首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Neurotransmitter release is triggered by Ca(2+) binding to a low affinity Ca(2+) sensor, mostly synaptotagmin-1, which catalyzes SNARE-mediated synaptic vesicle fusion. Tomosyn negatively regulates Ca(2+)-dependent neurotransmitter release by sequestering target SNAREs through the C-terminal VAMP-like domain. In addition to the C terminus, the N-terminal WD40 repeats of tomosyn also have potent inhibitory activity toward Ca(2+)-dependent neurotransmitter release, although the molecular mechanism underlying this effect remains elusive. Here, we show that through its N-terminal WD40 repeats tomosyn directly binds to synaptotagmin-1 in a Ca(2+)-dependent manner. The N-terminal WD40 repeats impaired the activities of synaptotagmin-1 to promote SNARE complex-mediated membrane fusion and to bend the lipid bilayers. Decreased acetylcholine release from N-terminal WD40 repeat-microinjected superior cervical ganglion neurons was relieved by microinjection of the cytoplasmic domain of synaptotagmin-1. These results indicate that, upon direct binding, the N-terminal WD40 repeats negatively regulate the synaptotagmin-1-mediated step of Ca(2+)-dependent neurotransmitter release. Furthermore, we show that synaptotagmin-1 binding enhances the target SNARE-sequestering activity of tomosyn. These results suggest that the interplay between tomosyn and synaptotagmin-1 underlies inhibitory control of Ca(2+)-dependent neurotransmitter release.  相似文献   

2.
Xu J  Mashimo T  Südhof TC 《Neuron》2007,54(4):567-581
Synaptotagmin-1 and -2 are known Ca(2+) sensors for fast synchronous neurotransmitter release, but the potential Ca(2+)-sensor functions of other synaptotagmins in release remain uncharacterized. We now show that besides synaptotagmin-1 and -2, only synaptotagmin-9 (also called synaptotagmin-5) mediates fast Ca(2+) triggering of release. Release induced by the three different synaptotagmin Ca(2+) sensors exhibits distinct kinetics and apparent Ca(2+) sensitivities, suggesting that the synaptotagmin isoform expressed by a neuron determines the release properties of its synapses. Conditional knockout mice producing GFP-tagged synaptotagmin-9 revealed that synaptotagmin-9 is primarily expressed in the limbic system and striatum. Acute deletion of synaptotagmin-9 in striatal neurons severely impaired fast synchronous release without changing the size of the readily-releasable vesicle pool. These data show that in mammalian brain, only synaptotagmin-1, -2, and -9 function as Ca(2+) sensors for fast release, and that these synaptotagmins are differentially expressed to confer distinct release properties onto synapses formed by defined subsets of neurons.  相似文献   

3.
Calcium-, calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum increases the rate of calcium transport. The complex dependence of calmodulin-dependent phosphoester formation on free calcium and total calmodulin concentrations can be satisfactorily explained by assuming that CaM X (Ca2+)4 is the sole calmodulin-calcium species which activates the calcium-, calmodulin-dependent, membrane-bound protein kinase. The apparent dissociation constant of the E X CaM X (Ca2+)4 complex determined from the calcium dependence of calmodulin-dependent phosphoester formation over a 100-fold range of total calmodulin concentrations (0.01-1 microM) was 0.9 nM; the respective apparent dissociation constant at 0.8 mM free calcium, 1 mM free magnesium with low calmodulin concentrations (0.1-50 nM) was 2.60 nM. These results are in good agreement with the apparent dissociation constant of 2.54 nM of high affinity calmodulin binding determined by 125I-labelled calmodulin binding to sarcoplasmic reticulum fractions at 1 mM free calcium, 1 mM free magnesium and total calmodulin concentration ranging from 0.1 to 150 nM, i.e. conditions where approximately 98% of the total calmodulin is present as CaM X (Ca2+)4. The apparent dissociation constant of the calcium-free calmodulin-enzyme complex (E X CaM) is at least 100-fold greater than the apparent dissociation constant of the E X CaM X (Ca2+)4 complex, as judged from non-saturation 125I-labelled calmodulin binding at total calmodulin concentrations of up to 150 nM, in the absence of calcium.  相似文献   

