首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pairs of reproductively mature male three-spined stickleback (Gasterosteus aculeatus) were introduced into unfamiliar aquaria and observed until one male became dominant. Skin carotenoid content, morphometric indexes, and metabolic capacities of the axial and pectoral muscles were examined to establish whether morphological or physiological parameters differentiated winners and losers. Stickleback that initiated fights typically won. Quick initiation led to quick victory. Overall, winners and losers differed in few morphological or metabolic characteristics, but these properties and the differences between these attributes for losers and winners of specific fights were linked with initiation time and fight duration. Morphometric indexes of losers were the primary determinants of initiation time and fight duration, whereas for winners muscle metabolic capacities were linked to these fight characteristics. The greater the hepatosomatic index (HSI) of losers, the longer the fight initiation times. Similarly, losers with high HSI and carotenoid levels resisted defeat longer. In winners, initiation time decreased as axial muscle phosphofructokinase levels increased and citrate synthase levels decreased, whereas the metabolic capacities of the pectoral muscle were linked with time to achieve victory. When losers had greater HSI values than the winners of a specific fight, fight initiation was delayed and fights lasted longer. When losers had higher carotenoid levels than winners, fights also lasted longer. On the other hand, when losers had more visceral fat (fat body mass over somatic mass) than winners, both initiation time and combat duration were reduced. These results suggest that male stickleback assess their physiological status and that of their opponents, in particular the HSI, and adjust their combat strategies accordingly.  相似文献   

2.
3.
4.
Did psychrophilic enzymes really win the challenge?   总被引:7,自引:0,他引:7  
Organisms living in permanently cold environments, which actually represent the greatest proportion of our planet, display at low temperatures metabolic fluxes comparable to those exhibited by mesophilic organisms at moderate temperatures. They produce cold-evolved enzymes partially able to cope with the reduction in chemical reaction rates and the increased viscosity of the medium induced by low temperatures. In most cases, the adaptation is achieved through a reduction in the activation energy, leading to a high catalytic efficiency, which possibly originates from an increased flexibility of either a selected area of or the overall protein structure. This enhanced plasticity seems in return to be responsible for the weak thermal stability of cold enzymes. These particular properties render cold enzymes particularly useful in investigating the possible relationships existing between stability, flexibility, and specific activity and make them potentially unrivaled for numerous biotechnological tasks. In most cases, however, the adaptation appears to be far from being fully achieved.  相似文献   

5.
6.
7.
8.
9.
10.
Solar ultraviolet radiation (UV) is a major environmental factor that dramatically alters the homeostasis of the skin as an organ by affecting the survival, proliferation and differentiation of various cutaneous cell types. The effects of UV on the skin include direct damage to DNA, apoptosis, growth arrest, and stimulation of melanogenesis. Long-term effects of UV include photoaging and photocarcinogenesis. Epidermal melanocytes synthesize two main types of melanin: eumelanin and pheomelanin. Melanin, particularly eumelanin, represents the major photoprotective mechanism in the skin. Melanin limits the extent of UV penetration through the epidermal layers, and scavenges reactive oxygen radicals that may lead to oxidative DNA damage. The extent of UV-induced DNA damage and the incidence of skin cancer are inversely correlated with total melanin content of the skin. Given the importance of the melanocyte in guarding against the adverse effects of UV and the fact that the melanocyte has a low self-renewal capacity, it is critical to maintain its survival and genomic integrity in order to prevent malignant transformation to melanoma, the most fatal form of skin cancer. Melanocyte transformation to melanoma involves the activation of certain oncogenes and the inactivation of specific tumor suppressor genes. This review summarizes the current state of knowledge about the role of melanin and the melanocyte in photoprotection, the responses of melanocytes to UV, the signaling pathways that mediate the biological effects of UV on melanocytes, and the most common genetic alterations that lead to melanoma.  相似文献   

11.
12.
13.
The widely used partial synthesis of phospholipids via deacylation of naturally occurring phospholipids, followed by reacylation with fatty acid anhydrides, is accompanied by phosphoryl migration. The resulting mixture of α- and β-phospholipids was separated by short-column chromatography. Milder acylation procedures in which no phosphoryl migration occurs, were developed. 1,2-Dilinoleoyl-sn-glycero-3-phosphocholine was prepared in 50% yield by acylation of sn-glycero-3-phosphocholine (GPC) with N-linoleoylimidazole. Detailed NMR and infrared spectra of α- and β-phosphatidylcholines (PCs) and -ethanolamines (PEs) are reported and the differences between isomers discussed.  相似文献   

