首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research compared the binding and release of recombinant human bone morphogenetic protein 2 (rhBMP-2) with a series of hydrophobic and hydrophilic poly-lactide-co-glycolide (PLGA) copolymers. Porous microspheres were produced via a double emulsion process. Binding and incorporation of protein were achieved by soaking microspheres in buffered protein solutions, filtering, and comparing protein concentration remaining to nonmicrosphere-containing samples. Protein release was determined by soaking bound microspheres in a physiological buffer and measuring protein concentration (by reversed-phase high-performance liquid chromatography) in solution over time. Normalized for specific surface area and paired by polymer molecular weight. microspheres made from hydrophilic 50∶50 or 75∶25 PLGA bound significantly more protein than microspheres made from the corresponding hydrophobic PLGA. Increased binding capacity correlated with higher polymer acid values. With certain polymers, rhBMP-2 adsorption was decreased or inhibited at high protein concentration, but protein loading could be enhanced by increasing the protein solution:PLGA (volume:mass) ratio or by repetitive soaking. Microspheres of various PLGAs released unbound protein in 3 days, whereas the subsequent bound protein release corresponded to mass loss. RhBMP-2 binding to PLGA was controlled by the acid value, protein concentration, and adsorption technique. The protein released in 2 phases: the first occurred over 3 days regardless of PLGA used and emanated from unbound, incorporated protein, while the second was controlled by mass loss and therefore was dependent on the polymer molecular weight. Overall, control of rhBMP-2 delivery is achievable by selection of PLGA microsphere carriers. Published: October, 7, 2001.  相似文献   

2.
The biomimetic approach mimicking in vivo micro environment is the key for developing functional tissue engineered constructs. In this study, we used a tripolymer combination consisting of a natural polymer, chitosan and two extracellular matrix components; collagen type 1 and hyaluronic acid to coat tissue culture plate to evaluate their effect on osteogenic differentiation of human bone marrow derived mesenchymal stem cells (hMSCs). The polymers were blended at different mixing ratios and the tissue culture plates were coated either by polyblend method or by surface modification method. hMSCs isolated from adult bone marrow were directed to osteoblast differentiation on the coated plates. Our results showed that the tripolymer coating of the tissue culture plate enhanced mineralization as evidenced by calcium quantification exhibiting significantly higher amount of calcium compared to the untreated or individual polymer coated plates. We found that the tripolymer coated plates having a 1:1 mixing ratio of chitosan and collagen type 1, surface modified with hyaluronic acid is an ideal combination to achieve the synergistic effect of these polymers on in vitro osteogenic differentiation of hMSCs. These results thus, establish a novel biomimetic approach of surface modification to enhance osteoblast differentiation and mineralization. Our findings hold great promise in implementing a biomimetic surface coating to improve osteoconductivity of implants and scaffolds for various orthopaedic and bone tissue engineering applications.  相似文献   

3.
Coating the surface of titanium implants or other bone graft substitute materials with calcium phosphate (Ca-P) crystals is an effective way to enhance the osteoconduction of the implants. Ca-P coating alone cannot confer pro-osteodifferentiation and antibacterial capabilities on implants; however, it can serve as a carrier for biological agents which could improve the performance of implants and bone substitutes. Here, we constructed a novel, bi-functional Ca-P coating with combined pro-osteodifferentiation and antibacterial capabilities. Different concentrations of metronidazole (MNZ) and simvastatin (SIM) were integrated into biomimetic Ca-P coatings on the surface of titanium disks. The biological effects of this bi-functional biomimetic coating on human bone marrow mesenchymal stem cells (hBMMSCs), human adipose derived stromal cells (hASCs), and Porphyromonas gingivalis were assessed in vitro. We observed that Ca-P coatings loaded with both SIM and MNZ display favorable release kinetics without affecting cell proliferation or attachment. In the inhibition zone test, we found that the bi-functional coating showed lasting antibacterial effects when incubated with Porphyromonas gingivalis for 2 and 4 days. Moreover, the osteodifferentiation of hBMMSCs and hASCs were increased when cultured on this bi-functional coating for 7 and 14 days. Both drugs were loaded onto the Ca-P coating at specific concentrations (10−5 M SIM; 10−2 M MNZ) to achieve optimal release kinetics. Considering the safety, stability and low cost of SIM and MNZ, this novel bi-functional Ca-P coating technique represents a promising method to improve the performance of metal implants or other bone substitute materials, and can theoretically be easily translated to clinical applications.  相似文献   