4.
Synaptotagmins contain tandem C2 domains and function as Ca(2+) sensors for vesicle exocytosis but the mechanism for coupling Ca(2+) rises to membrane fusion remains undefined. Synaptotagmins bind SNAREs, essential components of the membrane fusion machinery, but the role of these interactions in Ca(2+)-triggered vesicle exocytosis has not been directly assessed. We identified sites on synaptotagmin-1 that mediate Ca(2+)-dependent SNAP25 binding by zero-length cross-linking. Mutation of these sites in C2A and C2B eliminated Ca(2+)-dependent synaptotagmin-1 binding to SNAREs without affecting Ca(2+)-dependent membrane binding. The mutants failed to confer Ca(2+) regulation on SNARE-dependent liposome fusion and failed to restore Ca(2+)-triggered vesicle exocytosis in synaptotagmin-deficient PC12 cells. The results provide direct evidence that Ca(2+)-dependent SNARE binding by synaptotagmin is essential for Ca(2+)-triggered vesicle exocytosis and that Ca(2+)-dependent membrane binding by itself is insufficient to trigger fusion. A structure-based model of the SNARE-binding surface of C2A provided a new view of how Ca(2+)-dependent SNARE and membrane binding occur simultaneously.  相似文献   

5.
Bovine adrenocortical cells express bTREK-1 K(+) (bovine KCNK2) channels that are inhibited by ANG II through a Gq-coupled receptor by separate Ca(2+) and ATP hydrolysis-dependent signaling pathways. Whole cell and single patch clamp recording from adrenal zona fasciculata (AZF) cells were used to characterize Ca(2+)-dependent inhibition of bTREK-1. In whole cell recordings with pipette solutions containing 0.5 mM EGTA and no ATP, the Ca(2+) ionophore ionomycin (1 μM) produced a transient inhibition of bTREK-1 that reversed spontaneously within minutes. At higher concentrations, ionomycin (5-10 μM) produced a sustained inhibition of bTREK-1 that was reversible upon washing, even in the absence of hydrolyzable [ATP](i). BAPTA was much more effective than EGTA at suppressing bTREK-1 inhibition by ANG II. When intracellular Ca(2+) concentration ([Ca(2+)](i)) was buffered to 20 nM with either 11 mM BAPTA or EGTA, ANG II (10 nM) inhibited bTREK-1 by 12.0 ± 4.5% (n=11) and 59.3 ± 8.4% (n=4), respectively. Inclusion of the water-soluble phosphatidylinositol 4,5-bisphosphate (PIP(2)) analog DiC(8)PI(4,5)P(2) in the pipette failed to increase bTREK-1 expression or reduce its inhibition by ANG II. The open probability (P(o)) of unitary bTREK-1 channels recorded from inside-out patches was reduced by Ca(2+) (10-35 μM) in a concentration-dependent manner. These results are consistent with a model in which ANG II inhibits bTREK-1 K(+) channels by a Ca(2+)-dependent mechanism that does not require the depletion of membrane-associated PIP(2). They further indicate that the Ca(2+) source is located in close proximity within a "Ca(2+) nanodomain" of bTREK-1 channels, where [Ca(2+)](i) may reach concentrations of >10 μM. bTREK-1 is the first two-pore K(+) channel shown to be inhibited by Ca(2+) through activation of a G protein-coupled receptor.  相似文献   

6.
Iberiotoxin, a toxin purified from the scorpion Buthus tamulus is a 37 amino acid peptide having 68% homology with charybdotoxin. Charybdotoxin blocks large conductance Ca(2+)-activated K+ channels at nanomolar concentrations from the external side only (Miller, C., E. Moczydlowski, R. Latorre, and M. Phillips. 1985. Nature (Lond.). 313:316-318). Like charybdotoxin, iberiotoxin is only able to block the skeletal muscle membrane Ca(2+)-activated K+ channel incorporated into neutral-planar bilayers when applied to the external side. In the presence of iberiotoxin, channel activity is interrupted by quiescent periods that can last for several minutes. From single-channel records it was possible to determine that iberiotoxin binds to Ca(2+)-activate K+ channel in a bimolecular reaction. When the solution bathing the membrane are 300 mM K+ internal and 300 mM Na+ external the toxin second order association rate constant is 3.3 x 10(6) s-1 M-1 and the first order dissociation rate constant is 3.8 x 10(-3) s-1, yielding an apparent equilibrium dissociation constant of 1.16 nM. This constant is 10-fold lower than that of charybdotoxin, and the values for the rate constants showed above indicate that this is mainly due to the very low dissociation rate constant; mean blocked time approximately 5 min. The fact that tetraethylammonium competitively inhibits the iberiotoxin binding to the channel is a strong suggestion that this toxin binds to the channel external vestibule. Increasing the external K+ concentration makes the association rate constant to decrease with no effect on the dissociation reaction indicating that the surface charges located in the external channel vestibule play an important role in modulating toxin binding.  相似文献   

