首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Photorhabdus and Xenorhabdus are two genera of entomopathogenic bacteria having a mutualistic relationship with their respective nematode hosts, Heterorhabditis and Steinernema. One of the pathogenic mechanisms of these bacteria includes host immunodepression, which leads to lethal septicemia. It has been known that X. nematophila inhibits phospholipase A2 (PLA2) to induce host immunodepression. Here, we tested the hypothesis of PLA2 inhibition using another bacterial species involved in other genera. P. temperata subsp. temperata is the intestinal symbiont of an entomopathogenic nematode, H. megidis. The bacteria caused potent pathogenicity in a dose-dependent manner against the fifth instar larvae of a test target insect, Spodoptera exigua, as early as 24 h after the intra-hemocoelic injection. In response to the live bacterial injection, hemocyte nodulation (a cellular immune response) and prophenoloxidase (pPO) activation were inhibited, while the injection of heat-killed bacteria significantly induced both immune reactions. The immunodepression induced by the live bacteria was reversed by the addition of arachidonic acid, the catalytic product of phospholipase A2. In contrast, the addition of dexamethasone, a specific PLA2 inhibitor to the heat-killed bacterial treatment, inhibited both immune capacities. In addition to a previously known PLA2 inhibitory action of X. nematophila, the inhibition of P. temperata temperata on PLA2 suggests that bacteria symbiotic to entomopathogenic nematodes share a common pathogenic target to result in an immunodepressive state of the infected insects. To prove this generalized hypothesis, we used other bacterial species (X. bovienni, X. poinarii, and P. luminescens) involved in these two genera. All our experiments clearly showed that these other bacteria also share their inhibitory action against PLA2 to induce host immunodepression.  相似文献   

3.
Benzylideneacetone (BZA) is a metabolite of gram-negative entomopathogenic bacterium Xenorhabdus nematophila, and it acts as an enzyme inhibitor against phospholipase A2 (PLA2). PLA2 catalyzes a committed biosynthetic step of eicosanoids, which mediate insect immune reactions to infection by microbial pathogens. This study tested a hypothesis that a putative immunosuppressive activity of BZA may enhance virulence of Bacillus thuringiensis against the fifth instars of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). In in vitro conditions, BZA significantly inhibited hemocyte microaggregation induced by B. thuringiensis and impaired hemocyte-spreading behavior of S. exigua in a dose-dependent manner. Oral administration of BZA gave similar immunosuppressive effect on the hemocytes of the fifth instars. Although BZA itself did not possess any insecticidal activity on oral administration, when BZA was treated in a mixture with a low dose of B. thuringiensis spp. aizawai to fifth instars, the bacterial virulence was significantly enhanced. BZA also enhanced virulence of B. thuringiensis spp. kurstaki, which alone was of limited effectiveness against S. exigua. This study suggests that an immunosuppression by BZA is positively linked to potentiation of B. thuringiensis.  相似文献   

4.
Eicosanoids mediate insect immune responses, especially against bacterial infection. Phospholipase A2 (PLA2) catalyzes the committed step of the eicosanoid biosynthesis pathway. Three PLA2 inhibitors have been identified from metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila: benzylideneacetone (BZA), Pro-Tyr (PY), and acetylated Phe-Gly-Val (Ac-FGV). Interestingly, they share benzenepropane as a core chemical structure. We analyzed the functional significance of the core structure using structural derivatives. Removing a phenyl ring from PY resulted in significant loss of the PLA2 inhibitory activity, as seen in a Pro-Ala derivative. Though the p-hydroxyl group was not critical in PY as seen in Pro-Phe derivative, its addition to BZA resulted in significant loss of inhibitory activity. Some alterations of structures other than the core structure increased PLA2-inhibitory activity in some derivatives, including Ala-Tyr (AY) and Phe-Gly-Val (FGV) derivatives. Using these selected derivatives, we further analyzed synergistic effects on pathogenicity of Bacillus thuringiensis (Bt) against the second instar larvae of Plutella xylostella. These two derivatives significantly enhanced the Bt pathogenicity. This study introduces two novel compounds that inhibit PLA2 and suggests their application in combination with Bt to control P. xylostella.  相似文献   

