首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linker histone H1, one of the most abundant nuclear proteins in multicellular eukaryotes, is a key component of the chromatin structure mainly due to its role in the formation and maintenance of the 30nm chromatin fiber. It has a three-domain structure; a central globular domain flanked by a short N-terminal domain and a long, highly basic C-terminal domain. Previous studies have shown that the binding abilities of H1 are at large determined by the properties of the C-terminal domain; much less attention has been paid to role of the N-terminal domain. We have previously shown that H1 can be reconstituted via cytoplasmic mRNA injection in Xenopus oocytes, cells that lack somatic H1. The heterologously expressed H1 proteins are incorporated into in vivo assembled chromatin at specific sites and the binding event is monitored as an increase in nucleosomal repeat length (NRL). Using this setup we have here compared the binding properties of wt-H1.4 and hH1.4 devoid of its N-terminal domain (ΔN-hH1.4). The ΔN-hH1.4 displays a drastically lower affinity for chromatin binding as compared to the wild type hH1.4. Our data also indicates that ΔN-hH1.4 is more prone to unspecific chromatin binding than the wild type. We conclude that the N-terminal domain of H1 is an important determinant of affinity and specificity of H1-chromatin interactions.  相似文献   

2.
Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on nucleosome spacing, chromatin compaction and ATP-dependent remodeling. H1 subtypes exhibit different affinities for chromatin and different abilities to promote chromatin condensation, as studied with the Atomic Force Microscope. According to this criterion, H1 subtypes can be classified as weak condensers (H1.1 and H1.2), intermediate condensers (H1.3) and strong condensers (H1.0, H1.4, H1.5 and H1x). The variable C-terminal domain is required for nucleosome spacing by H1.4 and is likely responsible for the chromatin condensation properties of the various subtypes, as shown using chimeras between H1.4 and H1.2. In contrast to previous reports with isolated nucleosomes or linear nucleosomal arrays, linker histones at a ratio of one per nucleosome do not preclude remodeling of minichromosomes by yeast SWI/SNF or Drosophila NURF. We hypothesize that the linker histone subtypes are differential organizers of chromatin, rather than general repressors.  相似文献   

3.
4.
5.
Oocytes and embryos of many species, including mammals, contain a unique linker (H1) histone, termed H1oo in mammals. It is uncertain, however, whether other H1 histones also contribute to the linker histone complement of these cells. Using immunofluorescence and radiolabeling, we have examined whether histone H10, which frequently accumulates in the chromatin of nondividing cells, and the somatic subtypes of H1 are present in mouse oocytes and early embryos. We report that oocytes and embryos contain mRNA encoding H10. A polymerase chain reaction-based test indicated that the poly(A) tail did not lengthen during meiotic maturation, although it did so beginning at the four-cell stage. Antibodies raised against histone H10 stained the nucleus of wild-type prophase-arrested oocytes but not of mice lacking the H10 gene. Following fertilization, H10 was detected in the nuclei of two-cell embryos and less strongly at the four-cell stage. No signal was detected in H10 -/- embryos. Radiolabeling revealed that species comigrating with the somatic H1 subtypes H1a and H1c were synthesized in maturing oocytes and in one- and two-cell embryos. Beginning at the four-cell stage in both wild-type and H10 -/- embryos, species comigrating with subtypes H1b, H1d, and H1e were additionally synthesized. These results establish that histone H10 constitutes a portion of the linker histone complement in oocytes and early embryos and that changes in the pattern of somatic H1 synthesis occur during early embryonic development. Taken together with previous results, these findings suggest that multiple H1 subtypes are present on oocyte chromatin and that following fertilization changes in the histone H1 complement accompany the establishment of regulated embryonic gene expression.  相似文献   

6.
We have assessed the response of many histone H3 mRNAs and an H1C mRNA in Xenopus tissue culture cells after treatment with the DNA synthesis inhibitor hydroxyurea. The amount of the histone mRNAs falls rapidly in response to the inhibitor. This response is prevented by cycloheximide. Cloned Xenopus histone genes were transfected into mouse cells and a cell line was obtained in which the Xenopus genes were actively expressed giving rise to mRNA with correct 5'-termini. The Xenopus genes were correctly regulated at the level of mRNA amounts in the mouse cell line. Nuclear microinjection experiments with Xenopus oocytes and S1 nuclease analysis of normal ovary RNA showed that the H1C gene, and probably also two H3 genes, which are replication-dependent in somatic cells are expressed in oocytes and are therefore replication-independent in this cell type. The same promoters are used in both replication-dependent and independent expression.  相似文献   