7.
The phosphate (P(i)) dissociation step of the cross-bridge cycle was investigated in skinned rat ventricular myocytes to examine its role in force generation and Ca(2+) regulation in cardiac muscle. Pulse photolysis of caged P(i) (alpha-carboxyl-2-nitrobenzyl phosphate) produced up to 3 mM P(i) within the filament lattice, resulting in an approximately exponential decline in steady-state tension. The apparent rate constant, k (rho i), increased linearly with total P(i) concentration (initial plus photoreleased), giving an apparent second-order rate constant for P(i) binding of 3100 M(-1) s(-1), which is intermediate in value between fast and slow skeletal muscles. A decrease in the level of Ca(2+) activation to 20% of maximum tension reduced k (rho i) by twofold and increased the relative amplitude by threefold, consistent with modulation of P(i) release by Ca2+. A three-state model, with separate but coupled transitions for force generation and P(i) dissociation, and a Ca(2+)-sensitive forward rate constant for force generation, was compatible with the data. There was no evidence for a slow phase of tension decline observed previously in fast skeletal fibers at low Ca(2+), suggesting differences in cooperative mechanisms in cardiac and skeletal muscle. In separate experiments, tension development was initiated from a relaxed state by photolysis of caged Ca(2+). The apparent rate constant, k(Ca), was accelerated in the presence of high P(i) consistent with close coupling between force generation and P(i) dissociation, even when force development was initiated from a relaxed state. k(Ca) was also dependent on the level of Ca(2+) activation. However, significant quantitative differences between k (rho i) and k(Ca), including different sensitivities to Ca(2+) and P(i) indicate that caged Ca(2+) tension transients are influenced by additional Ca(2+)-dependent but P i-independent steps that occur before P(i) release. Data from both types of measurements suggest that kinetic transitions associated with P(i) dissociation are modulated by the Ca(2+) regulatory system and partially limit the physiological rate of tension development in cardiac muscle.  相似文献   

8.
CaBP1 (calcium-binding protein 1) is a 19.4-kDa protein of the EF-hand superfamily that modulates the activity of Ca(2+) channels in the brain and retina. Here we present data from NMR, microcalorimetry, and other biophysical studies that characterize Ca(2+) binding, Mg(2+) binding, and structural properties of recombinant CaBP1 purified from Escherichia coli. Mg(2+) binds constitutively to CaBP1 at EF-1 with an apparent dissociation constant (K(d)) of 300 microm. Mg(2+) binding to CaBP1 is enthalpic (DeltaH = -3.725 kcal/mol) and promotes NMR spectral changes, indicative of a concerted Mg(2+)-induced conformational change. Ca(2+) binding to CaBP1 induces NMR spectral changes assigned to residues in EF-3 and EF-4, indicating localized Ca(2+)-induced conformational changes at these sites. Ca(2+) binds cooperatively to CaBP1 at EF-3 and EF-4 with an apparent K(d) of 2.5 microM and a Hill coefficient of 1.3. Ca(2+) binds to EF-1 with low affinity (K(d) >100 microM), and no Ca(2+) binding was detected at EF-2. In the absence of Mg(2+) and Ca(2+), CaBP1 forms a flexible molten globule-like structure. Mg(2+) and Ca(2+) induce distinct conformational changes resulting in protein dimerization and markedly increased folding stability. The unfolding temperatures are 53, 74, and 76 degrees C for apo-, Mg(2+)-bound, and Ca(2+)-bound CaBP1, respectively. Together, our results suggest that CaBP1 switches between structurally distinct Mg(2+)-bound and Ca(2+)-bound states in response to Ca(2+) signaling. Both conformational states may serve to modulate the activity of Ca(2+) channel targets.  相似文献   

