首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Functional topology in a network of protein interactions   总被引:8,自引:0,他引:8  
MOTIVATION: The building blocks of biological networks are individual protein-protein interactions (PPIs). The cumulative PPI data set in Saccharomyces cerevisiae now exceeds 78 000. Studying the network of these interactions will provide valuable insight into the inner workings of cells. RESULTS: We performed a systematic graph theory-based analysis of this PPI network to construct computational models for describing and predicting the properties of lethal mutations and proteins participating in genetic interactions, functional groups, protein complexes and signaling pathways. Our analysis suggests that lethal mutations are not only highly connected within the network, but they also satisfy an additional property: their removal causes a disruption in network structure. We also provide evidence for the existence of alternate paths that bypass viable proteins in PPI networks, while such paths do not exist for lethal mutations. In addition, we show that distinct functional classes of proteins have differing network properties. We also demonstrate a way to extract and iteratively predict protein complexes and signaling pathways. We evaluate the power of predictions by comparing them with a random model, and assess accuracy of predictions by analyzing their overlap with MIPS database. CONCLUSIONS: Our models provide a means for understanding the complex wiring underlying cellular function, and enable us to predict essentiality, genetic interaction, function, protein complexes and cellular pathways. This analysis uncovers structure-function relationships observable in a large PPI network.  相似文献   

2.
Time-resolved measurements indicated that protons could propagate on the surface of a protein or a membrane by a special mechanism that enhanced the shuttle of the proton toward a specific site. It was proposed that a suitable location of residues on the surface contributes to the proton shuttling function. In this study, this notion was further investigated by the use of molecular dynamics simulations, where Na(+) and Cl(-) are the ions under study, thus avoiding the necessity for quantum mechanical calculations. Molecular dynamics simulations were carried out using as a model a few Na(+) and Cl(-) ions enclosed in a fully hydrated simulation box with a small globular protein (the S6 of the bacterial ribosome). Three independent 10-ns-long simulations indicated that the ions and the protein's surface were in equilibrium, with rapid passage of the ions between the protein's surface and the bulk. However, it was noted that close to some domains the ions extended their duration near the surface, thus suggesting that the local electrostatic potential hindered their diffusion to the bulk. During the time frame in which the ions were detained next to the surface, they could rapidly shuttle between various attractor sites located under the electrostatic umbrella. Statistical analysis of the molecular dynamics and electrostatic potential/entropy consideration indicated that the detainment state is an energetic compromise between attractive forces and entropy of dilution. The similarity between the motion of free ions next to a protein and the proton transfer on the protein's surface are discussed.  相似文献   

3.
4.
The human PDI family: versatility packed into a single fold   总被引:2,自引:0,他引:2  
The enzymes of the protein disulfide isomerase (PDI) family are thiol-disulfide oxidoreductases of the endoplasmic reticulum (ER). They contain a CXXC active-site sequence where the two cysteines catalyze the exchange of a disulfide bond with or within substrates. The primary function of the PDIs in promoting oxidative protein folding in the ER has been extended in recent years to include roles in other processes such as ER-associated degradation (ERAD), trafficking, calcium homeostasis, antigen presentation and virus entry. Some of these functions are performed by non-catalytic members of the family that lack the active-site cysteines. Regardless of their function, all human PDIs contain at least one domain of approximately 100 amino acid residues with structural homology to thioredoxin. As we learn more about the individual proteins of the family, a complex picture is emerging that emphasizes as much their differences as their similarities, and underlines the versatility of the thioredoxin fold. Here, we primarily explore the diversity of cellular functions described for the human PDIs.  相似文献   