7.
Using previously cloned Xenopus nucleosomal core histone genes as hybridization probes, a genomic DNA library of Xenopus laevis was screened for histone gene clusters. From over 200 histone-gene containing clones identified, 36 were selected as possibly containing H1 histone genes by hybridization to a probe derived from a sea urchin H1 histone gene. These 36 clones were further analyzed by hybrid-selected translation for the definitive presence of H1 histone genes. The genes for three different H1 histone variants were found: H1A , H1B and H1C . Mapping of the histone genes within each clone showed that at least three different gene arrangements can occur within a cluster and that the type of H1 histone variant present in a cluster may be related to the cluster type. S1-mapping experiments indicated that histone genes found in different cluster-types can be expressed in oocytes. Also, the H1 gene found in one cluster-type was expressed in at least three different cell-types: oocytes, gastrula-stage embryos, and erythroblasts.  相似文献   

8.
9.
10.
A Imhof  A P Wolffe 《Biochemistry》1999,38(40):13085-13093
We have purified the Xenopus histone acetyltransferase Hat1 holoenzyme from oocytes. The holoenzyme contains the catalytic subunit Hat1, the retinoblastoma associated protein RbAp48, and members of the phosphoserine binding family of 14-3-3 proteins. We have determined that the Hat1 holoenzyme specifically acetylates free histone H4 but not nucleosomal histones. RbAp48 is a phosphoprotein that contains a consensus recognition motif for the 14-3-3 proteins. The 14-3-3 proteins provide a regulatory function for the activity of many phosphoproteins. We find that the hugely abundant Hat1 holoenzyme is present in 10 000-fold excess over somatic cell levels. The holoenzyme is localized in the oocyte nucleus where acetylated histones are stored. The oocyte form of the Xenopus Hat1 holoenzyme may represent a specialized storage form of histone acetyltransferase. Following oocyte maturation and subsequent embryogenesis, the Hat1 enzyme is redistributed to the cytoplasm, where new histones are synthesized.  相似文献   

11.
A critical feature of chromatin with regard to structure and function is the regular spacing of nucleosomes. In vivo, spacing of nucleosomes occurs in at least two steps, but the mechanism is not understood. In this report, we have mimicked the two-step process in vitro. A novel spacing activity has been partially purified from Xenopus laevis ovaries. When this activity is added, either at the beginning or at the end of a nucleosomal assembly reaction, it can convert a DNA template consisting of irregularly spaced nucleosomes into a chromatin structure made up of regularly spaced nucleosomes with a repeat length of about 165 base pairs. The reaction requires ATP. Histone H1 is able to increase the nucleosomal repeat from 165 to 190 base pairs. This two-step increase in nucleosomal repeat length suggests that both the spacing activity and histone H1 contribute to generating repeat lengths of greater than 165 base pairs and that their contributions may be additive. Alternatively, the critical step in the spacing reaction may not be the formation of the 165-base pair repeat but may be the sliding of nucleosomes or the reorganization of the octamer structure induced by the spacing activity.  相似文献   

12.
The embryonic genome is formed by fusion of a maternal and a paternal genome. To accommodate the resulting diploid genome in the fertilized oocyte dramatic global genome reorganizations must occur. The higher order structure of chromatin in vivo is critically dependent on architectural chromatin proteins, with the family of linker histone proteins among the most critical structural determinants. Although somatic cells contain numerous linker histone variants, only one, H1FOO, is present in mouse oocytes. Upon fertilization H1FOO rapidly populates the introduced paternal genome and replaces sperm-specific histone-like proteins. The same dynamic replacement occurs upon introduction of a nucleus during somatic cell nuclear transfer. To understand the molecular basis of this dynamic histone replacement process, we compared the localization and binding dynamics of somatic H1 and oocyte-specific H1FOO and identified the molecular determinants of binding to either oocyte or somatic chromatin in living cells. We find that although both histones associate readily with chromatin in nuclei of somatic cells, only H1FOO is capable of correct chromatin association in the germinal vesicle stage oocyte nuclei. This specificity is generated by the N-terminal and globular domains of H1FOO. Measurement of in vivo binding properties of the H1 variants suggest that H1FOO binds chromatin more tightly than somatic linker histones. We provide evidence that both the binding properties of linker histones as well as additional, active processes contribute to the replacement of somatic histones with H1FOO during nuclear transfer. These results provide the first mechanistic insights into the crucial step of linker histone replacement as it occurs during fertilization and somatic cell nuclear transfer.  相似文献   

13.
14.
15.
Members of histone H1 family bind to nucleosomal and linker DNA to assist in stabilization of higher‐order chromatin structures. Moreover, histone H1 is involved in regulation of a variety of cellular processes by interactions with cytosolic and nuclear proteins. Histone H1, composed of a series of subtypes encoded by distinct genes, is usually differentially expressed in specialized cells and frequently non‐randomly distributed in different chromatin regions. Moreover, a role of specific histone H1 subtype might be also modulated by post‐translational modifications and/or presence of polymorphic isoforms. While the significance of covalently modified histone H1 subtypes has been partially recognized, much less is known about the importance of histone H1 polymorphic variants identified in various plant and animal species, and human cells as well. Recent progress in elucidating amino acid composition‐dependent functioning and interactions of the histone H1 with a variety of molecular partners indicates a potential role of histone H1 polymorphic variation in adopting specific protein conformations essential for chromatin function. The histone H1 allelic variants might affect chromatin in order to modulate gene expression underlying some physiological traits and, therefore could modify the course of diverse histone H1‐dependent biological processes. This review focuses on the histone H1 allelic variability, and biochemical and genetic aspects of linker histone allelic isoforms to emphasize their likely biological relevance.  相似文献   