9.
The beta, gamma-bidentate chromium(III) complex of ATP (CrATP) was used as a substrate analog to stabilize a form of the Ca(2+)-ATPase of the sarcoplasmic reticulum containing both of the bound calcium ions in an occluded state without enzyme phosphorylation. The kinetics of dissociation of Ca2+ from the occlusion sites in the CrATP-enzyme complex were consistent with the existence of two nonequivalent and interdependent Ca2+ occlusion sites, both in the membranous Ca(2+)-ATPase and in a detergent-solubilized monomeric Ca(2+)-ATPase preparation. The rate constant for release of the first calcium ion was k1 = 0.99 h-1, whereas the second calcium ion was released with a rate constant of k2 = 0.25 h-1 when the first site was empty and with a rate constant of k3 = 0.13 h-1 when the first site was occupied by Ca2+. Ca2+ binding at the first site occurred with a rate constant of k-1 = 0.96 microM-1 h-1 (apparent Kd = 1.0 microM). The Ca(2+)-occluded state was further stabilized by ADP, binding in exchange with ATP with an apparent Kd of 8.6 microM. Two kinetic classes of CrATP-binding sites were observed, each with a stoichiometry of 3-4 nmol/mg of protein; but only the fast phase of CrATP binding was associated with Ca2+ occlusion. Derivatization of the Ca(2+)-ATPase with N-cyclohexyl-N'-(4-dimethylamino-1-naphthyl)carbodimide resulted in inactivation of phosphorylation of the enzyme from MgATP, whereas the ability to occlude Ca2+ in the presence of CrATP was retained, albeit with a reduced apparent affinity for Ca2+.  相似文献   

10.
Yang X  Kaeser-Woo YJ  Pang ZP  Xu W  Südhof TC 《Neuron》2010,68(5):907-920
Complexin activates and clamps neurotransmitter release; impairing complexin function decreases synchronous, but increases spontaneous and asynchronous synaptic vesicle exocytosis. Here, we show that complexin-different from the Ca(2+) sensor synaptotagmin-1-activates synchronous exocytosis by promoting synaptic vesicle priming, but clamps spontaneous and asynchronous exocytosis-similar to synaptotagmin-1-by blocking a secondary Ca(2+) sensor. Activation and clamping functions of complexin depend on distinct, autonomously acting sequences, namely its N-terminal region and accessory α helix, respectively. Mutations designed to test whether the accessory α helix of complexin clamps exocytosis by inserting into SNARE-complexes support this hypothesis, suggesting that the accessory α helix blocks completion of trans-SNARE-complex assembly until Ca(2+) binding to synaptotagmin relieves this block. Moreover, a juxtamembranous mutation in the SNARE-protein synaptobrevin-2, which presumably impairs force transfer from nascent trans-SNARE complexes onto fusing membranes, also unclamps spontaneous fusion by disinhibiting a secondary Ca(2+) sensor. Thus, complexin performs mechanistically distinct activation and clamping functions that operate in conjunction with synaptotagmin-1 by controlling trans-SNARE-complex assembly.  相似文献   

11.
The binding characteristics of two monoclonal antibodies (mAb) to phosphatidylinositol-4-phosphate (PIP) were examined: a murine IgM mAb to PIP; and a human IgG mAb (4E10) that binds both to HIV-1 envelope protein and also to neutral and anionic phospholipids, including PIP. Binding of each mAb to pure PIP was inhibited by Ca(2+) as determined by ELISA. When studied by surface plasmon resonance, liposomes containing PIP could be stripped (i.e., removed) by either Ca(2+) or phosphorylated haptens after binding of the liposomes to the murine anti-PIP antibody attached to a BIAcore chip. In contrast, the binding of liposomal PIP to 4E10 was irreversible and could not be stripped. We therefore conclude that Ca(2+) and phosphate can modulate the initial binding of both types of antibodies to PIP. However, 4E10 binds to liposomal PIP in a two-stage process involving first Ca(2+)-modulated binding to the PIP polar headgroup, followed by irreversible binding to liposomal hydrophobic groups.  相似文献   

