首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. Environmental clone libraries constructed using small subunit ribosomal RNA (rRNA) or other gene-specific primers have become the standard molecular approach for identifying microorganisms directly from their environment. This technique includes an initial polymerase chain reaction (PCR) amplification step of a phylogenetically useful marker gene using universal primers. Although it is acknowledged that such primers introduce biases, there have been few studies if any to date systematically examining such bias in eukaryotic microbes. We investigated some implications of such bias by constructing clone libraries using several universal primer pairs targeting rRNA genes. Firstly, we constructed artificial libraries using a known mix of small cultured pelagic arctic algae with representatives from five major lineages and secondly we investigated environmental samples using several primer pairs. No primer pair retrieved all of the original algae in the artificial clone libraries and all showed a favorable bias toward the dinoflagellate Polarella glacialis and a bias against the prasinophyte Micromonas and a pennate diatom. Several other species were retrieved by only one primer pair tested. Despite this, sequences from nine environmental libraries were diverse and contained representatives from all major eukaryotic clades expected in marine samples. Further, libraries from the same sample grouped together using Bray–Curtis clustering, irrespective of primer pairs. We conclude that environmental PCR-based techniques are sufficient to compare samples, but the total diversity will probably always be underestimated and relative abundance estimates should be treated with caution.  相似文献   

2.
Recent applications of culture-independent, molecular methods have revealed unexpectedly high diversity in a variety of functional and phylogenetic groups of microorganisms in the ocean. However, none of the existing research tools are free from significant limitations, such as PCR and cloning biases, low phylogenetic resolution and others. Here, we employed novel, single-cell sequencing techniques to assess the composition of small (<10 μm diameter), heterotrophic protists from the Gulf of Maine. Single cells were isolated by flow cytometry, their genomes amplified, and 18S rRNA marker genes were amplified and sequenced. We compared the results to traditional environmental PCR cloning of sorted cells. The diversity of heterotrophic protists was significantly higher in the library of single amplified genomes (SAGs) than in environmental PCR clone libraries of the 18S rRNA gene, obtained from the same coastal sample. Libraries of SAGs, but not clones contained several recently discovered, uncultured groups, including picobiliphytes and novel marine stramenopiles. Clone, but not SAG, libraries contained several large clusters of identical and nearly identical sequences of Dinophyceae, Cercozoa and Stramenopiles. Similar results were obtained using two alternative primer sets, suggesting that PCR biases may not be the only explanation for the observed patterns. Instead, differences in the number of 18S rRNA gene copies among the various protist taxa probably had a significant role in determining the PCR clone composition. These results show that single-cell sequencing has the potential to more accurately assess protistan community composition than previously established methods. In addition, the creation of SAG libraries opens opportunities for the analysis of multiple genes or entire genomes of the uncultured protist groups.  相似文献   

3.
4.
The phylogenetic composition of a bacterial community from a hypertrophic freshwater lake in China was investigated by sequencing cloned 16S rRNA genes. Three hundred and thirty-six bacterial clones from four clone libraries in different months (March, May, July and September in 2004) were classified into 142 operational taxonomic units, most of which were affiliated with bacterial divisions commonly found in freshwater ecosystem, e.g. Alpha-, Beta-, Gamma- and Deltaproteobacteria, Bacteriodetes and Actinobacteria. The results showed that the composition of bacterial community in the July library was the most diverse one. Actinobacteria was the most significant lineage in Lake Taihu, with dominant numbers of operational taxonomic units in the May, July and September libraries. Phylogenetic analysis suggested that 53 sequences were grouped into six novel clusters which may represent specific populations indigenous to the environment. Coverage analyses indicated that the clone libraries could provide a fine inventory of bacterial diversity in the lake.  相似文献   