4.
Emulsan, a tailorable biopolymer for controlled release   总被引:2,自引:0,他引:2  
Microsphere hydrogels made with emulsan-alginate were used as carrier for the microencapsulation of blue dextran in order to study the effect of emulsan on the alginate bead stability. Blue dextran release studies indicated an increase of microsphere stability in presence of emulsan, as a coating agent. BSA adsorption by emulsan-alginate microspheres is also enhanced 40% compared to alginate alone. XPS studies confirm the presence of BSA adsorbed on emulsan microsphere surfaces. These results are in agreement with the equilibrium adsorption model of Freundlich. Studies of BSA adsorption using non-equilibrium Lagergren second-order and intraparticle models, are suggesting a complex mechanisms of protein adsorption by chemisorption and intraparticle diffusion. Also, enzymatic release of BSA from emulsan microspheres containing azo-BSA under physiological conditions is suggests the possibility of using microspheres as a depot for pre-proteins of medical interest.  相似文献   

5.
In this study, the use of biodegradable polymers for microencapsulation of naltrexone using solvent evaporation technique is investigated. The use of naltrexone microspheres for the preparation of matrix devices is also studied. For this purpose, poly(L-lactide) (PLA) microspheres containing naltrexone prepared by solvent evaporation technique were compressed at temperatures above the Tg of the polymer. The effect of different process parameters, such as drug/polymer ratio and stirring rate during preparation of microspheres, on the morphology, size distribution, and in vitro drug release of microspheres was studied. As expected, stirring rate influenced particle size distribution of microspheres and hence drug release profiles. By increasing the stirring speed from 400 to 1200 rpm, the mean diameter of microspheres decreased from 251 μm to 104 μm. The drug release rate from smaller microspheres was faster than from larger microspheres. However, drug release from microspheres with low drug content (20% wt/wt) was not affected by the particle size of microspheres. Increasing the drug content of microspheres from 20% to 50% wt/wt led to significantly faster drug release from microspheres. It was also shown that drug release from matrix devices prepared by compression of naltrexone microspheres is much slower than that of microspheres. No burst release was observed with matrix devices. Applying higher compression force, when compressing microspheres to produce tablets, resulted in lower drug release from matrix devices. The results suggest that by regulating different variables, desired release profiles of naltrexone can be achieved using a PLA microparticulate system or matrix devices.  相似文献   

6.
Fibrous encapsulation is known to occur to many prosthetic implants and is thought to be due to the cells not adhering adequately to the surface. For developing new materials able to enhance cellular adhesion by mimicking extracellular matrix components, polyelectrolyte polymers, characterized by tunable surface charges, have been proposed. Here we demonstrate that panoply of cell functions over a two-dimensional substratum is influenced by surface charge. We have at first generated structurally related polyelectrolyte substrata varying in their positive surface charge amount and subsequently evaluated a variety of behaviors of human primary fibroblasts seeded on these polymers. The proportion of adherent, spreading, and proliferating cells was increased significantly on cationic hydrophilic surfaces when compared with the neutral base surface. The extent of cell spreading correlated with cytoskeleton organization as assessed using immunofluorescence techniques. In the key experiment, the presence of cationic charges on cell adhesion-resistant neutral surface increased the synthesis of collagen I and III, the release of their metabolites, and the expression of their mRNA by fibroblasts. Interestingly, the scarce collagen deposits on neutral polymer consisted, for the most part, of collagen I while collagen III was present only in traces probably due to the secretion of metalloproteinase-2 by non-adherent fibroblasts. Taken together, these results show that polyelectrolyte films may promote the attachment of fibroblast cells as well as their normal secretory phenotype. Both effects could be potentially useful in integrating soft connective tissue to the implant, decreasing the chance of its fibrous encapsulation.  相似文献   