12.
Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key player in the neurotransmitter release process. Rabphilin-3A is a neuronal C2 domain tandem containing protein that is involved in this process. Both its C2 domains (C2A and C2B) are able to bind PIP2. The investigation of the interactions of the two C2 domains with the PIP2 headgroup IP3 (inositol-1,4,5-trisphosphate) by NMR showed that a well-defined binding site can be described on the concave surface of each domain. The binding modes of the two domains are different. The binding of IP3 to the C2A domain is strongly enhanced by Ca(2+) and is characterized by a K(D) of 55 microM in the presence of a saturating concentration of Ca(2+) (5 mM). Reciprocally, the binding of IP3 increases the apparent Ca(2+)-binding affinity of the C2A domain in agreement with a Target-Activated Messenger Affinity (TAMA) mechanism. The C2B domain binds IP3 in a Ca(2+)-independent fashion with low affinity. These different PIP2 headgroup recognition modes suggest that PIP2 is a target of the C2A domain of rabphilin-3A while this phospholipid is an effector of the C2B domain.  相似文献   

13.
The diheme enzyme MauG catalyzes a six-electron oxidation required for posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. The crystal structure of the MauG-preMADH complex revealed the presence of a Ca(2+) in proximity to the two hemes [Jensen, L. M. R., Sanishvili, R., Davidson, V. L., and Wilmot, C. M. (2010) Science 327, 1392-1394]. This Ca(2+) did not readily dissociate; however, after extensive treatment with EGTA or EDTA MauG was no longer able to catalyze TTQ biosynthesis and exhibited altered absorption and resonance Raman spectra. The changes in spectral features are consistent with Ca(2+)-dependent changes in heme spin state and conformation. Addition of H(2)O(2) to the Ca(2+)-depleted MauG did not yield spectral changes characteristic of formation of the bis-Fe(IV) state which is stabilized in native MauG. After addition of Ca(2+) to the Ca(2+)-depleted MauG, full TTQ biosynthesis activity and reactivity toward H(2)O(2) were restored, and the spectral properties returned to those of native MauG. Kinetic and equilibrium studies of Ca(2+) binding to Ca(2+)-depleted MauG indicated a two-step mechanism. Ca(2+) initially reversibly binds to Ca(2+)-depleted MauG (K(d) = 22.4 μM) and is followed by a relatively slow (k = 1.4 × 10(-3) s(-1)) but highly favorable (K(eq) = 4.2) conformational change, yielding an equilibrium dissociation constant K(d,eq) value of 5.3 μM. The circular dichroism spectra of native and Ca(2+)-depleted MauG were essentially the same, consistent with Ca(2+)-induced conformational changes involving domain or loop movements rather than general unfolding or alteration of secondary structure. These results are discussed in the context of the structures of MauG and heme-containing peroxidases.  相似文献   

14.
To study PLB (phospholamban) inhibition of the cardiac Ca(2+) pump [SERCA2a (sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 2a)], a fusion protein (SER-20G-PLB) was engineered by tethering SERCA2a with PLB through a 20-glycine residue chain, allowing the PLB tether to either bind to or dissociate from the inhibition site on SERCA2a. When expressed in insect cells, SER-20G-PLB produced active Ca(2+) uptake, which was stimulated by the anti-PLB antibody, both similar to that which occurred with the control sample co-expressing WT (wild-type)-SERCA2a and WT-PLB. The K(Ca) values of Ca(2+)-dependent ATPase were similar for SER-20G-PLB (0.29±0.02 μM) and for the control sample (0.30±0.02 μM), both greater than 0.17±0.01 μM for WT-SERCA2a expressed alone. Thus SER-20G-PLB retains a fully active Ca(2+) pump, but its apparent Ca(2+) affinity was decreased intrinsically by tethered PLB at a 1:1 molar stoichiometry. Like WT-PLB, SER-20G-PLB ran as both monomers and homo-pentamers on SDS/PAGE. As Ca(2+) concentrations increase from 0 to the micromolar range, the proportion of non-inhibiting pentamers increased from 32% to 52%, suggesting that Ca(2+) activation of the pump completely dissociates the PLB tether from the inhibition site on SERCA2a, with concurrent association of PLB pentamers. Collectively, the regulation of SERCA2a is achieved through the Ca(2+)-dependent equilibria involving PLB association and dissociation from SERCA2a, and assembling and disassembling of SER-20G-PLB pentamers.  相似文献   

