首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Drug molecules not only interact with specific targets, but also alter the state and function of the associated biological network. How to design drugs and evaluate their functions at the systems level becomes a key issue in highly efficient and low–side-effect drug design. The arachidonic acid metabolic network is the network that produces inflammatory mediators, in which several enzymes, including cyclooxygenase-2 (COX-2), have been used as targets for anti-inflammatory drugs. However, neither the century-old nonsteriodal anti-inflammatory drugs nor the recently revocatory Vioxx have provided completely successful anti-inflammatory treatment. To gain more insights into the anti-inflammatory drug design, the authors have studied the dynamic properties of arachidonic acid (AA) metabolic network in human polymorphous leukocytes. Metabolic flux, exogenous AA effects, and drug efficacy have been analyzed using ordinary differential equations. The flux balance in the AA network was found to be important for efficient and safe drug design. When only the 5-lipoxygenase (5-LOX) inhibitor was used, the flux of the COX-2 pathway was increased significantly, showing that a single functional inhibitor cannot effectively control the production of inflammatory mediators. When both COX-2 and 5-LOX were blocked, the production of inflammatory mediators could be completely shut off. The authors have also investigated the differences between a dual-functional COX-2 and 5-LOX inhibitor and a mixture of these two types of inhibitors. Their work provides an example for the integration of systems biology and drug discovery.  相似文献   

2.
Long-chain conversion of linoleic acid (LA) and eicosanoid formation was followed in 6 healthy females who were given for 6 weeks liquid formula diets which contained no arachidonic acid but, for 2 weeks each, a LA supply of 0 energy% (en%), 4 en%, and 20 en%, respectively. RESULTS: higher LA intake resulted in higher LA percentages in investigated lipids, but not in higher amounts of LA present in plasma cholesterol esters or phosphatidylcholine of LDL and HDL comparing liquid formula diet (LFD) 4 and LFD 20. A higher intake of LA resulted in a decrease of arachidonic acid, which was most prominent in HDL phosphatidycholine. Eicosanoids derived from cyclo-oxygenase activity were unchanged by LA intake, while an increase of cytochrome P450-dependent tetranorprostanedioic acid formation was observed with LFD 20. CONCLUSION: LA intake of 4 en% appears to be a recommendable intake, without signs of stimulated eicosanoid biosynthesis or oxidation.  相似文献   

3.
Background: Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-lipoxygenase (5-LOX) and 15-LOX in vitro, exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology. Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites’ concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC. Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model. Conclusion: Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.  相似文献   

4.
Human peripheral blood monocyte-macrophages (M) generate a novel eicosanoid during in vitro culture. The metabolite is generated during incubation of the cells with 14C — arachidonic acid (AA). Lack of prior recognition of this metabolite probably results from the facts that: 1) on thin-layer chromatography (TLC) in two standard solvent systems, the novel metabolite co-chromatographed with either prostaglandin D2 or thromboxane B2, and 2) its generation, under the conditions studied, does not occur until between 90 and 180 minutes after culture initiaton which is a time period beyond that used for most leukocyte studies. The generation of the metabolite is inhibited by nordihydroguaiaretic acid (NDGA) but not by indomethacin. Base hydrolysis did not alter its migration on TLC. On both reversed phase and straight phase high pressure liquid chromatography (HPLC), the novel peak isolated by TLC elutes as a single major peak of radioactivity with a retention time different from the known leukotrienes, hydroxy acids, or their metabolites. Furthermore, the peak isolated on HPLC has a single ultraviolet absorption maximum at 270 nm. M cultured for 1 week prior to a 24 hour incubation with 14C-AA generated proportionally less of the novel eicosanoid (roughly 68% of total radiolabeled product) than did M cultured for 3 weeks prior to a similar incubation with 14C-AA (roughly 86% of total radiolabeled product). Under the conditions studied, the novel eicosanoid is the major AA metabolite generated from exogenous AA by cultured M and it appears to be generated in increasing quantity as the M differentiate.  相似文献   