16.
欧海龙  黄英 《生命科学》2007,19(2):179-183
哺乳动物细胞内存在着多种亚型的连接组蛋白,其中Hlfoo是首先在小鼠中发现、在卵母细胞中特异表达的一种连接组蛋白。H1foo通过与染色质的结合,改变染色质的结构,进而参与卵母细胞的成熟、受精后对精子染色质的重构及在体细胞核移植中对体细胞核的重编程等。本文就Hlfoo的分子结构特征、表达特点及其在受精过程、体细胞核的重编程过程中的作用作一综述。  相似文献   

17.
18.
G Gargiulo  F Razvi  A Worcel 《Cell》1984,38(2):511-521
Active minichromosomes assembled on injected 5S RNA gene clones are stable in Xenopus oocytes; endogenous 5S DNA specific factor(s) are required for their assembly. When somatic-type and oocyte-type 5S RNA gene clones are coinjected, the somatic genes are assembled into active minichromosomes, while most of the oocyte genes are assembled into inactive ones. The differential 5S RNA gene expression, which mimics that in somatic cells, appears to result from titration of 5S DNA specific factor(s) by the competing somatic 5S DNA, followed by histone mediated assembly of inactive chromatin on the oocyte 5S DNA. Stable minichromosomes are also assembled on a cloned histone H4 gene; again, intragenic DNA rearrangements affect the efficiency of assembly of active chromatin and differential gene expression occurs after coinjection of two or more H4 DNA constructs. We suggest that the H4 DNA molecules also compete for limiting quantities of specific DNA binding factor(s) required for the assembly of active H4 gene chromatin.  相似文献   

19.
The oocyte-specific subtype of the linker histone H1 is H1FOO, which constitutes a major part of oocyte chromatin. H1foo is expressed in growing oocytes, through fertilization, up until the two-cell embryo stage, when it is subsequently replaced by somatic H1 subtypes. To elucidate whether an epigenetic mechanism is involved in the limited expression of H1foo, we analyzed the dynamics of the DNA methylation status of the H1foo locus in germ and somatic cells. We identified a tissue-dependent and differentially methylated region (T-DMR) upstream of the H1foo gene, which was hypermethylated in sperm, somatic cells, and stem cell lines. This region was specifically unmethylated in the ovulated oocyte, where H1foo is expressed. 5-Aza-2'-deoxycytidine treatments and luciferase assays provided in vitro evidence that DNA methylation plays a role in repressing H1foo in nonexpressing cells. DNA methylation analyses of fetal germ cells revealed the T-DMR to be hypomethylated in female and male germ cells at Embryonic Day 9.5 (E9.5), whereas it was highly methylated in somatic cells at this stage. Intriguingly, the unmethylated status was continuously observed throughout oogenesis at E9.5, E12.5, E15.5, E18.5, in mature oocytes, and after fertilization, in E3.5 blastocysts. In comparison, male germ cells acquired methylation beyond E18.5. These data demonstrate a continuously unmethylated circuit at the H1foo locus in the female germline.  相似文献   

20.
Chromatin decondensation and nuclear reprogramming by nucleoplasmin   总被引:1,自引:0,他引:1       下载免费PDF全文
Somatic cell nuclear cloning has repeatedly demonstrated striking reversibility of epigenetic regulation of cell differentiation. Upon injection into eggs, the donor nuclei exhibit global chromatin decondensation, which might contribute to reprogramming the nuclei by derepressing dormant genes. Decondensation of sperm chromatin in eggs is explained by the replacement of sperm-specific histone variants with egg-type histones by the egg protein nucleoplasmin (Npm). However, little is known about the mechanisms of chromatin decondensation in somatic nuclei that do not contain condensation-specific histone variants. Here we found that Npm could widely decondense chromatin in undifferentiated mouse cells without overt histone exchanges but with specific epigenetic modifications that are relevant to open chromatin structure. These modifications included nucleus-wide multiple histone H3 phosphorylation, acetylation of Lys 14 in histone H3, and release of heterochromatin proteins HP1beta and TIF1beta from the nuclei. The protein kinase inhibitor staurosporine inhibited chromatin decondensation and these epigenetic modifications with the exception of H3 acetylation, potentially linking these chromatin events. At the functional level, Npm pretreatment of mouse nuclei facilitated activation of four oocyte-specific genes from the nuclei injected into Xenopus laevis oocytes. Future molecular elucidation of chromatin decondensation by Npm will significantly contribute to our understanding of the plasticity of cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号