5.
6.
Over the last decade, culture-independent surveys of marine picoeukaryotic diversity based on 18S ribosomal DNA clone libraries have unveiled numerous sequences of novel high-rank taxa. This newfound diversity has significantly altered our understanding of marine microbial food webs and the evolution of eukaryotes. However, the current picture of marine eukaryotic biodiversity may be significantly skewed by PCR amplification biases, occurrence of rDNA genes in multiple copies within a single cell, and the capacity of DNA to persist as extracellular material. In this study we performed an analysis of the metagenomic dataset from the Global Ocean Survey (GOS) expedition, seeking eukaryotic ribosomal signatures. This PCR-free approach revealed similar phylogenetic patterns to clone library surveys, suggesting that PCR steps do not impose major biases in the exploration of environmental DNA. The different cell size fractions within the GOS dataset, however, displayed a distinct picture. High protistan diversity in the <0.8 µm size fraction, in particular sequences from radiolarians and ciliates (and their absence in the 0.8–3 µm fraction), suggest that most of the DNA in this fraction comes from extracellular material from larger cells. In addition, we compared the phylogenetic patterns from rDNA and reverse transcribed rRNA 18S clone libraries from the same sample harvested in the Mediterranean Sea. The libraries revealed major differences, with taxa such as pelagophytes or picobiliphytes only detected in the 18S rRNA library. MAST (Marine Stramenopiles) appeared as potentially prominent grazers and we observed a significant decrease in the contribution of alveolate and radiolarian sequences, which overwhelmingly dominated rDNA libraries. The rRNA approach appears to be less affected by taxon-specific rDNA copy number and likely better depicts the biogeochemical significance of marine protists.  相似文献   

7.
Bacteria are ubiquitous in the atmosphere, where they form a highly diverse community, albeit low in abundance. Several approaches are available for collecting airborne particles, though few comparative studies have been conducted to date. This study examined how different sampling strategies affect the apparent composition of the airborne community. Three devices were tested: an impactor, a liquid impinger, and a Teflon membrane filter. Comparative studies were conducted at one mountainous location in Norway and one seaside location in Sweden. At both locations, microbial samples were collected in parallel using the sampling devices. DNA extraction, construction of 16S rRNA gene clone libraries, and subsequent sequencing were used to identify the bacteria. The comparison between clone libraries retrieved using the different devices indicated good agreement regarding dominant species, overall diversity, and distribution of species among phylogenetic groups. Among the less common species, there were few shared sequences in different clone libraries, likely due to the high diversity of the assessed samples. Bacteria belonging to the Bacteroidetes and Proteobacteria phyla dominated at both locations, and the most common genera were Sphingomonas sp. and Pantoea sp. Chloroplast-like 16S rRNA gene sequences were detected in all samples.  相似文献   

8.
In a previous study from our laboratory we used automated ribosomal intergenic spacer analysis (ARISA) to assess salt-marsh fungal diversity (Torzilli et al. 2006). The results demonstrated that different salt-marsh plants harbor distinct fungal communities, thereby supporting the hypothesis that substratum type is an important factor in determining fungal community composition. However, ARISA of several pure cultures of salt-marsh fungi indicated that an operational taxonomic unit (OUT) in an ARISA community profile may represent more than one taxon. To assess the extent to which such ambiguity might have affected the interpretation of our ARISA fingerprinting, we have now fingerprinted and sequenced clones derived from the same fungal DNA used for our ARISA community profiles. Results from this confirmed that an ARISA OTU may represent multiple taxa and that a given taxon may be represented by more than one OTU. Nonetheless, sequencing still confirmed the importance of substratum in determining community composition, and indicated that despite ambiguities associated with OTU's, ARISA may be used to provide a quick snapshot of diversity which can be further refined using sequencing methods. In addition, we compared the fungal diversity from short-form Spartina alterniflora as revealed by clone sequencing with that obtained from pyrosequencing, which avoids the cloning biases of traditional sequencing, and provide greatly expanded depth of coverage. Pyrosequencing significantly enhanced the characterization of fungal diversity compared to traditional clone sequencing.  相似文献   

9.
Lucero ME  Unc A  Cooke P  Dowd S  Sun S 《PloS one》2011,6(3):e17693
Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities.  相似文献   