7.
Metallic materials are commonly used for load-bearing implants and as internal fixation devices. It is customary to use austenitic stainless steel, especially surgical grade type 316L SS as temporary and Ti alloys as permanent implants. However, long-term, poor bonding with bone, corrosion, and release of metal ions, such as chromium and nickel occur. These ions are powerful allergens and carcinogens and their uncontrolled leaching may be avoided by surface coatings. Therefore, bioactive glasses (BGs) became a vital biomedical material, which can form a biologically active phase of hydroxycarbonate apatite on their surface when in contact with physiological fluids. To reduce the high coefficient of friction and the brittle nature of BGs, polymers are normally incorporated to avoid the high-temperature sintering/densification of ceramic-only coatings. For medical application, electrophoretic deposition (EPD) is now used for polymer (organic) and ceramic (inorganic) components at room temperature due to its simplicity, control of coating thickness and uniformity, low cost of equipment, ability to coat substrates of intricate shape and to supply thick films in composite form, high purity of deposits as well as no phase transformation during coating. Although extensive research has been conducted on polymer/inorganic composite coatings, only some studies have reported multifunctional properties, such as biological antibacterial activity, enhanced cell adhesion, controlled drug release ability, and mechanical properties. This review will focus on biodegradable coatings, including zien, chitosan, gelatin, cellulose loaded with antibacterial drugs/metallic ions/natural herbs on biostable substrates (PEEK/PMMA/PCL/PLLA layers), which have the potential of multifunctional coating for metallic implants.  相似文献   

8.
The purpose of this research was to develop the taste-masked microspheres of intensely bitter drug ondansetron hydrochloride (OSH) by spray-drying technique. The bitter taste threshold value of OSH was determined. Three different polymers viz. Chitosan, Methocel E15 LV, and Eudragit E100 were used for microsphere formation, and the effect of different polymers and drug–polymer ratios on the taste masking and release properties of microspheres was investigated. The microspheres were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, Drug loading, in vitro bitter taste evaluation, and drug-release properties. The taste masking was absent in methocel microspheres at all the drug–polymer ratios. The Eudragit microspheres depicted taste masking at 1:2 drug–polymer ratio whereas with Chitosan microspheres the taste masking was achieved at 1:1 drug–polymer ratio. The drug release was about 96.85% for eudragit microspheres and 40.07% for Chitosan microspheres in 15 min.  相似文献   

9.
This investigation synthesized and characterized hydroxyapatite (HAP) microspheres, agglomerated microspheres, and implants containing ciprofloxacin. This delivery system is to be used as an implantable drug delivery system for the treatment of bone infections. The HAP microspheres were made by chemical precipitation followed by a spray-drying technique. Agglomerated microspheres were prepared by a wet granulation process using a granulator. Implants were prepared by direct compression of the granules on a Carver press. Ciprofloxacin was analyzed by high-performance liquid chromatography. Characterization of the HAP microspheres include particle size, size distribution, physical state of the drug in the microsphere, and microstructure of the drug delivery system before and after in vitro release. The particle size, porosity, and morphology of the microspheres were dependent on viscosity and concentration of the slurry as well as the atomization pressure used during spray drying. Even at the highest drug load (2% wt/wt), the drug was present in a noncrystalline state. The drug release from the agglomerated microspheres was quick and almost complete within 1 hour. However, compressing the same amount of agglomerated microspheres into an implant greatly reduced the rate of ciprofloxacin release. Only 12% (wt/wt) of the drug was released from the implant within 1 hour. The in vitro release of ciprofloxacin from these implants follows a diffusion-controlled mechanism. This method provides a unique way of producing various shapes and drug loads of HAP microspheres that can be easily manufactured on a commercial scale. Published: January 28, 2002.  相似文献   

10.
Microspheres were formed from blends of the biodegradable polymer poly(DL-lactic-co-glycolic acid) (PLGA) together with poly(epsilon-CBZ-L-lysine) (PCBZL) by a double-emulsification/solvent evaporation technique. The size of the microspheres formed by this method was dependent both on the total concentration of the polymers and on the ratio of PLGA to PCBZL. The use of the microspheres for encapsulation was demonstrated by the inclusion of a solution of Texas Red fluorescent dye. Lysine epsilon-amino groups on the surface of the microspheres were deprotected by acid hydrolysis or lithium/liquid ammonia reduction. Acid hydrolysis damaged the surface of the microspheres as assessed by scanning electron microscopy, whereas deprotection by lithium/ammonia produced less damage and allowed the retention of encapsulated dye solution. The surface lysine groups made available on the surface of the microspheres could be used to covalently link a variety of biologically active molecules to alter their in vivo properties and allow targeting to specific cell types.  相似文献   