5.
6.
A simple theoretical model for increasing the protein stability by adequately redesigning the distribution of charged residues on the surface of the native protein was tested experimentally. Using the molecule of ubiquitin as a model system, we predicted possible amino acid substitutions on the surface of this protein which would lead to an increase in its stability. Experimental validation for this prediction was achieved by measuring the stabilities of single-site-substituted ubiquitin variants using urea-induced unfolding monitored by far-UV CD spectroscopy. We show that the generated variants of ubiquitin are indeed more stable than the wild-type protein, in qualitative agreement with the theoretical prediction. As a positive control, theoretical predictions for destabilizing amino acid substitutions on the surface of the ubiquitin molecule were considered as well. These predictions were also tested experimentally using correspondingly designed variants of ubiquitin. We found that these variants are less stable than the wild-type protein, again in agreement with the theoretical prediction. These observations provide guidelines for rational design of more stable proteins and suggest a possible mechanism of structural stability of proteins from thermophilic organisms.  相似文献   

7.
The accessible surface areas of 58 monomeric and dimeric proteins, when measured in the crystalline environment, are found to be simply related to molecular weight. The loss of accessible surface when the proteins go from a free to their crystalline environment is well defined, implying that the hydrophobic interaction, which has been found to contribute to protein folding and stability in living systems, also contributes to protein crystal stability.  相似文献   

8.
Protein aggregation constitutes a constant threat for the living cell as is demonstrated by the several pathologies in which the mechanisms to prevent it fail. It is therefore a question of increasing importance to understand in detail the defence strategies. Here we discuss how molecular interactions can represent a general strategy to prevent aggregation. This view generalizes the more specific paradigm that suggests a competition between folding and aggregation, and allows to include both intrinsically unfolded proteins and proteins that aggregate also under native conditions. We analyze the factors that influence the balance between the two competing pathways and suggest new perspectives to increase our understanding of misfolding pathologies.  相似文献   

9.
Yuk JS  Jung SH  Jung JW  Hong DG  Han JA  Kim YM  Ha KS 《Proteomics》2004,4(11):3468-3476
We have investigated whether surface plasmon resonance (SPR) sensors based on the wavelength interrogation are able to analyze protein interactions on protein arrays. The spectral SPR sensor was self-constructed and its detection limit, expressed as the minimal refractive index variation, was calculated to be 6.6x10(-5) with the signal fluctuation of 1.0x10(-5). The protein array surface was modified by a mixed thiol monolayer to immobilize proteins. Protein arrays were analyzed by the line-scanning mode of the SPR sensor, which scanned every 100 microm along the central line of array spots and the scanned results were presented by color spectra from blue to red. Glutathione S-transferase (GST)-rac1 caused a concentration-dependent increase of SPR wavelength shift on protein arrays. The surface structure of the protein arrays was analyzed by atomic force microscopy. Specific interactions of antigens with antibodies were analyzed on the protein arrays by using three antibodies and eight proteins. These results suggest that the wavelength interrogation-based SPR sensor can be used as the biosensor for the high-throughput analysis of protein interactions on protein arrays.  相似文献   

10.
The spatial distribution of ion channels in the cell plasma membrane has an important role in governing regional specialization, providing a precise and localized control over cell function. We report here a novel technique based on scanning ion conductance microscopy that allows, for the first time, mapping of single active ion channels in intact cell plasma membranes. We have mapped the distribution of ATP-regulated K+ channels (KATP channels) in cardiac myocytes. The channels are organized in small groups and anchored in the Z-grooves of the sarcolemma. The distinct pattern of distribution of these channels may have important functional implications.  相似文献   

11.
We presented a novel surface plasmon resonance (SPR) imaging method for analysis of protein arrays based on a wavelength interrogation-based SPR biosensor. The spectral imaging was performed by the combination of position control and resonance wavelengths calculated from SPR reflectivity spectra. The imaging method was evaluated by analyzing interactions of glutathione S-transferase-fusion proteins with their antibodies. Antigen-antibody interactions were successfully analyzed on glutathione S-transferase-fusion protein arrays by using the spectral imaging method, and the results were confirmed by a parallel analysis using a previously used spectral SPR biosensor based on wavelength interrogation. Specific binding of anti-Rac1 and anti-RhoA to Rac1 and RhoA on the protein arrays was qualitatively and quantitatively analyzed by the spectral SPR imaging. Thus, it was suggested that the novel spectral SPR imaging was a useful tool for the high-throughput analysis of protein-protein interactions on protein arrays.  相似文献   