10.
It's all relative: ranking the diversity of aquatic bacterial communities   总被引:1,自引:0,他引:1  
The study of microbial diversity patterns is hampered by the enormous diversity of microbial communities and the lack of resources to sample them exhaustively. For many questions about richness and evenness, however, one only needs to know the relative order of diversity among samples rather than total diversity. We used 16S libraries from the Global Ocean Survey to investigate the ability of 10 diversity statistics (including rarefaction, non-parametric, parametric, curve extrapolation and diversity indices) to assess the relative diversity of six aquatic bacterial communities. Overall, we found that the statistics yielded remarkably similar rankings of the samples for a given sequence similarity cut-off. This correspondence, despite the different underlying assumptions of the statistics, suggests that diversity statistics are a useful tool for ranking samples of microbial diversity. In addition, sequence similarity cut-off influenced the diversity ranking of the samples, demonstrating that diversity statistics can also be used to detect differences in phylogenetic structure among microbial communities. Finally, a subsampling analysis suggests that further sequencing from these particular clone libraries would not have substantially changed the richness rankings of the samples.  相似文献   

11.
Very small eukaryotic organisms (picoeukaryotes) are fundamental components of marine planktonic systems, often accounting for a significant fraction of the biomass and activity in a system. Their identity, however, has remained elusive, since the small cells lack morphological features for identification. We determined the diversity of marine picoeukaryotes by sequencing cloned 18S rRNA genes in five genetic libraries from North Atlantic, Southern Ocean, and Mediterranean Sea surface waters. Picoplankton were obtained by filter size fractionation, a step that excluded most large eukaryotes and recovered most picoeukaryotes. Genetic libraries of eukaryotic ribosomal DNA were screened by restriction fragment length polymorphism analysis, and at least one clone of each operational taxonomic unit (OTU) was partially sequenced. In general, the phylogenetic diversity in each library was rather great, and each library included many different OTUs and members of very distantly related phylogenetic groups. Of 225 eukaryotic clones, 126 were affiliated with algal classes, especially the Prasinophyceae, the Prymnesiophyceae, the Bacillariophyceae, and the Dinophyceae. A minor fraction (27 clones) was affiliated with clearly heterotrophic organisms, such as ciliates, the chrysomonad Paraphysomonas, cercomonads, and fungi. There were two relatively abundant novel lineages, novel stramenopiles (53 clones) and novel alveolates (19 clones). These lineages are very different from any organism that has been isolated, suggesting that there are previously unknown picoeukaryotes. Prasinophytes and novel stramenopile clones were very abundant in all of the libraries analyzed. These findings underscore the importance of attempts to grow the small eukaryotic plankton in pure culture.  相似文献   

12.
Technologies for massively parallel sequencing are revolutionizing microbial ecology and are vastly increasing the scale of ribosomal RNA (rRNA) gene studies. Although pyrosequencing has increased the breadth and depth of possible rRNA gene sampling, one drawback is that the number of reads obtained per sample is difficult to control. Pyrosequencing libraries typically vary widely in the number of sequences per sample, even within individual studies, and there is a need to revisit the behaviour of richness estimators and diversity indices with variable gene sequence library sizes. Multiple reports and review papers have demonstrated the bias in non-parametric richness estimators (e.g. Chao1 and ACE) and diversity indices when using clone libraries. However, we found that biased community comparisons are accumulating in the literature. Here we demonstrate the effects of sample size on Chao1, ACE, CatchAll, Shannon, Chao-Shen and Simpson's estimations specifically using pyrosequencing libraries. The need to equalize the number of reads being compared across libraries is reiterated, and investigators are directed towards available tools for making unbiased diversity comparisons.  相似文献   

13.
16S rRNA基因在微生物生态学中的应用   总被引:10,自引:0,他引:10  
16S rRNA(Small subunit ribosomal RNA)基因是对原核微生物进行系统进化分类研究时最常用的分子标志物(Biomarker),广泛应用于微生物生态学研究中。近些年来随着高通量测序技术及数据分析方法等的不断进步,大量基于16S rRNA基因的研究使得微生物生态学得到了快速发展,然而使用16S rRNA基因作为分子标志物时也存在诸多问题,比如水平基因转移、多拷贝的异质性、基因扩增效率的差异、数据分析方法的选择等,这些问题影响了微生物群落组成和多样性分析时的准确性。对当前使用16S rRNA基因分析微生物群落组成和多样性的进展情况做一总结,重点讨论当前存在的主要问题以及各种分析方法的发展,尤其是与高通量测序技术有关的实验和数据处理问题。  相似文献   

