with either monoclonal antibodies or with avidin are able to function as tumor-specific contrast agents, which also might be employed as therapeutic drugs for either gadolinium neutron capture therapy or in conjunction with radioimmunotherapy.  相似文献   

18.
Magnetic resonance imaging (MRI) has emerged as a leading diagnostic technique in clinical and preclinical settings. However, the application of MRI to assess specific disease markers for diagnosis and monitoring drug effect has been severely hampered by the lack of desired contrast agents with high relaxivities, and optimized in vivo retention time. We have reported the development of protein-based MRI contrast agents (ProCA1) by rational design of Gd3 + binding sites into a stable protein resulting in significantly increased longitudinal (r1) and transverse (r2) relaxivities compared to Gd-DTPA. Here, we report a further improvement of protein contrast agents ProCA1 for in vivo imaging by protein modification with various sizes of polyethylene glycol (PEG) chain. PEGylation results in significant increases of both r1 and r2 relaxivities (up to 200%), and these high relaxivities persist even at field strengths up to 9.4 T. In addition, our experimental results demonstrate that modified contrast agents have significant improvement of in vivo MR imaging and biocompatibilities including dose efficiency, protein solubility, blood retention time and decreased immunogenicity. Such improvement can be important to the animal imaging and pre-clinical research at high or ultra-high field where there is an urgent need for molecular imaging probes and optimized contrast agent.  相似文献   

19.
Hypoxia occurs in various diseases, including cancer, ischemia, and acute and chronic vascular diseases. Here we describe the design and synthesis of the first hypoxia-sensitive MRI contrast agents, SAGds. SAGds showed a pH-dependent r(1) relaxivity change associated with intramolecular chelation of the nitrogen atom of the sulfonamide moiety to the Gd(3+) center. There was a correlation between the pK(a) of the r(1) relaxivity change and the sum of the Hammett σ constants of substituents on the aromatic ring. Among the synthesized compounds, 4NO(2)2MeOSAGd was selectively reduced to the amine by rat liver microsomes under hypoxic conditions, resulting in a 1.8-fold increment of the r(1) relaxivity owing to the change in pK(a) of the arylsulfonamide moiety. This enhancement of the r(1) relaxivity could be clearly detected in T(1)-weighted MR images. Thus, 4NO(2)2MeOSAGd is a 'smart' MRI contrast agent for the detection of hypoxia under physiological conditions.  相似文献   

20.
Functional imaging with MRI contrast agents is an emerging experimental approach that can combine the specificity of cellular neural recording techniques with noninvasive whole-brain coverage. A variety of contrast agents sensitive to aspects of brain activity have recently been introduced. These include new probes for calcium and other metal ions that offer high sensitivity and membrane permeability, as well as imaging agents for high-resolution pH and metabolic mapping in living animals. Genetically encoded MRI contrast agents have also been described. Several of the new probes have been validated in the brain; in vivo use of other agents remains a challenge. This review outlines advantages and disadvantages of specific molecular imaging approaches and discusses current or potential applications in neurobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号