12.
In the course of evolution, Gram-positive bacteria, defined here as prokaryotes from the domain Bacteria with a cell envelope composed of one biological membrane (monodermita) and a cell wall composed at least of peptidoglycan and covalently linked teichoic acids, have developed several mechanisms permitting to a cytoplasmic synthesized protein to be present on the bacterial cell surface. Four major types of cell surface displayed proteins are currently recognized: (i) transmembrane proteins, (ii) lipoproteins, (iii) LPXTG-like proteins and (iv) cell wall binding proteins. The subset of proteins exposed on the bacterial cell surface, and thus interacting with extracellular milieu, constitutes the surfaceome. Here, we review exhaustively the current molecular mechanisms involved in protein attachment within the cell envelope of Gram-positive bacteria, from single protein to macromolecular protein structure.  相似文献   

13.
Using computational and sequence analysis of bacterial cold shock proteins, we designed a protein (CspB-TB) that has the core residues of mesophilic protein from Bacillus subtilis(CspB-Bs) and altered distribution of surface charged residues. This designed protein was characterized by circular dichroism spectroscopy, and found to have secondary and tertiary structure similar to that of CspB-Bs. The activity of the CspB-TB protein as measured by the affinity to a single-stranded DNA (ssDNA) template at 25 degrees C is somewhat higher than that of CspB-Bs. Furthermore, the decrease in the apparent binding constant to ssDNA upon increase in temperature is much more pronounced for CspB-Bs than for CspB-TB. Temperature-induced unfolding (as monitored by differential scanning calorimetry and circular dichroism spectroscopy) and urea-induced unfolding experiments were used to compare the stabilities of CspB-Bs and CspB-TB. It was found that CspB-TB is approximately 20 degrees C more thermostable than CspB-Bs. The thermostabilization of CspB-TB relative to CspB-Bs is achieved by decrease in the enthalpy and entropy of unfolding without affecting their temperature dependencies, i.e. these proteins have similar heat capacity changes upon unfolding. These changes in the thermodynamic parameters result in the global stability function, i.e. Gibbs energy, deltaG(T), that is shifted to higher temperatures with only small changes in the maximum stability. Such a mechanism of thermostabilization, although predicted from the basic thermodynamic considerations, has never been identified experimentally.  相似文献   

14.
MOTIVATION: Large amounts of protein and domain interaction data are being produced by experimental high-throughput techniques and computational approaches. To gain insight into the value of the provided data, we used our new similarity measure based on the Gene Ontology (GO) to evaluate the molecular functions and biological processes of interacting proteins or domains. The applied measure particularly addresses the frequent annotation of proteins or domains with multiple GO terms. RESULTS: Using our similarity measure, we compare predicted domain-domain and human protein-protein interactions with experimentally derived interactions. The results show that our similarity measure is of significant benefit in quality assessment and confidence ranking of domain and protein networks. We also derive useful confidence score thresholds for dividing domain interaction predictions into subsets of low and high confidence. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

15.
We report the discovery and characterisation of a novel nucleolar protein of Saccharomyces cerevisiae. We identified this protein encoded by ORF YIL019w, designated in SGD base as Faf1p, in a two hybrid interaction screen using the known nucleolar protein Krr1 as bait. The presented data indicate that depletion of the Faf1 protein has an impact on the 40S ribosomal subunit biogenesis resulting from a decrease in the production of 18S rRNA. The primary defect is apparently due to inefficient processing of 35S rRNA at the A(0), A(1), and A(2) cleavage sites.  相似文献   

