首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The purpose of this study was to determine whether a dynamic-stretching warm-up (DWU) intervention performed daily over 4 weeks positively influenced power, speed, agility, endurance, flexibility, and strength performance measures in collegiate wrestlers when compared to a static-stretching warm-up (SWU) intervention. Twenty-four male National Collegiate Athletic Association Division I wrestlers were randomly assigned to complete either a 4-week treatment condition (DWU) (n = 11) or an active control condition (SWU) (n = 13) prior to their daily preseason practices. Anthropometric and performance measures were conducted before and after the 4-week experimental period (i.e., DWU or SWU). Measures included peak torque of the quadriceps and hamstrings, medicine ball underhand throw, 300-yd shuttle, pull-ups, push-ups, sit-ups, broad jump, 600-m run, sit-and-reach test, and trunk extension test. Wrestlers completing the 4-week DWU intervention had several performance improvements, including increases in quadriceps peak torque (11%), broad jump (4%), underhand medicine ball throw (4%), sit-ups (11%), and push-ups (3%). A decrease in the average time to completion of the 300-yd shuttle (-2%) and the 600-m run (-2.4%) was suggestive of enhanced muscular strength, endurance, agility, and anaerobic capacity in the DWU group. In contrast to the DWU intervention, there was no observed improvement in the SWU group for peak torque of the quadriceps, broad jump, 300-yd shuttle run, medicine ball underhand throw for distance, sit-ups, push-ups, or 600-m run, and decrements in some performance measures occurred. The findings suggest that incorporation of this specific 4-week DWU intervention into the daily preseason training regimen of wrestlers produced longer-term or sustained power, strength, muscular endurance, anaerobic capacity, and agility performance enhancements.  相似文献   

2.
The purpose of this study was to compare the impact of different types of warm-up on countermovement vertical jump (VJ) performance. Sixty-four male Division I collegiate football players completed a pretest for VJ height. The participants were then randomly assigned to a warm-up only condition, a warm-up plus static stretching condition, a warm-up plus dynamic stretching condition, or a warm-up plus dynamic flexibility condition. VJ performance was tested immediately after the completion of the warm-up. The results showed that there was a significant difference (P < .05) in VJ performance between the warm-up groups. Posttest jump performance improved in all groups; however, the mean for the static stretching group was significantly lower than the means for the other 3 groups. The static stretching negated the benefits gained from a general warm-up when performed immediately before a VJ test.  相似文献   

3.
Preactivity stretching is commonly performed by athletes as part of their warm-up routine. However, the most recent literature questions the effectiveness of preactivity stretching. One limitation of this research is that the stretching duration is not realistic for most athletes. Therefore, the purpose of this study was to determine the effects of a practical duration of acute static and ballistic stretching on vertical jump (VJ), lower-extremity power, and quadriceps and hamstring torque. Twenty-four subjects performed a 5-minute warm-up followed by each of the following three conditions on separate days with order counterbalanced: static stretching, ballistic stretching, or no-stretch control condition. Vertical jump was determined with the Vertec VJ system and was also calculated from the ground-reaction forces collected from a Kistler force plate, which also were used to calculate power. Torque output of the quadriceps and hamstrings was measured through knee extension and flexion on the Biodex System 3 Dynamometer at 60 degrees x s(-1). Data normalized for body weight were analyzed using five separate, 3 (stretch condition) x 2 (gender) analysis-of-variance procedures with repeated measures on the factor of stretch condition. The gender x stretch interaction was not significant for any of the four measures, suggesting that the stretching conditions did not affect men and women differently. The results of this study reveal that static and ballistic stretching did not affect VJ, or torque output for the quadriceps and hamstrings. Despite no adverse effect on VJ, stretching did cause a decrease in lower-extremity power, which was surprising. Because of the mixed results, strength coaches would be better served to use dynamic stretching before activity; this has been consistently supported by the literature.  相似文献   

4.
Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p < 0.0001), while vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p < 0.05). Coaches should consider using ballistic stretching as a warm-up for basketball play, as it is beneficial to vertical jump performance.  相似文献   