5.
A monoterpenoid compound, benzylideneacetone (BZA), is identified from bacterial metabolites synthesized by an entomopathogenic bacterium, Xenorhabdus nematophila. It inhibits phospholipase A2 of target insects to shut down biosynthesis of various eicosanoids, which play significant roles in insect immunity. This study discovered another novel activity of BZA that directly inhibited phenoloxidase (PO) activity required for immune-associated melanization. When it was injected into larvae of Plutella xylostella, it suppressed PO activity in the plasma by inhibiting its activation from inactive proPO. However, BZA did not influence on gene expression of PO, which was analyzed by RT-PCR using gene-specific primers designed from a partial cDNA sequence of PO of the P. xylostella identified in this study. To test a direct inhibitory activity of BZA against PO, the activated PO of P. xylostella was prepared from the hemolymph collected from the larvae challenged by bacteria. When the activated PO was incubated in vitro with BZA, it was inhibited in a dose-dependent manner. The inhibition of PO by BZA was recovered by addition of increasing amounts of substrate, L-3,4-dihydroxyphenylalanine. Three other known bacterial metabolites containing a benzene propane core structure synthesized by X. nematophila also inhibited the PO enzyme activity. However, modification of the core structure by hydroxylation of BZA lost its strong inhibitory activity against the activated PO.  相似文献   

6.
Two entomopathogenic bacteria, Photorhabdus temperata subsp. temperata (Ptt) and Xenorhabdus nematophila (Xn), are symbiotically associated with the nematodes, Heterorhabdis megidis and Steinernema carpocapsae, respectively. There is little information on natural host ranges of the nematodes, but a significant difference in pathogenicity was observed between these two bacteria against the red flour beetle, Tribolium castaneum, in which Ptt exhibited more than six times higher pathogenicity than Xn. The pathogenic difference was not due to their inhibitory effect on phospholipase A2 activity that is required for expression of immune response of T. castaneum. The culture broths of both bacterial species had insecticidal activities when injected into the hemocoel. When the bacterial culture broths were fractionated into aqueous and organic extracts, most insecticidal activity remained in the aqueous extracts. The aqueous extracts of two bacteria contained proteins which showed different profiles.  相似文献   

7.
《Journal of Asia》2020,23(2):449-457
Xenorhabdus and Photorhabdus are entomopathogenic bacteria that can induce immunosuppression against target insects by suppressing eicosanoid biosynthesis, leading to fatal septicemia. These bacteria can synthesize and release secondary metabolites such as benzylideneacetone (BZA) and other phenylethylamide compounds that can inhibit phospholipase A2 (PLA2) and shut down eicosanoid biosynthesis. However, insecticidal activities of these bacterial metabolites remain unclear. Thus, the objective of this study was to assess cytotoxicities of BZA and seven other bacterial metabolites to insect cells. These eight bacterial metabolites exhibited significant cytotoxicities against an insect cell line Sf9 at micromolar range. Especially, BZA and cPY were highly potent at low micromolar range. When these eight bacterial metabolites were injected to hemocoels of Spodoptera exigua larvae, they significantly decreased total count of hemocytes. In Sf9 cell line and hemocytes, these bacterial metabolites induced cell membrane blebbings, apoptotic vesicles, and genomic DNA fragmentation. Terminal deoxyribonucleotidyl transferase nick end translation assay showed that these bacterial metabolites caused significant DNA breakages in cells in a dose-dependent manner. However, a pan caspase inhibitor treatment significantly rescued the cell death induced by these bacterial metabolites. Cytotoxicities of these bacterial metabolites were highly correlated with their insecticidal activities. These results indicate that the insecticidal activities of the bacterial metabolites may be induced by their apoptotic activities against hemocytes and other insect cells. Taken together, these results suggest that phenylethylamide compounds might have potential as novel insecticides.  相似文献   