5.
Human peripheral blood monocyte-macrophages (M phi) generate a novel eicosanoid during in vitro culture. The metabolite is generated during incubation of the cells with 14C - arachidonic acid (AA). Lack of prior recognition of this metabolite probably results from the facts that: 1) on thin-layer chromatography (TLC) in two standard solvent systems, the novel metabolite co-chromatographed with either prostaglandin D2 or thromboxane B2, and 2) its generation, under the conditions studied, does not occur until between 90 and 180 minutes after culture initiation which is a time period beyond that used for most leukocyte studies. The generation of the metabolite is inhibited by nordihydroguaiaretic acid (NDGA) but not by indomethacin. Base hydrolysis did not alter its migration on TLC. On both reversed phase and straight phase high pressure liquid chromatography (HPLC), the novel peak isolated by TLC elutes as a single major peak of radioactivity with a retention time different from the known leukotrienes, hydroxy acids, or their metabolites. Furthermore, the peak isolated on HPLC has a single ultraviolet absorption maximum at 270 nm. M phi cultured for 1 week prior to a 24 hour incubation with 14C-AA generated proportionally less of the novel eicosanoid (roughly 68% of total radiolabeled product) than did M phi cultured for 3 weeks prior to a similar incubation with 14C-AA (roughly 86% of total radiolabeled product). Under the conditions studied, the novel eicosanoid is the major AA metabolite generated from exogenous AA by cultured M phi and it appears to be generated in increasing quantity as the M phi differentiate.  相似文献   

6.
The present study was designed to determine whether platelets transfer arachidonic acid or prostaglandin endoperoxide intermediates to macrophages which may be further metabolized into cyclooxygenase products. Adherent peritoneal macrophages were prepared from rats fed either a control diet or an essential fatty acid-deficient diet, and incubated with a suspension of washed rat platelets. Macrophage cyclooxygenase metabolism was inhibited by aspirin. In the presence of a thromboxane synthetase inhibitor, 7-(1-imidazolyl)heptanoic acid, immunoreactive 6-ketoprostaglandin F1 alpha formation was significantly increased 3-fold. Since this increase was greater (P less than 0.01) than that seen with either 7-(1-imidazolyl)heptanoic acid-treated platelets or aspirin-treated macrophages alone, these results indicate that shunting of endoperoxide from platelets to macrophages may have occurred. In further experiments, macrophages from essential fatty acid-deficient rats were substituted for normal macrophages. Essential fatty acid-deficient macrophages, depleted of arachidonic acid, produced only 2% of the amount of eicosanoids compared to macrophages from control rats. When platelets were exposed to aspirin, stimulated with thrombin, and added to essential fatty acid-deficient macrophages, significantly more immunoreactive 6-ketoprostaglandin F1 alpha was formed than in the absence of platelets. This increased macrophage immunoreactive 6-ketoprostaglandin F1 alpha synthesis, therefore, must have occurred from platelet-derived arachidonic acid. These data indicate that in vitro, in the presence of an inhibition of thromboxane synthetase, prostaglandin endoperoxides, as well as arachidonic acid, may be transferred between these two cell types.  相似文献   

7.
The effects of a conjugated linoleic acid (CLA) mixture of single isomers (50:50, w/w, cis9,trans11:trans10,cis12) and the individual isomers on (a) the production of resting and calcium ionophore stimulated (14)C-eicosanoids and (b) the incorporation of (14)C-arachidonic acid (AA) into membrane phospholipids of human saphenous vein endothelial cells were investigated. The CLA mixture and the individual isomers were found to inhibit resting production of (14)C-prostaglandin F(2a) by 50, 43 and 40%, respectively. A dose dependent inhibition of stimulated (14)C-prostaglandins was observed with the CLA mixture (IC(50) 100 microM). The cis9,trans11 and trans10,cis12 (50 microM) isomers individually inhibited the overall production of stimulated (14)C-prostaglandins (between 35 and 55% and 23 and 42%, respectively). When tested at a high concentration (100 microM), cis9,trans11 was found to inhibit eicosanoid production in contrast to trans10,cis12 that caused stimulation. The overall degree of (14)C-AA incorporation into membrane phospholipids of the CLA (mixture and individual isomers) treated cells was found to be lower than that of control cells and the cis9,trans11 isomer was found to increase the incorporation of (14)C-AA into phosphatidylcholine. Docosahexaenoic acid, eicosapentaenoic acid and linoleic acid did not alter the overall degree of incorporation of (14)C-AA. The results of this study suggest that both isomers inhibit eicosanoid production, and although trans10,cis12 exhibits pro-inflammatory activity at high concentrations, the CLA mixture maintains its beneficial anti-inflammatory action that contributes to its anti-carcinogenic and anti-atherogenic properties.  相似文献   