5.
The current literature recommends dynamic rather than static stretching for the athletic warm-up. Dynamic stretching and various conditioning stimuli are used to induce potentiation in subsequent athletic performance. However, it is unknown as to which type of activity in conjunction with dynamic stretching within a warm-up provides the optimal potentiation of vertical jump performance. It was the objective of the study to examine the possible potentiating effect of various types of conditioning stimuli with dynamic stretching. Twenty athletes participated in 6 protocols. All the experimental protocols included 10 minutes of dynamic stretching. After the dynamic stretching, the subjects performed a (a) concentric (DS/CON): 3 sets of 3 repetition maximum deadlift exercise; (b) isometric (DS/ISOM): 3 sets of 3-second maximum voluntary contraction back squats; (c) plyometric (DS/PLYO): 3 sets of 3 tuck jumps; (d) eccentric (DS/ECC): 3 modified drop jumps; (e) dynamic stretching only (DS), and (f) control protocol (CON). Before the intervention and at recovery periods of 15 seconds, 4, 8, 12, 16, and 20 minutes, the participants performed 1-2 maximal countermovement jumps. The DS and DS/CON protocols generally had a 95-99% likelihood of exceeding the smallest worthwhile change for vertical jump height, peak power, velocity and force. However, the addition of the deadlift to the DS did not augment the potentiating effect. Time-to-peak potentiation was variable between individuals but was most consistent between 3 and 5 minutes. Thus, the volume and the intensity associated with 10 minutes of dynamic stretching were sufficient to provide the potentiation of vertical jump characteristics. Additional conditioning activities may promote fatigue processes, which do not permit further potentiation.  相似文献   

6.
The purpose of this study was to compare the effect of a dynamic warm up (DWU) with a static-stretching warm up (SWU) on selected measures of power and agility. Thirty cadets at the United States Military Academy completed the study (14 women and 16 men, ages 18-24 years). On 3 consecutive days, subjects performed 1 of the 2 warm up routines (DWU or SWU) or performed no warm up (NWU). The 3 warm up protocols lasted 10 minutes each and were counterbalanced to avoid carryover effects. After 1-2 minutes of recovery, subjects performed 3 tests of power or agility. The order of the performance tests (T-shuttle run, underhand medicine ball throw for distance, and 5-step jump) also was counterbalanced. Repeated measures analysis of variance revealed better performance scores after the DWU for all 3 performance tests (p < 0.01), relative to the SWU and NWU. There were no significant differences between the SWU and NWU for the medicine ball throw and the T-shuttle run, but the SWU was associated with better scores on the 5-step jump (p < 0.01). Because the results of this study indicate a relative performance enhancement with the DWU, the utility of warm up routines that use static stretching as a stand-alone activity should be reassessed.  相似文献   

7.
Numerous studies have shown that stretching routines can induce strength and force deficits, although the amount of stretching needed to cause these deficits remains unclear. Therefore, the purpose of the study was to examine the relationship between varying amounts of acute static stretching on jumping performance. By systematically increasing the amount of stretching, possible differences in jump height may be discovered, defining a line where acute static stretching becomes detrimental to performance. Ten collegiate athletes and 10 recreational athletes completed 3 different stretching treatments and 1 control treatment on different days in a within-treatment design. Stretching treatments consisted of 2, 4, or 6 sets of stretches, with each stretch held for 15 seconds with a 15-second rest. Stretches were done to the quadriceps, hamstrings, and plantar flexors. Upon arrival, each subject performed a 5-minute warm-up on a stationary upright cycle. After a brief rest period, participants performed 3 trials of a vertical jump test, followed by one of the treatment protocols. After another rest period, a second set of vertical jump trials was performed. Post-6 sets was significantly lower than Pre-6 sets (p < or = 0.05). Additionally, Post-6 sets was significantly lower than Pre-4 sets, Pre-2 sets, and Pre-control (p < or = 0.05). No other conditions were significantly different. In conclusion, 6 sets of stretches, or 90 seconds per muscle group, should not be performed before power activities such as jumping where optimal performance is desired.  相似文献   