14.
Immobile plants and immobile modular animals outlive unitary animals. This paper discusses competing but not necessarily mutually exclusive theories to explain this extreme longevity, especially from the perspective of phenotypic plasticity. Stem cell immortality, vascular autonomy, and epicormic branching are some important features of the phenotypic plasticity of plants that contribute to their longevity. Monocarpy versus polycarpy can also influence the kind of senescent processes experienced by plants. How density-dependent phenomena affecting the establishment of juveniles in these immobile organisms can influence the evolution of senescence, and consequently longevity, is reviewed and discussed. Whether climate change scenarios will favour long-lived or short-lived organisms, with their attendant levels of plasticity, is also presented.  相似文献   

15.
16.
《Anthrozo?s》2013,26(1):4-11
Abstract

The current reconsideration of the place in nature of human beings unfortunately continues to be an acrimonious one. All too often the debate is more akin to a warlike encounter where each side attempts to gain control or the upper hand than a search for points of agreement. Given this context, it is important to entertain views that emanate from different cultural traditions as a way to infuse the debate with new life. Students of Native American culture have consistently pointed out that the essential concepts of life balance and reciprocity represented there may serve as useful points of consideration as we struggle with the appropriate relationships with animals and nature. This article presents a representative Zuni story, told by Governor Robert E. Lewis, that illustrates these notions.  相似文献   

17.
Copper and iron play important roles in a variety of biological processes, especially when being chelated with proteins. The proteins involved in the metal binding, transporting and metabolism have aroused much interest. To facilitate the study on this topic, we constructed two databases (DCCP and DICP) containing the known copper- and iron-chelating proteins~ which are freely available from the website http://sdbi.sdut.edu.cn/en. Users can conveniently search and browse all of the entries in the databases. Based on the two databases, bioinformatic analyses were performed, which provided some novel insights into metalloproteins.  相似文献   

18.
1. 3R-[2-(14)C]Mevalonate was incorporated into geranyl and neryl beta-d-glucosides in petals of Rosa dilecta in up to 10.6% yield, and the terpenoid part was specifically and equivalently labelled in the moieties derived from isopentenyl pyrophosphate and 3,3-dimethylallyl pyrophosphate. A similar labelling pattern, with incorporations of 0.06-0.1% was found for geraniol or nerol formed in leaves of Pelargonium graveolens The former results provide the best available evidence for the mevalonoid route to regular monoterpenes in higher plants. 2. Incorporation studies with 3RS-[2-(14)C,(4R)-4-(3)H(1)]-mevalonate and its (4S)-isomer showed that the pro-4R hydrogen atom of the precursor was retained and the pro-4S hydrogen atom was eliminated in both alcohols and both glucosides. These results suggest that the correlation of retention of the pro-4S hydrogen atom of mevalonate with formation of a cis-substituted double bond, such as has been found in certain higher terpenoids, does not apply to the biosynthesis of monoterpenes. It is proposed that either nerol is derived from isomerization of geraniol or the two alcohols are directly formed by different prenyltransferases. Possible mechanisms for these processes are discussed. 3. The experiments with [(14)C,(3)H]mevalonate also show that in these higher plants, as has been previously found in animal tissue and yeast, the pro-4S hydrogen atom of mevalonate was lost in the conversion of isopentenyl pyrophosphate into 3,3-dimethylallyl pyrophosphate.  相似文献   

19.
Zinc is an essential trace element crucial for the function of more than 300 enzymes and it is important for cellular processes like cell division and apoptosis. Hence, the concentration of zinc in the human body is tightly regulated and disturbances of zinc homeostasis have been associated with several diseases including diabetes mellitus, a disease characterized by high blood glucose concentrations as a consequence of decreased secretion or action of insulin. Zinc supplementation of animals and humans has been shown to ameliorate glycemic control in type 1 and 2 diabetes, the two major forms of diabetes mellitus, but the underlying molecular mechanisms have only slowly been elucidated. Zinc seems to exert insulin-like effects by supporting the signal transduction of insulin and by reducing the production of cytokines, which lead to beta-cell death during the inflammatory process in the pancreas in the course of the disease. Furthermore, zinc might play a role in the development of diabetes, since genetic polymorphisms in the gene of zinc transporter 8 and in metallothionein (MT)-encoding genes could be demonstrated to be associated with type 2 diabetes mellitus. The fact that antibodies against this zinc transporter have been detected in type 1 diabetic patients offers new diagnostic possibilities. This article reviews the influence of zinc on the diabetic state including the molecular mechanisms, the role of the zinc transporter 8 and MT for diabetes development and the resulting diagnostic and therapeutic options.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号