8.
In astrocyte-enriched cultures of the rat cerebral cortex the Ca2+ ionophore A23187 provoked the breakdown of inositol phospholipids, the liberation of arachidonic acid and the release of prostaglandins E2, F2 alpha, I2 and thromboxane A2. However, agonists for receptors also coupled to inositol phospholipid metabolism in these cells failed to produce an increase in the release of both arachidonic acid and eicosanoids. Results suggest that the A23187-stimulated release of arachidonic acid and eicosanoids is caused by a phospholipase A2-mediated attack on lipids other than the inositol phospholipids. Moreover, receptors linked to inositol lipid turnover are not involved in the control of eicosanoid release from astrocytes.  相似文献   

9.
Intraperitoneal injection of zymosan into mice induces a peritonitis characterized by cellular influx, plasma leakage and the appearance of arachidonic acid (AA) metabolites. We report that zymosan injection also stimulates the accumulation of AA, docosahexaenoic acid, linoleic acid, and phospholipase A2 (PLA2) activity. The amount of the unsaturated fatty acids (UnFA) varies both with the zymosan dose and time. Significantly increased levels of UnFA were first detected 15 min after zymosan injection. Maximal levels of the UnFA were reached 1 to 2 h post zymosan injection (AA: 725 +/- 29 ng/mouse, docosahexaenoic acid: 296 +/- 23 ng/mouse, linoleic acid: 4489 +/- 179 ng/mouse) and declined to saline control levels by 8 h. PLA2 activity was significantly increased 5 to 15 min after zymosan injection. Maximal levels of PLA2 activity occurred 15 to 30 min after zymosan injection (31.8 +/- 9.1 nmol phospholipid/mg protein/h) and then decreased by 30% through 24 h. Neither the appearance of UnFA nor PLA2 activity correlated with cellular influx, but both were coincident with plasma exudation at 5 to 15 min after zymosan. However, maximal exudation occurred 1 to 2 h post zymosan injection similar to that seen with the UnFA but not PLA2. These latter results suggest that a significant portion of the UnFA found in the peritoneal cavity of zymosan-injected mice originates from the plasma. PLA2 activity at the early time points (5 to 15 min) may also contribute to the levels of UnFA via hydrolysis of tissue and/or cellular phospholipids.  相似文献   

10.
11.
N F Voelkel 《Prostaglandins》1985,29(5):867-889
  相似文献   

12.
13.
14.
The influence of OKY 1581, a thromboxane synthase inhibitor, on airway responses to arachidonic acid and endoperoxide, [prostaglandin (PG) H2], were investigated in anesthetized, paralyzed, mechanically ventilated cats. Intravenous injections of arachidonic acid and PGH2 caused dose-related increases in transpulmonary pressure and lung resistance and decreases in dynamic and static compliance. OKY 1581 significantly decreased airway responses to arachidonic acid but not to PGH2. Sodium meclofenamate, a cyclooxygenase inhibitor, abolished airway responses to arachidonic acid but had no effect on airway responses to PGH2. OKY 1581 or meclofenamate has no effect on airway responses to PGF2 alpha, PGD2, or U 46619, a thromboxane mimic. In microsomal fractions from the lung, OKY 1581 inhibited thromboxane formation without decreasing prostacyclin synthesis or cyclooxygenase activity. These studies show that OKY 1581 is a selective thromboxane synthesis inhibitor in the cat lung and suggest that a substantial part of the bronchoconstrictor response to arachidonic acid is due to thromboxane A2 formation. Moreover, the present data suggest that airway responses to endogenously released and exogenous PGH2 are mediated differently and that a significant part of the response to exogenous PGH2 may be due to activation of an endoperoxide/thromboxane receptor, since responses to PGH2 are blocked by the thromboxane receptor antagonist SQ 29548.  相似文献   

15.
The course of the reaction of mice placed in a metabolic chamber and afterwards irradiated with an exposure dose of 610 R was studied by assessing total oxygen consumption and the size of its fluctuation. Fluctuation was greater in non-survivors than in survivors in the initial phase of the metabolic reaction only (P is less than 0.05), while the mean oxygen consumption values for the two groups were the same, In the distribution of the individual values there were more non-survivors in the frequency class with a high fluctuation level and, conversely, more survivors in the low level class (P is less than 0.01). Fluctuation during the studied reaction was more variable in survivors, despite its lower level, than in non-survivors. The reciprocal relationship between the size and fluctuation of oxygen consumption, determined for the whole series of experimental mice at given stages of the metabolic reaction, is linear. Attention is drawn to the association between changes measured in the metabolic rate and motor activity and to the possibility that it is determined by the individual's type of nervous activity.  相似文献   