8.
A decreased hamstring:quadriceps (H:Q) ratio may put the hamstrings and anterior cruciate ligament (ACL) at increased risk of injury. Therefore, the purpose of this study was to evaluate H:Q ratios of 12 female National Collegiate Athletic Association soccer players, and to test the effects of a 6-week strength training program on these ratios. Each subject completed 2 practice sessions before a pretest. Subjects then completed 6 weeks of strength training that included the addition of 2 hamstring specific exercises, followed by a posttest. Peak torque during concentric and eccentric actions for both hamstrings and quadriceps was measured with an isokinetic dynamometer. Each muscle action was tested at 3 angular velocities in the following order: concentric 240, 180, and 60 degrees x s(-1) and eccentric 60, 180, and 240 degrees x s(-1). The H:Q strength ratio was evaluated using concentric muscle actions (concentric hamstrings:concentric quadriceps). This method is commonly used and is thus called the conventional ratio. Because concentric actions do not occur simultaneously in opposing muscles, a more functional assessment compares eccentric hamstring actions to concentric quadriceps actions. This functional ratio was also analyzed. Mean conventional and functional H:Q ratio data were analyzed using separate analysis of variance procedures with repeated measures on all factors (2 [Test] x 2 [Leg] x 3 [Angular Velocity]). The results revealed a significant main effect for factor (F test) with the functional ratio (p < 0.05) but not for the conventional ratio. The mean functional ratio increased from 0.96 +/- 0.09 in pretest to 1.08 +/- 0.11 in posttest. These results suggest that 6 weeks of strength training that emphasizes hamstrings is sufficient to significantly increase the functional ratio. The functional ratio after training exceeded 1.0, which is specifically recommended for prevention of ACL injuries.  相似文献   

9.
The purpose of this study was to examine the effects of different modes of stretching within a pre-exercise warm-up on high-speed motor capacities important to soccer performance. Eighteen professional soccer players were tested for countermovement vertical jump, stationary 10-m sprint, flying 20-m sprint, and agility performance after different warm-ups consisting of static stretching, dynamic stretching, or no stretching. There was no significant difference among warm-ups for the vertical jump: mean +/- SD data were 40.4 +/- 4.9 cm (no stretch), 39.4 +/- 4.5 cm (static), and 40.2 +/- 4.5 cm (dynamic). The dynamic-stretch protocol produced significantly faster 10-m sprint times than did the no-stretch protocol: 1.83 +/- 0.08 seconds (no stretch), 1.85 +/- 0.08 seconds (static), and 1.87 +/- 0.09 seconds (dynamic). The dynamic- and static-stretch protocols produced significantly faster flying 20-m sprint times than did the no-stretch protocol: 2.41 +/- 0.13 seconds (no stretch), 2.37 +/- 0.12 seconds (static), and 2.37 +/- 0.13 seconds (dynamic). The dynamic-stretch protocol produced significantly faster agility performance than did both the no-stretch protocol and the static-stretch protocol: 5.20 +/- 0.16 seconds (no stretch), 5.22 +/- 0.18 seconds (static), and 5.14 +/- 0.17 seconds (dynamic). Static stretching does not appear to be detrimental to high-speed performance when included in a warm-up for professional soccer players. However, dynamic stretching during the warm-up was most effective as preparation for subsequent high-speed performance.  相似文献   

10.
The purpose of this study was to determine the effectiveness of specific and nonspecific warm-ups on the vertical jump test performed by athletic men. Twenty-nine men (18-23 years) in athletics (speed positions in football) performed vertical jump tests on 4 separate days after completing 4 different warm-up protocols. The 4 warm-up protocols were (a) submaximal jump warm-up, (b) weighted jump warm-up, (c) stretching warm-up, and (d) no warm-up. The weighted jump warm-up protocol required 5 countermovement jumps onto a box, with the athletes holding dumbbells equaling 10% of their body weight. The submaximal jump warm-up protocol required the athletes to perform 5 countermovement jumps at 75% intensity of their past maximum vertical jump score. The stretching warm-up protocol required the athletes to perform 14 different stretches, each held for 20 seconds. The no warm-up protocol required the athletes to perform no activity prior to being tested. Three vertical jumps were measured following each warm-up; the score for analysis was the best jump. The data were analyzed with a repeated measures analysis of variance and Bonferroni post hoc tests. The Bonferroni post hoc tests showed a significant difference (p < 0.001) between the weighted jump warm-up and all other warm-ups. The effect size was 0.380 and the power was 1.00 for the statistical analyses. We concluded that utilizing a weighted resistance warm-up would produce the greatest benefit when performing the vertical jump test.  相似文献   