14.
15.
Studies based on cloning and sequencing to investigate microbial diversity in a vast range of samples has become widespread in recent years. Results have revealed immense microbial diversity in many different environments, but also dominance of a few sequence types in the constructed clone libraries. Here we describe a method to enrich the clone libraries by avoiding sequencing of known, abundant sequence types, instead focusing on novel, rare ones. The protocol is based on gridding the PCR products from clone libraries on membranes and hybridisation of species-specific probes. Clones that do not give positive hybridisation results are sequenced. This method was used for fungal clone libraries from compost samples. Altogether 1536 clones were gridded and six probes used. From these clones, 59% hybridised with a probe, and therefore, only 41% of the clones were sequenced. In addition, 384 samples were sequenced to verify the hybridisation results. The numbers of false-negative (5.2%) and false-positive (3.9%) hybridisations were low. This method provides a mean of lowering the costs of sequencing projects and speeding up the process of characterising microbial diversity in environmental samples. The method is especially suitable for samples with a few dominating sequence types.  相似文献   

16.
Gaining meaningful insights into bacterial communities associated with animal hosts requires the provision of high-quality nucleic acids. Although many studies have compared DNA extraction methods for samples with low bacterial biomass (e.g. water) or specific PCR inhibitors (e.g. plants), DNA extraction bias in samples without inherent technical constraint (e.g. animal samples) has received little attention. Furthermore, there is an urgent need to identify a DNA extraction methods in a high-throughput format that decreases the cost and time for processing large numbers of samples. We here evaluated five DNA extraction protocols, using silica membrane-based spin columns and a 96-well microplate format and based on either mechanical or enzymatic lysis or a combination of both, using three bacterial mock communities and Illumina sequencing of the V4 region of the 16SrRNA gene. Our results showed that none of the DNA extraction methods fully eliminated bias associated with unequal lysis efficiencies. However, we identified a DNA extraction method with a lower bias for each mock community standard. Of these methods, those including an enzymatic lysis showed biases specific to some bacteria. Altogether, these results again demonstrate the importance of DNA extraction standardization to be able to compare the microbiome results of different samples. In this attempt, we advise for the use of the 96-well DNeasy Blood and Tissue kit (Qiagen) with a zirconia bead-beating procedure, which optimizes altogether the cost, handling time and bacteria-specific effects associated with enzymatic lysis.  相似文献   

17.

Background  

The degree to which conventional DNA sequencing techniques will be successful for highly repetitive genomes is unclear. Investigators are therefore considering various filtering methods to select against high-copy sequence in DNA clone libraries. The standard model for random sequencing, Lander-Waterman theory, does not account for two important issues in such libraries, discontinuities and position-based sampling biases (the so-called "edge effect"). We report an extension of the theory for analyzing such configurations.  相似文献   

18.
Phototrophic biofilms are used in a variety of biotechnological and industrial processes. Understanding their structure, ie microbial composition, is a necessary step for understanding their function and, ultimately, for the success of their application. DNA analysis methods can be used to obtain information on the taxonomic composition and relative abundance of the biofilm members. The potential bias introduced by DNA extraction methods in the study of the diversity of a complex phototrophic sulfide-oxidizing biofilm was examined. The efficiency of eight different DNA extraction methods combining physical, mechanical and chemical procedures was assessed. Methods were compared in terms of extraction efficiency, measured by DNA quantification, and detectable diversity (16S rRNA genes recovered), evaluated by denaturing gradient gel electrophoresis (DGGE). Significant differences were found in DNA yields ranging from 116 ± 12 to 1893 ± 96 ng of DNA. The different DGGE fingerprints ranged from 7 to 12 bands. Methods including phenol–chloroform extraction after enzymatic lysis resulted in the greatest DNA yields and detectable diversity. Additionally, two methods showing similar yields and retrieved diversity were compared by cloning and sequencing. Clones belonging to members of the Alpha-, Beta- and Gamma- proteobacteria, Bacteroidetes, Cyanobacteria and to the Firmicutes were recovered from both libraries. However, when bead-beating was applied, clones belonging to the Deltaproteobacteria were also recovered, as well as plastid signatures. Phenol–chloroform extraction after bead-beating and enzymatic lysis was therefore considered to be the most suitable method for DNA extraction from such highly diverse phototrophic biofilms.  相似文献   