8.
An entomopathogenic bacterium, Xenorhabdus nematophila, is known to have potent antibiotic activities to maintain monoxenic condition in its insect host for effective pathogenesis and ultimately for optimal development of its nematode symbiont, Steinernema carpocapsae. In this study we assess its antibacterial activity against plant-pathogenic bacteria and identify its unknown antibiotics. The bacterial culture broth had significant antibacterial activity that increased with development of the bacteria and reached its maximum at the stationary growth phase. The antibiotic activities were significant against five plant-pathogenic bacterial strains: Agrobacterium vitis, Pectobacterium carotovorum subsp. atrosepticum, P. carotovorum subsp. carotovorum, Pseudomonas syringae pv. tabaci, and Ralstonia solanacearum. The antibacterial factors were extracted with butanol and fractionated using column chromatography with the eluents of different hydrophobic intensities. Two active antibacterial subfractions were purified, and the higher active fraction was further fractionated and identified as a single compound of benzylideneacetone (trans-4-phenyl-3-buten-2-one). With heat stability, the synthetic compound showed equivalent antibiotic activity and spectrum to the purified compound. This study reports a new antibiotic compound synthesized by X. nematophila, which is a monoterpenoid compound and active against some Gram-negative bacteria.  相似文献   

9.
The entomopathogenic bacterium, Xenorhabdus nematophila, induces immunodepression in target insects and finally leads to lethal septicemia of the infected hosts. A hypothesis has been raised that the bacteria inhibit eicosanoid-biosynthesis pathway to interrupt immune signaling of the infected hosts. Here, we show direct evidence that X. nematophila inhibits the activity of phospholipase A2 (PLA2), the initial step in the eicosanoid-biosynthesis pathway. Inhibition of PLA2 was dependent on both incubation time with X. nematophila and the bacterial concentration in in vitro PLA2 preparations of Manduca sexta hemocytes. While living bacteria inhibited PLA2 activity, heat-killed X. nematophila rather increased PLA2 activity. X. nematophila secreted PLA2 inhibitor(s) which were detected in the organic, but not aqueous, extract of the bacterial culture medium. The PLA2 inhibitory activity of the organic extract was lost after heat treatment. These results clearly indicate that X. nematophila inhibits PLA2 activity, and thereby inhibits eicosanoid biosynthesis which leads to immunodepression of the infected hosts.  相似文献   

10.
11.
The antibacterial activities of 18 naturally occurring compounds (including essential oils and some of their isolated constituents, apple and green tea polyphenols, and other plant extracts) against three strains of Mycobacterium avium subsp. paratuberculosis (a bovine isolate [NCTC 8578], a raw-milk isolate [806R], and a human isolate [ATCC 43015]) were evaluated using a macrobroth susceptibility testing method. M. avium subsp. paratuberculosis was grown in 4 ml Middlebrook 7H9 broth containing 10% oleic acid-albumin-dextrose-catalase, 0.05% Tween 80 (or 0.2% glycerol), and 2 microg/ml mycobactin J supplemented with five concentrations of each test compound. The changes in the optical densities of the cultures at 600 nm as a measure of CFU were recorded at intervals over an incubation period of 42 days at 37 degrees C. Six of the compounds were found to inhibit the growth of M. avium subsp. paratuberculosis. The most effective compound was trans-cinnamaldehyde, with a MIC of 25.9 microg/ml, followed by cinnamon oil (26.2 microg/ml), oregano oil (68.2 microg/ml), carvacrol (72.2 microg/ml), 2,5-dihydroxybenzaldehyde (74 microg/ml), and 2-hydroxy-5-methoxybenzaldehyde (90.4 microg/ml). With the exception of carvacrol, a phenolic compound, three of the four most active compounds are aldehydes, suggesting that the structure of the phenolic group or the aldehyde group may be important to the antibacterial activity. No difference in compound activity was observed between the three M. avium subsp. paratuberculosis strains studied. Possible mechanisms of the antimicrobial effects are discussed.  相似文献   