11.
The aim of this article is to present data on the strength and power characteristics of forwards and backs in a squad of elite English rugby league players and compare these findings to previously published literature from Australia. Participants were elite English rugby league players (n = 18; height 184.16 ± 5.76 cm; body mass 96.87 ± 10.92 kg, age 21.67 ± 4.10 years) who were all regular first team players for an English Superleague club. Testing included 5-, 10-, 20-m sprint times, agility, vertical jump, 40-kg squat jump, isometric squat, concentric and eccentric isokinetic knee flexion and extension. Independent t-tests were performed to compare results between forwards and backs, with paired samples t-tests used to compare bilateral differences from isokinetic assessments and agility tests. Forwards demonstrated significantly (p < 0.05) greater body mass (102.15 ± 7.5 kg), height (186.30 ± 5.47 cm), power during the 40-kg jump squat (2,106 ± 421 W), isometric force (3,122 ± 611 N) and peak torque during left concentric isokinetic knee extension (296.1 ± 54.2 N·m) compared to the backs (86.30 ± 8.97 kg; 179.87 ± 3.72 cm; 1,709 ± 286 W; 2,927 ± 607 N; 241.7 ± 35.2 N·m, respectively). However, no significant differences (p > 0.05) were noted between forwards and backs during right concentric isokinetic knee extension (274.8 ± 37.7 and 246.8 ± 25.8 N·m), concentric isokinetic knee flexion for both left (158.8 ± 28.6 and 141.0 ± 22. 7 N·m) and right legs (155.3 ± 22.9 and 128.0 ± 23.9 N·m), eccentric isokinetic knee flexion and extension, hamstring quadriceps ratios, or vertical jump (37.25 ± 4.35 and 40.33 ± 6.38 cm). In comparison, relative measures demonstrated that backs performed significantly better compared to the forwards during the 40-kg jump squat (20.71 ± 5.15 and 19.91 ± 3.91 W·kg?1) and the isometric squat (34.32 ± 7.9 and 30.65 ± 5.34 N·kg?1). Bilateral comparisons revealed no significant differences (p > 0.05) between left and right leg performances in the agility test (3.26 ± 0.18 and 3.24 ± 0.18 seconds), or between left (0.7 ± 0.10) and right (0.71 ± 0.17) leg eccentric hamstring concentric quadriceps ratios. The results demonstrate that absolute strength and power measures are generally higher in forwards compared to in backs; however, when body mass is taken into account and relative measures compared, the backs outperform the forwards.  相似文献   

12.
13.
The purpose of this study was to compare the acute effects on youth fitness of 3 different warm-up protocols utilizing static stretching or dynamic exercise performance. Sixty children (mean age 11.3 +/- 0.7 years) performed 3 different warm-up routines in random order on nonconsecutive days. The warm-up protocols consisted of 5 minutes of walking and 5 minutes of static stretching (SS), 10 minutes of dynamic exercise (DY), or 10 minutes of dynamic exercise plus 3 drop jumps from 15-cm boxes (DYJ). Following each warm-up session, subjects were tested on the vertical jump, long jump, shuttle run, and v-sit flexibility. Analysis of the data revealed that vertical-jump and shuttle-run performance declined significantly following SS as compared to DY and DYJ, and long-jump performance was significantly reduced following SS as compared to DYJ (p < 0.05). There were no significant differences in flexibility following the 3 warm-up treatments. The results of this study suggest that it may be desirable for children to perform moderate- to high-intensity dynamic exercises prior to the performance of activities that require a high power output.  相似文献   

14.
Strength deficits in the quadriceps and hamstrings have been linked to several lower extremity injuries. The most common protocol used in testing for these deficits is isokinetic strength testing, which is both costly and time consuming. Therefore, the purpose of this study was to employ common vertical and horizontal power field tests to identify those protocols that best predict lower extremity strength deficits. Data describing 22 healthy collegiate graduate students' vertical and horizontal power were collected using standard field tests (i.e., 2 feet vertical jump, single leg vertical jump, 40-, 50-, and 60-yd runs). In addition, data describing each subject's lower extremity strength deficits were collected by using the Biodex 840-000 Multi Joint System Isokinetic Dynamometer (Biodex Medical Systems, Shirley, NY, USA) set to report peak torque at 60° · s of flexion and extension and 180° · s of flexion and extension. Regression analyses indicated that 3 of the 4 strength deficit parameters could be predicted from a linear combination of field test results (p < 0.05). Of the strength deficits measured, hamstring deficits at flexion velocities of both 60° · s and quadriceps strength deficits at 60° · s were those that could be predicted using field test results. The results of this study, by increasing the diagnostic power of the clinician, may make it easier to develop strength training protocols designed specifically to target weak musculature in the lower extremity. This targeting of specific musculature, in an effort to return symmetrical strength to the lower extremity, may ultimately decrease the likelihood of lower extremity injury in college-aged men and women.  相似文献   