16.
Rhesus monkeys with immediate-type airway responses to ascaris antigen were used to study the effect of arachidonic acid (Ar). Arachidonic acid produced no changes in pulmonary function parameters when delivered by aerosol at varying doses. However, when Ar was aerosolized prior to aerosol antigen challenge this resulted in a selective increase in pulmonary resistance (PR). This effect in PR was variable with intravenous Ar. Indomethacin (I) by aerosol was evaluated to determine whether it would block the post Ar increase in PR. This could not be accomplished because both aerosolized and intravenous I had a similar effect on the PR following antigen challenge. These effects of Ar and I may be due to production of airway reactive prostaglandins, their precursers or substances such as slow reacting substance.  相似文献   

17.

Background  

The oxidation of fatty acids in mitochondria plays an important role in energy metabolism and genetic disorders of this pathway may cause metabolic diseases. Enzyme deficiencies can block the metabolism at defined reactions in the mitochondrion and lead to accumulation of specific substrates causing severe clinical manifestations. Ten of the disorders directly affecting mitochondrial fatty acid oxidation have been well-defined, implicating episodic hypoketotic hypoglycemia provoked by catabolic stress, multiple organ failure, muscle weakness, or hypertrophic cardiomyopathy. Additionally, syndromes of severe maternal illness (HELLP syndrome and AFLP) have been associated with pregnancies carrying a fetus affected by fatty acid oxidation deficiencies. However, little is known about fatty acids kinetics, especially during fasting or exercise when the demand for fatty acid oxidation is increased (catabolic stress).  相似文献   

18.
The effects of OKY-1581, a thromboxane synthesis inhibitor, on pulmonary vascular responses to arachidonic acid (AA) were investigated under baseline and elevated tone conditions in the intact chest cat. Under conditions of controlled blood flow at baseline tone, intralobar injections of AA increased lobar arterial pressure in a dose-related manner. These pressor responses were reduced by OKY-1581, and a small vasodilator response was unmasked. The administration of indomethacin to these same animals abolished all responses to AA. When baseline tone in the pulmonary vascular bed was elevated by infusion of U46619, intralobar injections of AA caused a biphasic change in lobar arterial pressure characterized by an initial increase followed by a secondary fall in pressure. Treatment with OKY-1581 attenuated the pressor component of the response and enhanced the depressor component of the response. All responses to AA at elevated tone were also blocked by indomethacin. Pressor responses to intralobar injections of U46619 were not altered by OKY-1581 or indomethacin and were similar under baseline and high pulmonary vascular tone conditions. The results of this study suggest that the pulmonary pressor response to AA in the cat is dependent in large part on the formation of TXA2 and also suggest that TXA2, PGI2, and vasoconstrictor prostaglandins (PGF2 alpha, PGD2, PGE2) are formed from AA in the cat lung.  相似文献   

19.
We have developed a Mathematica application package to perform dynamic simulations of the red blood cell (RBC) metabolic network. The package relies on, and integrates, many years of mathematical modeling and biochemical work on red blood cell metabolism. The extensive data regarding the red blood cell metabolic network and the previous kinetic analysis of all the individual components makes the human RBC an ideal 'model' system for mathematical metabolic models. The Mathematica package can be used to understand the dynamics and regulatory characteristics of the red blood cell.  相似文献   

20.
A number of hydroperoxy (HPETE) and hydroxy (HETE) products of the lipoxygenase pathway of arachidonic acid metabolism are chemotactic and chemokinetic for human neutrophils. We have investigated the relative chemokinetic potency of some of these products on human, rat and rabbit neutrophils. The most potent lipoxygenase product studied was 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid (5,12-diHETE), which was maximally chemokinetic and chemotactic between 0.1 and 1.0ng/ml for the three species. The 5, 11 and 12-HPETEs and HETEs were chemokinetic, but less active by at least two orders of magnitude, for human and rabbit neutrophils at concentrations between 0.1 and 10μg/ml. 15-HPETE and 15-HETE were inactive on human leucocytes, and none of the monosubstituted products studied were chemokinetic for rat neutrophils. These results indicate that 5,12-diHETE may be an important mediator in the local accumulation of leucocytes in the inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号