16.
Reduction of the cell-impermeable tetrazolium salt WST-1 has been used to characterise two plasma membrane NADH oxidoreductase activities in human cells. The trans activity, measured with WST-1 and the intermediate electron acceptor mPMS, utilises reducing equivalents from intracellular sources, while the surface activity, measured with WST-1 and extracellular NADH, is independent of intracellular metabolism. Whether these two activities involve distinct proteins or are inherent to a single protein is unclear. In this work, we have attempted to address this question by examining the relationship between the trans and surface WST-1-reducing activities and a third well-characterised family of cell surface oxidases, the ECTO-NOX proteins. Using blue native-polyacrylamide gel electrophoresis, we have identified a complex in the plasma membranes of human 143B osteosarcoma cells responsible for the NADH-dependent reduction of WST-1. The dye-reducing activity of the 300 kDa complex was attributed to a 70 kDa NADH oxidoreductase activity that cross-reacted with antisera against the ECTO-NOX protein CNOX. Differences in enzyme activities and inhibitor profiles between the WST-1-reducing NADH oxidoreductase enzyme in the presence of NADH or mPMS and the ECTO-NOX family are reconciled in terms of the different purification methods and assay systems used to study these proteins.  相似文献   

17.
Reduction of the cell-impermeable tetrazolium salt WST-1 has been used to characterise two plasma membrane NADH oxidoreductase activities in human cells. The trans activity, measured with WST-1 and the intermediate electron acceptor mPMS, utilises reducing equivalents from intracellular sources, while the surface activity, measured with WST-1 and extracellular NADH, is independent of intracellular metabolism. Whether these two activities involve distinct proteins or are inherent to a single protein is unclear. In this work, we have attempted to address this question by examining the relationship between the trans and surface WST-1-reducing activities and a third well-characterised family of cell surface oxidases, the ECTO-NOX proteins. Using blue native-polyacrylamide gel electrophoresis, we have identified a complex in the plasma membranes of human 143B osteosarcoma cells responsible for the NADH-dependent reduction of WST-1. The dye-reducing activity of the 300 kDa complex was attributed to a 70 kDa NADH oxidoreductase activity that cross-reacted with antisera against the ECTO-NOX protein CNOX. Differences in enzyme activities and inhibitor profiles between the WST-1-reducing NADH oxidoreductase enzyme in the presence of NADH or mPMS and the ECTO-NOX family are reconciled in terms of the different purification methods and assay systems used to study these proteins.  相似文献   

18.
19.
The relative significance of weak non-covalent interactions in biological context has been much debated. Here, we have addressed the contribution of Coulombic interactions to protein stability and assembly experimentally. The sweet protein monellin, a non-covalently linked heterodimeric protein, was chosen for this study because of its ability to spontaneously reconstitute from separated fragments. The reconstitution of monellin mutants containing large surface charge perturbations was compared to the thermostability of structurally equivalent single-chain monellin containing the same sets of mutations under varying salt concentrations. The affinity between monellin fragments is found to correlate with the thermostability of single chain monellin, indicating the involvement of the same underlying Coulombic interactions. This confirms that there are no principal differences in the interactions involved in folding and binding. Based on comparison with a previous mutational study involving hydrophobic core residues, the relative contribution of Coulombic interactions to stability and affinity is modest. However, the Coulombic perturbations only affect the association rates of reconstitution in contrast to perturbations involving hydrophobic residues, which affect primarily the dissociation rates. These results indicate that Coulombic interactions are likely to be of main importance for the association of protein assembly, relevant for functions of proteins.  相似文献   

20.
We have determined the structure of the immunoglobulin light-chain dimer Loc in a second crystal form that was grown from distilled water. The crystal structure was determined to 2.8-A resolution; the R factor is 0.22. The two variable domains are related by local 2-fold axes and form an antigen binding "pocket". The variable domain-variable domain interaction observed in this crystal form differs from the one exhibited by the protein when crystallized from ammonium sulfate in which the two variable domains formed a protrusion (Chang et al., 1985). The structure attained in the distilled water crystals is similar to, but not identical with, the one observed for the Mcg light-chain dimer in crystals grown from ammonium sulfate. Thus, two strikingly different structures were attained by this multisubunit protein in crystals grown under two different, commonly used, crystallization techniques. The quaternary interactions exhibited by the protein in the two crystal forms are sufficiently different to suggest fundamentally different interpretations of the structural basis for the function of this protein. This observation may have general implications regarding the use of single crystallographic determinations for detailed identification of structural and functional relationships. On the other hand, proteins whose structures can be altered by manipulation of crystallization conditions may provide useful systems for study of fundamental structural chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号