首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increase in volume of biodiesel production in the world scenario proves that biodiesel is accepted as an alternative to conventional fuel. Production of biodiesel using alkaline catalyst has been commercially implemented due to its high conversion and low production time. For the product and process development of biodiesel, enzymatic transesterification has been suggested to produce a high purity product with an economic, environment friendly process at mild reaction conditions. The enzyme cost being the main hurdle can be overcome by immobilization. Immobilized enzyme, which has been successfully used in various fields over the soluble counterpart, could be employed in biodiesel production with the aim of reducing the production cost by reusing the enzyme. This review attempts to provide an updated compilation of the studies reported on biodiesel production by using lipase immobilized through various techniques and the parameters, which affect their functionality.  相似文献   

2.
In the conventional transesterification of fats/vegetable oils for biodiesel production, free fatty acids and water always produce negative effects, since the presence of free fatty acids and water causes soap formation, consumes catalyst and reduces catalyst effectiveness, all of which result in a low conversion. The objective of this study was, therefore, to investigate the effect of water on the yield of methyl esters in transesterification of triglycerides and methyl esterification of fatty acids as treated by catalyst-free supercritical methanol. The presence of water did not have a significant effect on the yield, as complete conversions were always achieved regardless of the content of water. In fact, the present of water at a certain amount could enhance the methyl esters formation. For the vegetable oil containing water, three types of reaction took place; transesterification and hydrolysis of triglycerides and methyl esterification of fatty acids proceeded simultaneously during the treatment to produce a high yield. These results were compared with those of methyl esters prepared by acid- and alkaline-catalyzed methods. The finding demonstrated that, by a supercritical methanol approach, crude vegetable oil as well as its wastes could be readily used for biodiesel fuel production in a simple preparation.  相似文献   

3.
An addition of cycloheximide to cycloheximide-producing Streptomyces griseus cultures resulted in reductions in the production rate and in the conversion of sugar into cycloheximide. In situ cycloheximide adsorption was observed to enhance: total cycloheximide titers; productivities; and the conversion of sugar to cycloheximide. During the secondary metabolite-producing phase, sugar consumption was observed to be linearly dependent on cycloheximide productivity. From this analysis a true product yield and maintenance coefficient were estimated to be 0.08 g cycloheximide/g glucose and 0.028 g glucose/g cell-h, respectively. The sixfold difference between this true product yield and a theoretical value obtained from knowledge of the biosynthetic pathway is discussed. Since the maintenance sugar requirement for cycloheximide production is large, stimulation of biosynthesis through in situ adsorption significantly increases the overall efficiency of sugar conversion to this secondary metabolite.  相似文献   

4.
The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.  相似文献   

5.
Biodiesel production using a membrane reactor   总被引:14,自引:0,他引:14  
The immiscibility of canola oil in methanol provides a mass-transfer challenge in the early stages of the transesterification of canola oil in the production of fatty acid methyl esters (FAME or biodiesel). To overcome or rather, exploit this situation, a two-phase membrane reactor was developed to produce FAME from canola oil and methanol. The transesterification of canola oil was performed via both acid- or base-catalysis. Runs were performed in the membrane reactor in semi-batch mode at 60, 65 and 70 degrees C and at different catalyst concentrations and feed flow rates. Increases in temperature, catalyst concentration and feedstock (methanol/oil) flow rate significantly increased the conversion of oil to biodiesel. The novel reactor enabled the separation of reaction products (FAME/glycerol in methanol) from the original canola oil feed. The two-phase membrane reactor was particularly useful in removing unreacted canola oil from the FAME product yielding high purity biodiesel and shifting the reaction equilibrium to the product side.  相似文献   