11.
In this study, ethylcellulose (EC)-based microsphere formulations were prepared without and with triethyl citrate (TEC) content of 10% and 30% by water-in-oil emulsion-solvent evaporation technique. Diltiazem hydrochloride (DH) was chosen as a hydrophilic model drug and used at different drug/polymer ratios in the microspheres. The aim of the work was to evaluate the influence of plasticizer ratio on the drug release rate and physicochemical characteristics of EC-based matrix-type microspheres. The resulting microspheres were evaluated for encapsulation efficiency, particle size and size distribution, surface morphology, total pore volume, thermal characteristics, drug release rates, and release mechanism. Results indicated that the physicochemical properties of microspheres were strongly affected by the drug/polymer ratio investigated and the concentration of TEC used in the production technique. The surface morphology and pore volume of microspheres significantly varied based on the plasticizer content in the formulation. DH release rate from EC-based matrix-type microspheres can be controlled by varying the DH to polymer and plasticizer ratios. Glass transition temperature values tended to decrease in conjunction with increasing amounts of TEC. Consequently, the various characteristics of the EC microspheres could be modified based on the plasticized ratio of TEC.  相似文献   

12.
When orthopedic joints coated by hydroxyapatite(HA) were implanted in the human body, they release wear debris into the surrounding tissues. The generation and accumulation of wear particles will induce aseptic loosening. However, the potential bioeffect and mechanism of HA-coated orthopedic implants on bone cells are poorly understood. In this study, defect-related luminescent bur-like hydroxyapatite(BHA) microspheres with the average diameter of 7–9 μm which are comparable to that of the wear-debris particles from aseptically loosened HA implants or HA debris have been synthesized by hydrothermal synthesis and the MC3 T3-E1 cells were set as a cells model to study the potential bioeffect and mechanism of BHA microspheres. The studies demonstrated that BHA microspheres could be taken into MC3 T3-E1 cells via endocytosis involved in micropinocytosisand clathrin-mediated endocytosis process, and exert cytotoxicity effect. BHA microspheres could induce the cell apoptosis by intracellular production of reactive oxygen species(ROS), which led to not only an increase in the permeability of lysosome and release of cathepsins B, but also mitochondrial dysfunction and DNA damage. Our results provide novel evidence to elucidate their toxicity mechanisms and might be helpful for more reasonable applications of HA-based orthopaedic implants in the future.  相似文献   

13.
The hypothesis of this research was that implants of poly(lactide-co-glycolide) (PLGA) microspheres loaded with bone morphogenetic protein-2 (rhBMP-2) and distributed in a freeze-dried carboxymethylcellulose (CMC) matrix would produce more new bone than would matrix implants of non-protein-loaded microspheres or matrix implants of only CMC. To test this hypothesis it was necessary to fashion microsphere-loaded CMC implants that were simple to insert, fit precisely into a defect, and would not elicit swelling. Microspheres were produced via a water-in-oil-in-water double-emulsion system and were loaded with rhBMP-2 by soaking them in a buffered solution of the protein at a concentration of 5.4 mg protein per gram of PLGA. Following recovery of the loaded microspheres by lyophilization matrices for implantation were prepared by lyophilizing a suspension of the microspheres in 2% CMC in flat-bottom tissue culture plates. Similar matrices were made with 2% CMC and with 2% CMC containing blank microspheres. A full-thickness calvarial defect model in New Zealand white rabbits was used to assess bone growth. Implants fit the defect well allowing for direct application. Six weeks postsurgery, defects were collected and processed for undecalcified histology. In vitro, 60% of the loaded rhBMP-2 released from devices or microspheres in 5 to 7 days. With the unembedded microspheres releasing faster than those embedded in CMC In vivo. the rhBMP-2 microspheres greatly enhanced bone healing, whereas nonloaded PLGA microspheres in the CMC implants had little effect. The results showed that a lyophilized device of rhBMP-2 PLGA microspheres in CMC was an effective implantable protein-delivery system for the use in bone repair. Published: October 7. 2001.  相似文献   