19.
A gene lineage (SAR406) related to Chlorobium and Fibrobacter species was found in 16S rRNA gene clone libraries prepared from samples from two oceans. The clone libraries were constructed from total picoplankton genomic DNA to assess bacterial diversity in the lower surface layer. The samples were collected by filtration from a depth of 80 m at a site in the western Sargasso Sea and from a depth of 120 m at a site in the Pacific Ocean, approximately 70 km from the Oregon coast. The PCR and primers which amplified nearly full-length 16S rRNA genes were used to prepare the clone libraries. Among the diverse gene clones in these libraries were two related clones (SAR406 and OCS307) which could not be assigned to any of the major bacterial phyla. Phylogenetic analyses demonstrated that these genes were distant relatives of the genus Fibrobacter and the green sulfur bacterial phylum, which includes the genus Chlorobium. The inclusion of SAR406 in phylogenetic trees inferred by several methods resulted in support from bootstrap replicates for the conclusion that Fibrobacter and Chlorobium species and SAR406 are a monophyletic group. An oligonucleotide probe that selectively hybridized to clone SAR406 was used to examine the distribution of this gene lineage in vertical profiles from the Atlantic and Pacific Oceans and in monthly time series at 0 and 200 m in the Atlantic Ocean. During stratified periods, the genes were most abundant slightly below the deep chlorophyll layer. Seasonal changes in the surface abundance of SAR406 rDNA were highly correlated with chlorophyll a levels (r = 0.75).  相似文献   

20.
变性梯度凝胶电泳(DGGE)在微生物生态学中的应用   总被引:47,自引:3,他引:44  
由于从环境样品中分离和培养细菌的困难,分子生物学方法已发展用来描述和鉴定微生物群落。近年来基于DNA方法的群落分析得到了迅速的发展,如PCR扩增技术,克隆文库法,荧光原位杂交法,限制性酶切片段长度多态性法,变性和温度梯度凝胶电泳法。DGGE已广泛用于分析自然环境中细菌、蓝细菌,古菌、微微型真核生物、真核生物和病毒群落的生物多样性。这一技术能够提供群落中优势种类信息和同时分析多个样品。具有可重复和容易操作等特点,适合于调查种群的时空变化,并且可通过对切下的带进行序列分析或与特异性探针杂交分析鉴定群落成员。DGGE分析微生物群落的一般步骤如下:一是核酸的提取,二是16S rRNA,18S rRNA或功能基因如可容性甲烷加单氧酶羟化酶基因(mmoX)和氨加单氧酶a一亚单位基因(amoA)片段的扩增,三是通过DGGE分析PCR产物。DGGE使用具有化学变性剂梯度的聚丙烯酰胺凝胶,该凝胶能够有区别的解链PCR扩增产物。由PCR产生的不同的DNA片段长度相同但核苷酸序列不同。因此不同的双链DNA片段由于沿着化学梯度的不同解链行为将在凝胶的不同位置上停止迁移。DNA解链行为的不同导致一个凝胶带图案,该图案是微生物群落中主要种类的一个轮廓。DGGE使用所有生物中保守的基因片段如细菌中的16S rRNA基因片段和真菌中的18S rRNA基因片段。然而同其他分子生物学方法一样,DGGE也有缺陷,其中之一是只能分离较小的片段,使用于系统发育分析比较和探针设计的序列信息量受到了限制。在某些情况下,由于所用基因的多拷贝导致一个种类多于一条带,因此不易鉴定群落结构到种的水平。此外,该技术具有内在的如单一细菌种类16S rDNA拷贝之间的异质性问题,可导致自然群落中微生物数量的过多估计。DGGE是分析微生物群落的一种有力的工具。不过为了减少DGGE和其它技术的缺陷,建议研究者结合DGGE和其它分子及微生物学方法以便更详细的观察微生物的群落结构和功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号