6.
Due to its availability, low‐price, and high degree of reduction, glycerol has become an attractive carbon source for the production of fuels and reduced chemicals. Using the platform we have established from the identification of key pathways mediating fermentative metabolism of glycerol, this work reports the engineering of Escherichia coli for the conversion of glycerol into 1,2‐propanediol (1,2‐PDO). A functional 1,2‐PDO pathway was engineered through a combination of overexpression of genes involved in its synthesis from the key intermediate dihydroxyacetone phosphate (DHAP) and the manipulation of the fermentative glycerol utilization pathway. The former included the overexpression of methylglyoxal synthase (mgsA), glycerol dehydrogenase (gldA), and aldehyde oxidoreductase (yqhD). Manipulation of the glycerol utilization pathway through the replacement of the native E. coli PEP‐dependent dihydroxyacetone kinase (DHAK) with an ATP‐dependent DHAK from C. freundii increased the availability of DHAP allowing for higher 1,2‐PDO production. Analysis of the major fermentative pathways indentified ethanol as a required co‐product while increases in 1,2‐PDO titer and yield were achieved through the disruption of the pathways for acetate and lactate production. Combination of these key metabolic manipulations resulted in an engineered E. coli strain capable of producing 5.6 g/L 1,2‐PDO, at a yield of 21.3% (w/w). This strain also performed well when crude glycerol, a by‐product of biodiesel production, was used as the substrate. The titer and yield achieved in this study were favorable to those obtained with the use of E. coli for the production of 1,2‐PDO from common sugars. Biotechnol. Bioeng. 2011; 108:867–879. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
Liu Y  Chen D  Yan Y  Peng C  Xu L 《Bioresource technology》2011,102(22):10414-10418
Biodiesel synthesis and conformation of Burkholderia cepacia lipase (BCL) were studied in 19 different room temperature ionic liquids (RTLLs) with a range of cation and anion structures. Overall, anion selection had a greater influence on biodiesel conversion than cation choice. RTILs containing Tf2N- and PF6- anions were suitable reaction media, while RTIL of [OmPy][BF4] was the best reaction medium with a biodiesel yield of 82.2±1.2%. RTILs with strong water miscible properties showed very low biodiesel yields. Conformational analysis by FT-IR revealed that higher biodiesel conversion in RTILs was correlated with a low tendency in α-helix content of BCL. An ultrasound-assisted biocatalysis process in RTILs was used to improve mass transfer rate, leading to 83% reduction of the reaction time for biodiesel production.  相似文献   

8.
Pyrolysis of glycerol for the production of hydrogen or syn gas   总被引:1,自引:0,他引:1  
Biodiesel has high potential as alternative liquid transportation fuel because it is renewable and CO(2) neutral, and has similar properties as diesel fuel. Glycerol is a by-product obtained during the production of biodiesel. Canadian government has planned to produce 500 million litres of biodiesel by 2010. An increase in biodiesel production would decrease the market price of glycerol. The objective of this study is to pyrolyse glycerol for the production of clean fuels such as H(2) or a feedstock such as syn gas for additional transportation fuel via Fisher-Tropsch synthesis. The pyrolysis of glycerol was carried out at various flow rates of N(2) (30-70 mL/min), temperatures (650-800 degrees C) and types and sizes of packing material in a tubular reactor at atmospheric pressure. The products were mostly gas, essentially consisting of CO, H(2), CO(2), CH(4) and C(2)H(4). It was observed that temperature, carrier flow rates and particle diameter of packing material had profound effects on the conversion of glycerol as well as product distribution. Composition of product gas ranged between syn gas 70-93 mol%, CH(4) 3-15 mol% and C(2)H(4) 2-12 mol% and heating value ranged from 13 to 22 MJ/m(3). This study indicates that the bio-glycerol has potential in making syn gas and medium heating value gases.  相似文献   

9.
Many metabolic pathways in microbial hosts have been created, modified and engineered to produce useful molecules. The titer and yield of a final compound is often limited by the inefficient use of cellular resources and imbalanced metabolism. Engineering sensory-regulation devices that regulate pathway gene expression in response to the environment and metabolic status of the cell have great potential to solve these problems, and enhance product titers and yields. This review will focus on recent developments in biosensor design, and their applications for controlling microbial behavior.  相似文献   

10.
The effect of different solvents and three different acyl acceptors on the transesterification of triolein (as a model compound) was investigated. The yield of biodiesel (methyl or ethyl ester) was monitored as a function of time. The yield of the product was also determined in a solvent-free system for two different modes of stirring. The results indicate that the highest yield is obtained in a solvent-free system with mechanical stirring. Methyl acetate is also effective as a solvent and acyl acceptor. Biodiesel was also produced by transesterification of triglycerides (triolein) present in olive oil with methanol and Novozym® 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, enzyme activity and reaction temperature on overall conversion and yield was determined. The final conversion and yield of biodiesel after a reaction time of 24 h were unaffected by changes in these parameters over the range studied. Preliminary findings indicate that the results obtained from small scale reactors and fresh oil can be extended to larger reactors and used oil.  相似文献   