12.
Phagocytosis is a hemocytic behavior against bacterial infection. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits immune responses of target insects and causes hemolymph septicemia. This study analyzed how X. nematophila could inhibit phagocytosis to increase its pathogenicity. Granular cells and plasmatocytes were the main phagocytic hemocytes of Spodoptera exigua determined by observing fluorescence-labeled bacteria in the cytosol. X. nematophila significantly inhibited phagocytosis of both hemocytes, while heat-killed X. nematophila lost its inhibitory potency. However, co-injection of X. nematophila with arachidonic acid did not show any significant inhibition of hemocyte phagocytosis. In fact, hemocytes of S. exigua infected with X. nematophila showed significant reduction in phospholipase A(2) (PLA(2)) activity. Dexamethasone, a specific PLA(2) inhibitor, significantly inhibited phagocytosis of both cell types. However, the inhibitory effect of dexamethasone was recovered by addition of arachidonic acid. Incubation of hemocytes with benzylideneacetone, a metabolite of X. nematophila, inhibited phagocytosis in a dose-dependent manner. These results suggest that X. nematophila produces and secretes PLA(2) inhibitor(s), which in turn inhibit the phagocytic response of hemocytes.  相似文献   

13.
A rapid method for the quantitative determination of tyrosine (Tyr), phenylalanine (Phe), p-hydroxybenzoic acid (HBA), p-hydroxyphenylacetic acid (HPA), benzoic acid (BZA), p-hydroxyphenylpyruvic acid (HPY), phenylacetic acid (PAA), phenyllactic acid (PLA), tryptophan (Trp), indoleacetic acid (IAA), phenylpyruvic acid (PPY), phenylpropionic acid (PPA) and cinnamic acid (CNA) in goat rumen fluid was established by high-performance liquid chromatography (HPLC). The mobile phase used for isocratic elution was 50 mM sodium phosphate buffer (pH 6.5)–methanol (97:3, v/v). The flow-rate was 1.0 ml/min; column temperature 40°C and compounds were monitored at 215 nm with a UV absorbance detector after injection of 10 μl of filtered rumen fluid. Analysis was completed within 40 min. The minimum detectable limits of quantification (μM) of these compounds were Tyr, 2; Phe, 3; HBA, 1; HPA, 2; BZA, 2; HPY, 8; PAA, 3; PLA, 4; Trp, 2; IAA, 2; PPY, 15; PPA, 8 and CNA, 4. Detectable levels of Tyr, Phe, HPA, BZA, HPY, PAA, PLA, Trp and PPA were found in the deproteinized rumen fluid of goat fed a haycube and concentrate mixture. PAA was the predominant compound before and after feeding. The concentrations of HPA, BZA, PAA, PLA and PPA in the goat rumen fluid increased after feeding, while the concentration of Tyr decreased. Phe, HPY and Trp were minor components at all times. PPY, IAA and CNA were not detected and HBA was not completely resolved in the goat rumen fluid.  相似文献   