15.
The purpose of this study was to compare a 5-minute treadmill activity at 70% maximum heart rate (MHR) and 5 to 6 minutes of ballistic stretching to a 5-minute treadmill activity at 60% of MHR and 5 to 6 minutes of static stretching. Thirty healthy college students, 7 men and 23 women, volunteered. Most volunteers were moderately active. All participants signed an informed consent. Participants received the aforementioned warm-ups in random order with 48 to 72 hours between warm-ups. The stretching exercises were a back stretch, a quadriceps stretch, and a hamstring stretch. Three trials for 30 seconds each were given. After each warm-up the participants performed the modified-modified Schober test for low back flexibility, active knee extension test for hamstring flexibility, and plantar flexion for ankle flexibility. There were no significant differences on any of the 3 range of motion (ROM) tests although the ankle ROM test was almost significantly greater (68.8 degrees ) after the warm-up with static stretching compared with 65.9 degrees after the warm-up with ballistic stretching. A more intense cardiovascular activity and ballistic stretching were similar to a less intense cardiovascular activity and static stretching on flexibility. If athletes perform a warm-up and static or ballistic stretching before their workouts, then they should continue to perform the warm-up and the stretching routine with which they are most familiar and comfortable.  相似文献   

16.
Objective:The purpose of this study was to evaluate the effects of static stretching and the application of massage on flexibility and jump performance.Methods:Thirty-five athletes studying Physical Education at University (mean age 23.6±1.3 years, mean height 177.8±6.3 cm and mean weight 72.2±6.7 kg) performed one of three different warm-up protocols on non-consecutive days. Protocols included static stretching [SS], combined static stretching and massage [SSM], and neither stretching nor massage [CONT]. The athletes performed flexibility, countermovement jump (CMJ) and squat jump (SJ) tests.Results:SS and SSM protocols demonstrated 12% (p<0.05) and 16% (p<0.05) respectively greater flexibility than the CONT protocol. SJ and CMJ performances were significantly decreased 10.4% (p<0.05) and 5.5% (p<0.05) respectively after the SS protocol. There was no significant difference between SSM and CONT protocol in terms of SJ and CMJ performance.Conclusion:This research indicates that whereas static stretching increases the flexibility it decreases the jumping performance of the athletes. On the other hand, the application of massage immediately following static stretching increases flexibility but does not reduce jumping performance. Considering the known negative acute effects of static stretching on performance, the application of massage is thought to be beneficial in alleviating such effects.  相似文献   

17.
The purpose of this study was to determine which phase of a 30-m sprint (acceleration and/or maximal velocity) was affected by preperformance static stretching. Data were collected from 20 elite female soccer players. On two nonconsecutive days, participants were randomly assigned to either the stretch or no-stretch condition. On the first day, the athletes in the no-stretch condition completed a standard warm-up protocol and then performed three 30-m sprints, with a 2-minute rest between each sprint. The athletes in the stretch condition performed the standard warm-up protocol, completed a stretching routine of the hamstrings, quadriceps, and calf muscles, and then immediately performed three 30-m sprints, also with a 2-minute rest between each sprint. On the second day, the groups were reversed, and identical procedures were followed. One-way repeated-measures analyses of variance revealed a statistically significant difference in acceleration (p < 0.0167), maximal-velocity sprint time (p < 0.0167), and overall sprint time (p < 0.0167) between the stretch and no-stretch conditions. Static stretching before sprinting resulted in slower times in all three performance variables. These findings provide evidence that static stretching exerts a negative effect on sprint performance and should not be included as part of the preparation routine for physical activity that requires sprinting.  相似文献   