14.
Lysozyme was encapsulated within biodegradable poly(D, L-lactide-co-glycolide) microspheres by a double emulsion solvent evaporation method for studying its release mechanism associated with protein stability problems. When urea, a protein unfolding agent, was added into the incubation medium lysozyme release rate from the microspheres increased with the increase in urea concentration. The enhanced lysozyme release was attributed to the suppression of protein aggregation, to the facilitated diffusion of unfolded lysozyme by an efficient reptile motion of unfolded protein molecules through porous channels in microspheres, and to the largely decreased extent of nonspecific protein adsorption onto the enlarged surface area of degrading polymer microspheres in the presence of urea. Encapsulating lysozyme in an unfolded form within PLGA microspheres was attempted by using urea as an excipient. This new urea-based formulation exhibited a more sustained lysozyme release profile than the control formulation, and released lysozyme from the microspheres showed a much less amount of lysozyme dimer population while maintaining a correct conformation after refolding in the incubation medium. This study provides new insights for the formulation of protein encapsulated PLGA microspheres.  相似文献   

15.
The purpose of the present investigation was to encapsulate pure prednisolone (PRD) and PRD–hydroxypropyl-β-cyclodextrin (HPβCD) complex in cellulose-based matrix microspheres. The system simultaneously exploits complexation technique to enhance the solubility of low-solubility drug (pure PRD) and subsequent modulation of drug release from microspheres (MIC) at a predetermined time. The microspheres of various compositions were prepared by an oil-in-oil emulsion–solvent evaporation method. The effect of complexation and presence of cellulose polymers on entrapment efficiency, particle size, and drug release had been investigated. The solid-state characterization was performed by Fourier transform infrared spectroscopy, thermogravimetry, differential scanning calorimetry, and powder X-ray diffractometry. The morphology of MIC was examined by scanning electron microscopy. The in vitro drug release profiles from these microspheres showed the desired biphasic release behavior. After enhancing the solubility of prednisolone by inclusion into HPβCD, the drug release was easily modified in the microsphere formulation. It was also demonstrated that the CDs in these microspheres were able to modulate several properties such as morphology, drug loading, and release properties. The release kinetics of prednisolone from microspheres followed quasi-Fickian and first-order release mechanisms. In addition to this, the f 2-metric technique was used to check the equivalency of dissolution profiles of the optimized formulation before and after stability studies, and it was found to be similar. A good outcome, matrix microspheres (coded as MIC5) containing PRD–HPβCD complex, showed sustained release of drug (95.81%) over a period of 24 h.  相似文献   

16.
Poly(epsilon-CBZ-L-lysine) can be mixed with biodegradable polymers such as poly(D,L-lactic-co-glycolic acid) or poly(L-lactic acid) and formed into films, foams, or microspheres. Surface amino groups may then be deprotected with acid or lithium/liquid ammonia. The amino groups serve as a method to modify the surface by attachment of other molecules. In the present experiments, we show that these polymer materials, as films or foams, may be surface modified by the attachment of polyethyleneimine (PEI). Plasmid DNA attached to the PEI can transfect cells plated on the surface over several days. Covalent atachment of PEI was required for transfection to be efficient. PEI was also attached to surface-bound collagen on cell culture plates and was shown to mediate transfection.  相似文献   

17.
Surface functionalization plays an important role in the design of biomedical implants, especially when layer forming cells, such as endothelial or epithelial cells, are needed. In this study, we define a novel nanoscale surface coating composed of collagen/alginate polyelectrolyte multilayers and cross-linked for stability with genipin. This buildup follows an exponential growth regime versus the number of deposition cycles with a distinct nanofibrillar structure that is not damaged by the cross-linking step. Stability and cell compatibility of the cross-linked coatings were studied with human umbilical vein endothelial cells. The surface coating can be covered by a monolayer of vascular endothelial cells within 5 days. Genipin cross-linking renders the surface more suitable for cell attachment and proliferation compared to glutaraldehyde (more conventional cross-linker) cross-linked surfaces, where cell clumps in dispersed areas were observed. In summary, it is possible with the defined system to build fibrillar structures with a nanoscale control of film thickness, which would be useful for in vivo applications such as inner lining of lumens for vascular and tracheal implants.  相似文献   