14.
AIMS: The aim of this study was to isolate a source of enzymes capable of degrading endosulphate (endosulfan sulphate), the toxic metabolite of the pesticide endosulfan. METHODS AND RESULTS: A microbial broth culture capable of degrading endosulphate was enriched from endosulfan-contaminated soil by providing the metabolite as the sole source of sulphur in broth culture. No microbial growth was observed in the absence of endosulphate. In the presence of endosulphate, growth of the culture occurred with the concomitant formation of three chlorine-containing compounds. Thin layer chromatography and gas chromatography--mass spectral analysis identified these metabolites as endosulfan monoaldehyde, 1,2,3,4,7,7-hexachloro-5,6-bis(methylene)bicyclo[2.2.1]-2-heptene and 1,2,3,4,7,7-hexachloro-5-hydroxymethylene-6-methylenebicyclo[2.2.1]-2-heptene. The second and third compounds have not been reported in previous metabolic studies. The enriched culture was also able to utilize alpha- and beta-endosulfan as sulphur sources, each producing the hydrolysis product endosulfan monoaldehyde as the sole chlorine-containing metabolite. Alpha-endosulfan was more readily hydrolysed than the beta-isomer. CONCLUSIONS: This study isolated a mixed microbial culture capable of degrading endosulphate. The products of degradation were characterized as novel endosulfan metabolites. SIGNIFICANCE AND IMPACT OF THE STUDY: This study describes the isolation of a mixed microbial culture that is potentially a valuable source of hydrolysing enzymes for use in enzymatic bioremediation, particularly of endosulphate and alpha-endosulfan residues.  相似文献   

15.
This study investigated the effects of Photorhabdus temperata infection on the activities of digestive enzymes of the sugarcane stalk borer Diatraea saccharalis. Non-infected D. saccharalis larvae present a major alpha-amylase, several proteinases, three sucrose hydrolases and two alpha-glucosidases in their midgut. Analysis of these hydrolases by electrophoresis and "in gel" assays showed that the activities of all enzymes decreased following infection, with an initial decline observed 12 h after infection. The activities of alpha-glucosidases decreased by 50% twelve hours after infection, whereas, at this time, the alpha-galactosidase activities decreased by 70%. Interestingly, the animals died 48 h after infection, but approximately 5% of all the enzymes tested remained active in the midgut following host death. At this time, most of the cultivable native intestinal bacteria had died.  相似文献   

16.
A rapid method for determination of phenylalanine (Phe), tyrosine (Tyr), benzoic acid (BZA), phenylacetic acid (PAA), phenyllactic acid (PLA), phenylpyruvic acid (PPY), phenylpropionic acid (PPR), and cinnamic acid (CNM) in goat rumen fluid was established by high-performance liquid chromatography (HPLC). The mobile phase used for isocratic elution was methanol-sodium acetate buffer (pH 6.5) (8:92, v/v). The compounds were monitored at 220 nm with a UV detector. A 5-μl portion of the filtrated rumen was analyzed and the analysis was completed within 20 min. The minimum detectable limits (μM) of these compounds were: 12 for Phe, 3 for Tyr, 3 for BZA, 9 for PAA, 12 for PLA, 15 for PPY, 20 for PPR, and 8 for CNM. The average contents of Phe, BZA, PAA, PLA, and PPR in the rumen fluid of three goats were 15.4, 73.7, 615.9, 51.1, and 39.9 μM before morning feeding, 17.0, 123.7, 650.4, 208.2, and 502.4 μM at 3 h after feeeding, and 18.4, 124.2, 510.0, 129.9, and 178.5 μM at 6 h after feeding, respectively. Of these compounds PAA was present at the highest concentration both before and after feeding. The content of PPR extremely increased especially at 3 h after feeding. The other three compounds, i.e. Tyr, PPY, and CNM, were not detected in goat rumen fluid.  相似文献   

17.
AIMS: To study the influence of pH, temperature and culture medium on the growth and bacteriocin production by vaginal Lactobacillus salivarius subsp. salivarius CRL 1328. METHODS AND RESULTS: The study was performed using a complete factorial experimental design. Lactobacillus salivarius was cultivated in LAPTg and MRS broths, adjusted to specific initial pH, and at different temperatures of incubation. The growth, which was evaluated by the Gompertz model, was higher in MRS broth than in LAPTg broth. The initial pH of the culture medium and the temperature had a dramatic effect on the production of bacteriocin. The optimal conditions for bacteriocin production were different to those for optimal growth. The decrease in the pH of the culture medium was parallel to the growth; pH had similar final values in both the MRS and the LAPTg broths. CONCLUSIONS: The optimal growth conditions were recorded in MRS broth, with an initial pH of 6.5 and a temperature of 37 degrees C. The maximum bacteriocin activity was obtained in LAPTg after 6 h at 37 degrees C, and at an initial pH of 6.5 or 8.0. SIGNIFICANCE AND IMPACT OF THE STUDY: The application of a complete factorial design, and the evaluation of the growth parameters through the Gompertz model, enabled a rapid and simultaneous exploration of the influence of pH, temperature and growth medium on both growth and bacteriocin production by vaginal Lact. salivarius CRL 1328.  相似文献   