18.
Debate exists between the benefits and effectiveness of a dynamic warm-up vs. a static warm-up. This study was conducted to compare dynamic and static warm-ups on lower body explosiveness as measured by stationary vertical jump (VJ) and standing long jump (LJ) among collegiate baseball players. Participants (n = 17; age = 19.59 ± 1.37 years) progressed through 3 different warm-ups on weekly testing dates over a 7-week period. After the warm-up routines, participants were measured for VJ height and LJ distance in centimeters. The mean jump heights for VJ were 66.49 ± 8.28 cm for dynamic, 61.42 ± 7.51 cm for static, and 62.72 ± 7.84 cm for the control condition. The mean jump distances for LJ were 231.99 ± 20.69 cm for dynamic, 219.69 ± 20.96 cm for static, and 226.46 ± 20.60 cm for the control. Results indicated that the participants jumped significantly higher in both experimental conditions while under the influence of the dynamic warm-up (VJ-F = 22.08; df = 1.33, 21.345; p < 0.00 and LJ-F = 32.20; df = 2, 32; p < 0.01). Additional LJ analysis determined that individuals jumped significantly further after no warm-up compared to after a static warm-up (-6.78, p < 0.05). Lower body explosiveness is critical in baseball and many other sports as well. The results show that dynamic warm-up increases both VJ height and LJ distance. Specifically, these findings indicate that athletes could gain nearly 2 in. on his or her vertical jump by simply switching from a static warm-up routine to a dynamic routine.  相似文献   

19.
ABSTRACT: Amiri-Khorasani, M, MohammadKazemi, R, Sarafrazi, S, Riyahi-Malayeri, S, and Sotoodeh, V. Kinematics analyses related to stretch-shortening cycle during soccer instep kicking after different acute stretching. J Strength Cond Res 26(11): 3010-3017, 2012-The purpose of this study was to examine the effects of static and dynamic stretching within a preexercise warm-up on angular velocity of knee joint, deepest knee flexion (DKF), and duration of eccentric and concentric contractions, which are relative to the stretch-shortening cycle (SSC) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 Olympic professional male soccer players (height: 180.38 ± 7.34 cm; weight: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 digital video cameras at 50 Hz. There was a significant difference in the DKF after the dynamic stretching (-3.22 ± 3.10°) vs. static stretching (-0.18 ± 3.19°) relative to the no-stretching method with p < 0.001. Moreover, there was significant difference in eccentric duration after the dynamic stretching (0.006 ± 0.01 seconds) vs. static stretching (-0.003 ± 0.01 seconds) relative to the no-stretching method with p < 0.015. There was a significant difference in the concentric duration after the dynamic stretching (-0.007 ± 0.01 seconds) vs. static stretching (0.002 ± 0.01 seconds) relative to the no-stretching method with p < 0.001. There was also a significant difference in knee angular velocity after the dynamic stretching (4.08 ± 3.81 rad·s) vs. static stretching (-5.34 ± 4.40 rad·s) relative to the no-stretching method with p < 0.001. We concluded that dynamic stretching during warm-ups, as compared with static stretching, is probably the most effective way as preparation for the kinematics characteristics of soccer instep kick, which are relative to the SSC.  相似文献   

20.
The purpose of this study was to examine the acute effects of 3 different stretching methods combined with a warm-up protocol on vertical jump performance. Sixteen young tennis players (14.5 ± 2.8 years; 175 ± 5.6 cm; 64.0 ± 11.1 kg) were randomly assigned to 4 different experimental conditions on 4 successive days. Each session consisted of a general and specific warm-up, with 5 minutes of running followed by 10 jumps, accompanied by one of the subsequent conditions: (a) Control Condition (CC)-5 minutes of passive rest; (b) Passive Stretching Condition (PSC)-5 minutes of passive static stretching; (c) Active Stretching Condition (ASC)-5 minutes of active static stretching; and (d) Dynamic Stretching Condition (DC)-5 minutes of dynamic stretching. After each intervention, the subjects performed 3 squat jumps (SJs) and 3 countermovement jumps (CMJs), which were measured electronically. For the SJ, 1-way repeated measures analysis of variance (CC × PSC × ASC × DC) revealed significant decreases for ASC (28.7 ± 4.7 cm; p = 0.01) and PSC (28.7 ± 4.3 cm; p = 0.02) conditions when compared with CC (29.9 ± 5.0 cm). For CMJs, there were no significant decreases (p > 0.05) when all stretching conditions were compared with the CC. Significant increases in SJ performance were observed when comparing the DC (29.6 ± 4.9 cm; p = 0.02) with PSC (28.7 ± 4.3 cm). Significant increases in CMJ performance were observed when comparing the conditions ASC (34.0 ± 6.0 cm; p = 0.04) and DC (33.7 ± 5.5 cm; p = 0.03) with PSC (32.6 ± 5.5 cm). A dynamic stretching intervention appears to be more suitable for use as part of a warm-up in young athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号