11.
Consolidated bioprocessing of cellulosic biomass: an update   总被引:30,自引:0,他引:30  
Biologically mediated processes seem promising for energy conversion, in particular for the conversion of lignocellulosic biomass into fuels. Although processes featuring a step dedicated to the production of cellulase enzymes have been the focus of most research efforts to date, consolidated bioprocessing (CBP)--featuring cellulase production, cellulose hydrolysis and fermentation in one step--is an alternative approach with outstanding potential. Progress in developing CBP-enabling microorganisms is being made through two strategies: engineering naturally occurring cellulolytic microorganisms to improve product-related properties, such as yield and titer, and engineering non-cellulolytic organisms that exhibit high product yields and titers to express a heterologous cellulase system enabling cellulose utilization. Recent studies of the fundamental principles of microbial cellulose utilization support the feasibility of CBP.  相似文献   

12.
Biodiesel has emerged as a potential alternate renewable liquid fuel in the past two decades. Total annual production of biodiesel stands at 6.96 million tons and 11.2 million tons in USA and Europe, respectively. In other countries, Asia and Latin America, biodiesel production has increased at unprecedented rate. Despite this, the economy of biodiesel is not attractive. An obvious solution for boosting the economy of the biodiesel industry is to look for markets for side products of the transesterification process of biodiesel synthesis. The main by-product is glycerol. However, this glycerol is contaminated with alkali/acid catalyst and alcohol, and thus, is not useful for conventional applications such as in toothpaste, drugs, paints and cosmetics. Conversion of this glycerol to value-added product is a viable solution for effective and economic utilization, which would also generate additional revenue for the biodiesel industry. Intensive research has taken place in area of conversion of glycerol to numerous products. The conventional catalytic route of glycerol transformation employs prohibitively harsh conditions of temperature and pressure, and thus, has slim potential for large-scale implementation. In addition, the selectivity of the process is rather small with formation of many undesired side products. The bioconversion processes, on the other hand, are highly selective although with slower kinetics. In this review, we have given an assessment and overview of the literature on bioconversion of glycerol. We have assessed as many as 23 products from glycerol bioconversion, and have reviewed the literature in terms of microorganism used, mode of fermentation, type of fermentor, yield and productivity of the process and recovery/purification of the products. The metabolic pathway of conversion of glycerol to various products has been discussed. We have also pondered over economic and engineering issues of large-scale implementation of process and have outlined the constraints and limitations of the process. We hope that this review will be a useful source of information for biochemists, biotechnologists, microbiologists and chemical engineers working in the area of glycerol bioconversion.  相似文献   

13.
The effect of different solvents and three different acyl acceptors on the transesterification of triolein (as a model compound) was investigated. The yield of biodiesel (methyl or ethyl ester) was monitored as a function of time. The yield of the product was also determined in a solvent-free system for two different modes of stirring. The results indicate that the highest yield is obtained in a solvent-free system with mechanical stirring. Methyl acetate is also effective as a solvent and acyl acceptor. Biodiesel was also produced by transesterification of triglycerides (triolein) present in olive oil with methanol and Novozym® 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, enzyme activity and reaction temperature on overall conversion and yield was determined. The final conversion and yield of biodiesel after a reaction time of 24 h were unaffected by changes in these parameters over the range studied. Preliminary findings indicate that the results obtained from small scale reactors and fresh oil can be extended to larger reactors and used oil.  相似文献   