18.
The competitive inhibition of human pancreatic and a mutant human platelet phospholipase A2 (PLA2) was investigated using acylamino phospholipid analogues, which are potent competitive inhibitors of porcine pancreatic PLA2 [De Haas et al. (1990) Biochim. Biophys. Acta 1046, 249-257]. Both the mutant platelet PLA2 and the human pancreatic PLA2 are effectively inhibited by these compounds. The enzyme from platelets is most strongly inhibited by compounds with a negatively charged phosphoglycol headgroup. Compounds with a neutral phosphocholine headgroup are only weak inhibitors, whereas an inhibitor with a phosphoethanolamine headgroup shows an intermediate inhibitory capacity. The platelet PLA2 is most effectively inhibited by negatively charged inhibitors having a relatively short (four or more carbon atoms) alkylchain on position one and a acylamino chain of 14 carbon atoms on position two. For the pancreatic enzyme an inhibitor with a phosphoethanolamine headgroup was more effective than inhibitors with either a phosphocholine or a phosphoglycol headgroup. The chainlength preference of the pancreatic enzyme resembles that of the platelet PLA2. The largest discrimination in inhibition between the human platelet and the human pancreatic PLA2 is obtained with inhibitors with a negatively charged phosphoglycol headgroup, an alkyl chain of four carbon atoms on position one and a long acylamino chain of 14-16 carbon atoms on position two. Because the platelet PLA2 is thought to have several biological functions, specific inhibitors of this enzyme could have important implications in the design of pharmaceutically interesting compounds.  相似文献   

19.
【背景】海洋微生物因其生存环境的多样性与独特性,已成为天然产物研究的重要来源。【目的】以一株太平洋海泥来源链霉菌MMHS020为出发菌株,筛选可促进其产生丰富代谢产物的发酵条件,挖掘菌株在抗菌抗肿瘤方面的潜力。【方法】采用单菌株多次级代谢产物策略对MMHS020菌株进行培养诱导,使其产生更丰富的活性代谢产物。双层平板法测定发酵产物对6种指示菌的抑菌活性。以硅胶柱层析、葡聚糖凝胶层析和制备层析等方法对代谢产物进行分离纯化,再通过质谱技术和~1H-NMR和~(13)C-NMR对化合物进行结构解析。【结果】链霉菌属MMHS020菌株可在较高浓度盐离子环境中产生丰富的抑菌活性代谢产物,显示出对枯草芽孢杆菌、结核分枝杆菌和藤黄微球菌等多种指示菌的抑制活性。从发酵产物中分离鉴定了3个化合物,分别是诺卡胺素(1)、麦角甾醇(2)和星形孢菌素(3)。其中星形孢菌素表现出白色念珠菌的抑制活性,而诺卡胺素则对其他几个指示菌表现出较强的抑制活性。【结论】海洋链霉菌MMHS020菌株可代谢产生丰富多样的生物活性物质,具有开发成为新型抑菌生物制剂的潜力。  相似文献   

20.
When screening for inhibitors of endothelin-converting enzyme (ECE), we isolated and identified Aspergillomarasmine A and B (AM-A and B) as potent inhibitors of ECE from the culture broth of Paecilomyces sp. N877. Both AM-A and AM-B had apparent activity in an in vivo experiment with big ET-1 induced sudden death, although the inhibitory activities of these compounds would be mainly due to the chelating effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号