15.
We constructed an expression plasmid (pMAMCRR51) that carried the entire protein-coding sequence of the rabbit cardiac ryanodine receptor cDNA, linked to the dexamethasone-inducible mouse mammary tumor virus promoter and Escherichia coli xanthine-guanine phosphoribosyltransferase (gpt). Chinese hamster ovary (CHO) cells were transfected with pMAMCRR51 and mycophenolic acid-resistant cells showing caffeine-induced intracellular Ca2+ transients were selected. Immunoprecipitation with a monoclonal antibody against the canine cardiac ryanodine receptor revealed that the cell clones thus selected exhibited Ca(2+)-dependent [3H]ryanodine binding activity, which was stimulated by 5 mM ATP or 1 M KCl. The apparent dissociation constant (Kd) for [3H]ryanodine was 6.6 nM in 1 M KCl, which was similar to the Kd obtained with cardiac microsomes. Immunoprecipitation also demonstrated that these cell clones expressed a protein indistinguishable in M(r) from the ryanodine receptor in canine cardiac microsomes. The ryanodine binding activity expressed in CHO cells increased significantly after dexamethasone induction. In saponin-skinned CHO cells transfected with pMAMCRR51, micromolar Ca2+ or millimolar caffeine evoked rapid Ca2+ release from the intracellular Ca2+ stores. In skinned control CHO cells, we did not observe such Ca2+ release activity. These results clearly demonstrate that the cardiac ryanodine receptor is stably expressed in internal membranes of CHO cells and functions as Ca(2+)-induced Ca2+ release channels.  相似文献   

16.
Aldehyde dehydrogenase 2 (ALDH2) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg(2+) ions influence ALDH2 activity in part by increasing NADH binding affinity. Traditional fluorescence measurements monitor the blue shift of the NADH fluorescence spectrum to study ALDH2-NADH interactions. By using time-resolved fluorescence spectroscopy, we have resolved the fluorescent lifetimes (τ) of free NADH (τ=0.4 ns) and bound NADH (τ=6.0 ns). We used this technique to investigate the effects of Mg(2+) on the ALDH2-NADH binding characteristics and enzyme catalysis. From the resolved free and bound NADH fluorescence signatures, the K(D) for NADH with ALDH2 ranged from 468 μM to 12 μM for Mg(2+) ion concentrations of 20 to 6000 μM, respectively. The rate constant for dissociation of the enzyme-NADH complex ranged from 0.4s(-1) (6000 μM Mg(2+)) to 8.3s(-1) (0 μM Mg(2+)) as determined by addition of excess NAD(+) to prevent re-association of NADH and resolving the real-time NADH fluorescence signal. The apparent NADH association/re-association rate constants were approximately 0.04 μM(-1)s(-1) over the entire Mg(2+) ion concentration range and demonstrate that Mg(2+) ions slow the release of NADH from the enzyme rather than promoting its re-association. We applied NADH fluorescence lifetime analysis to the study of NADH binding during enzyme catalysis. Our fluorescence lifetime analysis confirmed complex behavior of the enzyme activity as a function of Mg(2+) concentration. Importantly, we observed no pre-steady state burst of NADH formation. Furthermore, we observed distinct fluorescence signatures from multiple ALDH2-NADH complexes corresponding to free NADH, enzyme-bound NADH, and, potentially, an abortive NADH-enzyme-propanal complex (τ=11.2 ns).  相似文献   