14.
Biodiesel has emerged as a potential alternate renewable liquid fuel in the past two decades. Total annual production of biodiesel stands at 6.96 million tons and 11.2 million tons in USA and Europe, respectively. In other countries, Asia and Latin America, biodiesel production has increased at unprecedented rate. Despite this, the economy of biodiesel is not attractive. An obvious solution for boosting the economy of the biodiesel industry is to look for markets for side products of the transesterification process of biodiesel synthesis. The main by-product is glycerol. However, this glycerol is contaminated with alkali/acid catalyst and alcohol, and thus, is not useful for conventional applications such as in toothpaste, drugs, paints and cosmetics. Conversion of this glycerol to value-added product is a viable solution for effective and economic utilization, which would also generate additional revenue for the biodiesel industry. Intensive research has taken place in area of conversion of glycerol to numerous products. The conventional catalytic route of glycerol transformation employs prohibitively harsh conditions of temperature and pressure, and thus, has slim potential for large-scale implementation. In addition, the selectivity of the process is rather small with formation of many undesired side products. The bioconversion processes, on the other hand, are highly selective although with slower kinetics. In this review, we have given an assessment and overview of the literature on bioconversion of glycerol. We have assessed as many as 23 products from glycerol bioconversion, and have reviewed the literature in terms of microorganism used, mode of fermentation, type of fermentor, yield and productivity of the process and recovery/purification of the products. The metabolic pathway of conversion of glycerol to various products has been discussed. We have also pondered over economic and engineering issues of large-scale implementation of process and have outlined the constraints and limitations of the process. We hope that this review will be a useful source of information for biochemists, biotechnologists, microbiologists and chemical engineers working in the area of glycerol bioconversion.  相似文献   

15.
Crude glycerol is a primary by‐product in the biodiesel industry. Microbial fermentation on crude glycerol for producing value‐added products provides opportunities to utilize a large quantity of this by‐product. This study investigates the potential of using the crude glycerol to produce vancomycin (glycopeptide antibiotics) through fermentation of Amycolatopsis orientalis XMU‐VS01. The results show that crude glycerol was the most effective carbon source for mycelium growth and vancomycin production, with 40–60 g/L glycerol concentration as optimal range. Among other culture medium components, potato protein (nitrogen source) and the phosphate concentration had significant effects (p<0.05) for vancomycin production. A Box‐Behnken design and response surface methodology were employed to formulate the optimal medium. Their optimal values were determined as 52.73 g/L of glycerol, 17.36 g/L of potato protein, and 0.1 g/L of dipotassium phosphate. A highest vancomycin yield of 7.61 g/L with biomass concentration of 15.8 g/L was obtained after 120 h flask fermentation. The yield of vancomycin was 3.5 times higher than with basic medium. The results suggest that biodiesel‐derived crude glycerol is a promising feedstock for production of vancomycin from A. orientalis culture.  相似文献   

16.
Waste cooking oil (WCO) has attracted attention as a non-edible feedstock for biodiesel. Although an alkali catalyst has several advantages over an acid catalyst in biodiesel production, biodiesel conversion from WCO is only 5.2% when using an alkali catalyst (NaOH), owing to its high free fatty acid (FFA) content of 4.2%. In this study, a novel two-step process in a single reactor, comprised of re-esterification of the FFAs with crude glycerol, using a Tin (II) chloride (SnCl2) catalyst, and subsequent transesterification with methanol, using an alkali catalyst, was adopted, and each step was optimized. This study revealed that the FFA content after re-esterification should be approximately 1.5%, not only to save glycerol and the catalyst involved in the re-esterification, but also to achieve high biodiesel conversion during the transesterification. An alkaline catalyst was successfully used to produce biodiesel in the second step, and a 92.8% conversion to biodiesel was achieved under the optimized conditions (0.6% catalyst relative to WCO, 0.2mL-methanol/WCO, 70ºC, 3 h). Overall, this novel two-step process achieved highly enhanced biodiesel conversion (4.0% to 92.8%) with significantly reduced reaction time (12 h to 4 h) and methanol requirements (15 mL/g-WCO to 0.2 mL/g-WCO).  相似文献   