18.
The effect of concentration of hydrophilic (hydroxypropyl methylcellulose [HPMC]) and hydrophobic polymers (hydrogenated castor oil [HCO], ethylcellulose) on the release rate of tramadol was studied. Hydrophilic matrix tablets were prepared by wet granulation technique, while hydrophobic (wax) matrix tablets were prepared by melt granulation technique and in vitro dissolution studies were performed using United States Pharmacopeia (USP) apparatus type II. Hydrophobic matrix tablets resulted in sustained in vitro drug release (>20 hours) as compared with hydrophilic matrix tablets (<14 hours). The presence of ethylcellulose in either of the matrix systems prolonged the release rate of the drug. Tablets prepared by combination of hydrophilic and hydrophobic polymers failed to prolong the drug release beyond 12 hours. The effect of ethylcellulose coating (Surelease) and the presence of lactose and HPMC in the coating composition on the drug release was also investigated. Hydrophobic matrix tablets prepared using HCO were found to be best suited for modulating the delivery of the highly water-soluble drug, tramadol hydrochloride.  相似文献   

19.
《Phytomedicine》2014,21(12):1627-1632
The aim of this study was to encapsulate, thymol, in natural polymers in order to obtain (i) taste masking effect and, then, enhancing its palatability and (ii) two formulations for systemic and local delivery of herbal drug as adjuvants or substitutes to current medications to prevent and treat several human and animal diseases. Microspheres based on methylcellulose or hydroxypropyl methylcellulose phthalate (HPMCP) were prepared by spray drying technique. Microparticles were in vitro characterized in terms of yield of production, drug content and encapsulation efficiency, particle size, morphology and drug release. Both formulations were in vivo orally administered and pharmacokinetic analysis was carried out. The polymers used affect the release and, then, the pharmacokinetic profile of thymol. Encapsulation into methylcellulose microspheres leads to short half/life but bioavailability remarkably increases compared to the free thymol. In contrast, enteric formulation based on HPMCP shows very limited systemic absorption. These formulations could be proposed as alternative or adjuvants for controlling pathogen infections in human or animal. In particular, methylcellulose microspheres can be used for thymol systemic administration at low doses and HPMCP particles for local treatment of intestinal infections.  相似文献   

20.
Chemical sensors utilizing immobilized enzymes and proteins are important for monitoring chemical processes and biological systems. In this study, calcium-cross-linked alginate hydrogel microspheres were fabricated as enzyme carriers by an emulsification technique. Glucose oxidase (GOx) was encapsulated in alginate microspheres using three different methods: physical entrapment (emulsion), chemical conjugation (conjugation), and a combination of physical entrapment and chemical conjugation (emulsion-conjugation). Nano-organized coatings were applied on alginate/GOx microspheres using the layer-by-layer self-assembly technique in order to stabilize the hydrogel/enzyme system under biological environment. The encapsulation of GOx and formation of nanofilm coating on alginate microspheres were verified with FTIR spectral analysis, zeta-potential analysis, and confocal laser scanning microscopy. To compare both the immobilization properties of enzyme encapsulation techniques and the influence of nanofilms with uncoated microspheres, the relationship between enzyme loading, release, and effective GOx activity (enzyme activity per unit protein loading) were studied over a period of four weeks. The results produced four key findings: (1) the emulsion-conjugation technique improved the stability of GOx in alginate microspheres compared to the emulsion technique, reducing the GOx leaching from microsphere from 50% to 17%; (2) the polyelectrolyte nanofilm coatings increased the GOx stability over time, but also reduced the effective GOx activity; (3) the effective GOx activity for the emulsion-conjugation technique (about 3.5 x 10(-)(5) AU microg(-)(1) s(-)(1)) was higher than that for other methods, and did not change significantly over four weeks; and (4) the GOx concentration, when compared after one week for microspheres with three bilayers of poly(allylamine hydrochloride)/sodium poly(styrene sulfonate) ({PAH/PSS}) coating, was highest for the emulsion-conjugation technique. As a result, the comparison of these three techniques showed the emulsion-conjugation technique to be a potentially effective and practical way to fabricate alginate/GOx microspheres for implantable glucose biosensor application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号