17.
The binding of vanadate to isolated sarcoplasmic reticulum (SR) membranes was measured colorimetrically by equilibrium sedimentation and ion exchange column filtration. The concentration dependence of vanadate binding exhibited a biphasic curve with two phases of equal amplitude. A similar biphasic curve of the vanadate dependence was observed with the purified Ca(2+)-ATPase prepared by deoxycholate extraction. Sites of vanadate binding could be classified into two distinct species based on apparent affinity; the high-affinity binding sites have a dissociation constant below 0.1 microM, and the low-affinity sites one of 36 microM. The maximum amount of vanadate bound to each of the high- or low-affinity sites was estimated to be 2.6-3.6 nmol/mg SR protein, which corresponds to approximately 0.5 mol of vanadate bound per mol of Ca(2+)-ATPase. These results indicate that 1 mol of Ca(2+)-ATPase contains 0.5 mol of high-affinity vanadate-binding sites as well as 0.5 mol of low-affinity vanadate-binding sites. Vanadate binding to the low-affinity sites was competitively inhibited by inorganic phosphate, while vanadate binding to the high-affinity sites resulted in a non-competitive inhibition of the phosphoenzyme formation from inorganic phosphate. When SR membrane were solubilized with polyoxy-ethylene-9-laurylether (C12E9), the vanadate binding exhibited a monophasic concentration dependency curve with a dissociation constant of 13 microM. The number of vanadate-binding sites was estimated to be 7.2 nmol/mg SR protein which represents about 1 mol of site per mol of Ca(2+)-ATPase. Vanadate binding to the solubilized Ca(2+)-ATPase was competitively inhibited by inorganic phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Henzl MT  Agah S  Larson JD 《Biochemistry》2004,43(34):10906-10917
Association of the parvalbumin AB and CD-EF domains was examined in Hepes-buffered saline, pH 7.4, employing fragments from rat alpha and beta. All of the interactions require Ca(2+). In saturating Ca(2+), the alpha AB/alpha CD-EF (alpha/alpha) complex displays an association constant of (7.6 +/- 0.4) x 10(7) M(-1). Ca(2+)-binding data for a mixture of the alpha fragments are compatible with an identical two-site model, yielding an average binding constant of (8.5 +/- 0.2) x 10(5) M(-1). The beta/beta interaction is significantly weaker, exhibiting an association constant of (3.0 +/- 0.6) x 10(6) M(-1). The Ca(2+)-binding constants for beta/beta are likewise diminished, at (1.0 +/- 0.1) x 10(5) and (2.3 +/- 0.2) x 10(4) M(-1). The magnitude of the apparent DeltaDeltaG(degree)' for Ca(2+) binding by alpha/alpha and beta/beta, at 3.4 kcal/mol, approaches that measured for the intact proteins (3.6 kcal/mol) and is substantially larger than the 1.5 kcal/mol value previously measured for the isolated CD-EF domains. This result suggests that the AB domain can modulate the Ca(2+) affinities of the CD and EF sites. Interestingly, the heterologous alpha/beta complex displays a larger association constant [(6.6 +/- 0.4) x 10(6) M(-1)] than the homologous beta/beta complex and heightened Ca(2+) affinity [binding constants of (1.3 +/- 0.1) x 10(6) and (8.8 +/- 0.2) x 10(4) M(-1)]. By contrast, beta/alpha associates more weakly than alpha/alpha and exhibits sharply reduced affinity for Ca(2+). Thus, the interaction between the beta AB domain and beta CD-EF domain may act to attenuate Ca(2+) affinity in the intact protein.  相似文献   

19.
Point mutants with alterations to amino acid residues Thr(247), Pro(248), Glu(340), Asp(813), Arg(819), and Arg(822) of sarcoplasmic reticulum Ca(2+)-ATPase were analyzed by transient kinetic measurements. In the Ca(2+)-ATPase crystal structures, most of these residues participate in a hydrogen-bonding network between the phosphorylation domain (domain P), the third transmembrane helix (M3), and the cytoplasmic loop connecting the sixth and the seventh transmembrane helices (L6-7). In several of the mutants, a pronounced phosphorylation "overshoot" was observed upon reaction of the Ca(2+)-bound enzyme with ATP, because of accumulation of dephosphoenzyme at steady state. Mutations of Glu(340) and its partners, Thr(247) and Arg(822), in the bonding network markedly slowed the Ca(2+) binding transition (E2 --> E1 --> Ca(2)E1) as well as Ca(2+) dissociation from Ca(2+) site II back toward the cytosol but did not affect the apparent affinity for vanadate. These mutations may have caused a slowing, in both directions, of the conformational change associated directly with Ca(2+) interaction at Ca(2+) site II. Because mutation of Asp(813) inhibited the Ca(2+) binding transition, but not Ca(2+) dissociation, and increased the apparent affinity for vanadate, the effect on the Ca(2+) binding transition seems in this case to be exerted by slowing the E2 --> E1 conformational change. Because the rate was not significantly enhanced by a 10-fold increase of the Ca(2+) concentration, the slowing is not the consequence of reduced affinity of any pre-binding site for Ca(2+). Furthermore, the mutations interfered in specific ways with the phosphoenzyme processing steps of the transport cycle; the transition from ADP-sensitive phosphoenzyme to ADP-insensitive phosphoenzyme (Ca(2)E1P --> E2P) was accelerated by mutations perturbing the interactions mediated by Glu(340) and Asp(813) and inhibited by mutation of Pro(248), and mutations of Thr(247) induced charge-specific changes of the rate of dephosphorylation of E2P.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号