17.
In the present study, we report on an optimized method for fatty acid methyl esters (FAME) production from castor and jatropha seeds. In order to identify the most effective biodiesel production method, we have compared three two-stage methods, each consisting of oil extraction (the first step) and FAME production by transesterification (the second step), with the same three techniques each conducted in one stage, i.e., direct transesterification. The three techniques are conventional heating, sonochemistry, and microwave radiation. The FAME product was analyzed by 1H NMR spectroscopy and GC-MS. The SrO catalyst was reused successfully, together with seeds containing oil residues, for 10 cycles. The highest yield of FAME, 57.2?% of the total weight of the castor seeds, and a conversion of castor oil to FAME of 99.95?% were achieved in a one-stage method lasting 5?min using microwave radiation as a heat source. Using jatropha seeds leads to a yield of 41.1?% and a 99.7?% conversion of triglyceride to FAME under microwave irradiation in a one-stage method. The direct transesterification by sonication resulted in yields of 48.2?% and 32.9?%, and a 93.6?% conversion from castor and jatropha seeds, respectively.  相似文献   

18.
Recently, algae have received significant interest as a potential feedstock for renewable diesel (such as biodiesel), and many researchers have attempted to quantify this potential. Some of these attempts are less useful because they have not incorporated specific values of algal lipid content, have not included processing inefficiencies, or omitted processing steps required for renewable diesel production. Furthermore, the associated energy, materials, and costs requirements are sometimes omitted. The accuracy and applicability of these estimates can be improved by using data that are more specific, including all relevant information for renewable diesel production, and by presenting information with more relevant metrics. To determine whether algae are a viable source for renewable diesel, three questions that must be answered are (1) how much renewable diesel can be produced from algae, (2) what is the financial cost of production, and (3) what is the energy ratio of production? To help accurately answer these questions, we propose an analytical framework and associated nomenclature system for characterizing renewable diesel production from algae. The three production pathways discussed in this study are the transesterification of extracted algal lipids, thermochemical conversion of algal biomass, and conversion of secreted algal oils. The nomenclature system is initially presented from a top-level perspective that is applicable to all production pathways for renewable diesel from algae. Then, the nomenclature is expanded to characterize the production of renewable diesel (specifically, biodiesel) from extracted algal lipids in detail (cf. Appendix 2). The analytical framework uses the presented nomenclature system and includes three main principles: using appropriate reporting metrics, using symbolic notation to represent unknown values, and presenting results that are specific to algal species, growth conditions, and product composition.  相似文献   

19.
Algal biofuels are a growing interest worldwide due to their potential in terms of sustainable greenhouse gas displacement and energy production. This article describes a comparative survey of biodiesel production and conversion yields of biodiesel via alkaline transesterification of acylglycerols extracted from the microalgae Thalassiosira pseudonana and Phaeodactylum tricornutum, grown under silicate or nitrate limitation, and that of model vegetable oils: soybean, and rapeseed oil. Acylglycerols were extracted with n-hexane and the total yield per biomass was determined by gravimetric assay. Under our conditions, the total acylglycerol yield from the microalgae studied was 13-18% of total dry weight. The biodiesel samples were analyzed using gas chromatography-flame ionization detector to determine quantitative information of residual glycerol, mono-, di-, and tri-acylglycerol concentrations in the biodiesel. All of the algal-based biodiesel demonstrated less mono-, di-, and tri-acylglycerol concentrations than the vegetable-based biodiesel under identical transesterification conditions. The fatty acid compositions of all the feedstock oils and their resultant biodiesel were also analyzed and reported. Based on the fatty acid methyl ester compositions of our samples we qualitatively assessed the suitability of the algal-derived biodiesel in terms of cetane number (CN), cold-flow properties, and oxidative stability.  相似文献   

20.
发展菜籽油制备生物柴油产业的一种有效对策   总被引:3,自引:0,他引:3  
菜籽油是生产生物柴油的主要原料之一,目前用菜籽油生产生物柴油的主要瓶颈是原料成本较高,一般占到总生产成本的75%左右。在介绍国内外菜籽油制备生物柴油产业发展现状和存在的主要问题的基础上,提出了利用现有冬闲田生产高芥酸油菜籽,以高芥酸菜籽油为原料联产制备生物柴油、芥酸及其系列衍生产品和甘油、甾醇类化合物等高值副产品的对策,并从产品用途与市场需求潜力、企业经济效益、生产技术和条件、原料来源等几方面分析了这一发展对策的可行性。该对策的实施,将实现我国菜籽油制备生物柴油产业的兴起和可持续发展,提高生物柴油产品品质,带动我国生物化工和其它诸多行业的共同发展,为我国社会主义新农村建设作出贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号