首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Toll-like receptor 4 (TLR4) is involved in activation of the innate immune response in a large number of different diseases. Despite numerous studies, the role of separate domains of TLR4 in the regulation of receptor activation is poorly understood. Replacement of the TLR4 ectodomain with LPS-binding proteins MD-2 or CD14 resulted in a robust ligand-independent constitutive activation comparable with the maximal stimulation of the receptor with LPS. The same effect was achieved by the replacement of the ectodomain with a monomeric fluorescent protein or a 24-kDa gyrase B fragment. This demonstrates an intrinsic dimerization propensity of the transmembrane and cytoplasmic domains of TLR4 and reveals a previously unknown function of the ectodomain in inhibiting spontaneous receptor dimerization. Constitutive activation was abolished by the replacement of the ectodomain by a bulkier protein ovalbumin. N-terminal deletion variants of TLR4 revealed that the smallest segment of the ectodomain that already prevents constitutive activity comprises only 90 residues (542 to 631) of the total 608 residues. We conclude that TLR4 represents a receptor with a low threshold of activation that can be rapidly activated by the release of inhibition exerted by its ectodomain. This is important for the sensitivity of TLR4 to activation by different agonists. The TLR4 ectodomain has multiple roles in enabling ligand regulated activation, providing proper localization while serving as an inhibitor to prevent spontaneous, ligand-independent dimerization.  相似文献   

2.
Endotoxin tolerance reprograms Toll-like receptor 4 responses by impairing LPS-elicited production of pro-inflammatory cytokines without inhibiting expression of anti-inflammatory or anti-microbial mediators. In septic patients, Toll-like receptor tolerance is thought to underlie decreased pro-inflammatory cytokine expression in response to LPS and increased incidence of microbial infections. The impact of endotoxin tolerance on recruitment, post-translational modifications and signalosome assembly of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, TNF receptor-associated factor (TRAF) 6, TGF-β-activated kinase (TAK) 1, and IκB kinase (IKK) γ is largely unknown. We report that endotoxin tolerization of THP1 cells and human monocytes impairs LPS-mediated receptor recruitment and activation of IRAK4, ablates K63-linked polyubiquitination of IRAK1 and TRAF6, compromises assembly of IRAK1-TRAF6 and IRAK1-IKKγ platforms, and inhibits TAK1 activation. Deficiencies in these signaling events in LPS-tolerant cells coincided with increased expression of A20, an essential deubiquitination enzyme, and sustained A20-IRAK1 associations. Overexpression of A20 inhibited LPS-induced activation of NF-κB and ablated NF-κB reporter activation driven by ectopic expression of MyD88, IRAK1, IRAK2, TRAF6, and TAK1/TAB1, while not affecting the responses induced by IKKβ and p65. A20 shRNA knockdown abolished LPS tolerization of THP1 cells, mechanistically linking A20 and endotoxin tolerance. Thus, deficient LPS-induced activation of IRAK4 and TAK1, K63-linked polyubiquitination of IRAK1 and TRAF6, and disrupted IRAK1-TRAF6 and IRAK1-IKKγ assembly associated with increased A20 expression and A20-IRAK1 interactions are new determinants of endotoxin tolerance.  相似文献   

3.
We have previously shown that a single nucleotide polymorphism rs11536889 in the 3'-untranslated region (UTR) of TLR4 was associated with periodontitis. In this study the effects of this single nucleotide polymorphism on Toll-like receptor (TLR) 4 expression were investigated. Monocytes from subjects with the C/C genotype expressed higher levels of TLR4 on their surfaces than those from subjects with the other genotypes. Peripheral blood mononuclear cells (PBMCs) from the C/C and G/C subjects secreted higher levels of IL-8 in response to lipopolysaccharide (LPS), a TLR4 ligand, than the cells from the G/G subjects. However, there was no significant difference in TLR4 mRNA levels in PBMCs from the subjects with each genotype. After stimulation with tripalmitoylated CSK(4) (Pam(3)CSK(4)), TLR4 mRNA levels increased in PBMCs from both the C/C and G/G subjects, whereas TLR4 protein levels increased in PBMCs from the C/C but not G/G subjects. Transient transfection of a series of chimeric luciferase constructs revealed that a fragment of 3'-UTR containing rs11536889 G allele, but not C allele, suppressed luciferase activity induced by LPS or IL-6. Two microRNAs, hsa-miR-1236 and hsa-miR-642a, were predicted to bind to rs11536889 G allele. Inhibition of these microRNAs reversed the suppressed luciferase activity. These microRNA inhibitors also up-regulated endogenous TLR4 protein on THP-1 cells (the G/G genotype) after LPS stimulation. Furthermore, mutant microRNAs that bind to the C allele inhibited the luciferase activity of the construct containing the C allele. These results indicate that genetic variation of rs11536889 contributes to translational regulation of TLR4, possibly by binding to microRNAs.  相似文献   

4.
5.
Toll-like receptor 4 (TLR4) and its coreceptor MD-2 recognize bacterial lipopolysaccharide (LPS) and signal the innate immune response. Two single nucleotide polymorphisms (SNPs) of human TLR4, D299G and T399I, have been identified and suggested to be associated with LPS hyporesponsiveness. Moreover, the SNPs have been proposed to be associated with a variety of infectious and noninfectious diseases. However, how the SNPs affect the function of TLR4 remains largely unknown. Here, we report the crystal structure of the human TLR4 (D299G/T399I)·MD-2·LPS complex at 2.4 Å resolution. The ternary complex exhibited an agonistic “m”-shaped 2:2:2 architecture that was similar to that of the human wild type TLR4·MD-2·LPS complex. Local structural differences that might affect the binding of the ligands were observed around D299G, but not around T399I, SNP site.  相似文献   

6.
7.
Previously we demonstrated that basolateral LPS inhibits HCO(3)(-) absorption in the renal medullary thick ascending limb (MTAL) through TLR4-dependent ERK activation. Here we report that the response of the MTAL to basolateral LPS requires TLR2 in addition to TLR4. The basolateral addition of LPS (ultrapure Escherichia coli K12) decreased HCO(3)(-) absorption in isolated, perfused MTALs from wild-type mice but had no effect in MTALs from TLR2(-/-) mice. In contrast, inhibition of HCO(3)(-) absorption by lumen LPS was preserved in TLR2(-/-) MTALs, indicating that TLR2 is involved specifically in mediating the basolateral LPS response. LPS also did not increase ERK phosphorylation in MTALs from TLR2(-/-) mice. TLR2 deficiency had no effect on expression of TLR4, MD-2, or MyD88. However, LPS-induced recruitment of MyD88 to the basolateral membrane was impaired in TLR2(-/-) MTALs. Inhibition of HCO(3)(-) absorption by LPS did not require CD14. Co-immunoprecipitation studies demonstrated an association between TLR4 and TLR2. Inhibition of HCO(3)(-) absorption by TLR2-specific ligands was preserved in MTALs from TLR4(-/-) mice. These results indicate that the effect of basolateral LPS to inhibit HCO(3)(-) absorption in the MTAL through MyD88-dependent ERK activation depends on a novel interaction between TLR4 and TLR2. TLR2 plays a dual role in the induction of intracellular signals that impair MTAL function, both through cooperation with TLR4 to mediate ERK signaling by LPS and through a TLR4-independent signaling pathway activated by Gram-positive bacterial ligands. Regulation of TLR2 expression and its interaction with TLR4 may provide new mechanisms for controlling and therapeutic targeting of TLR4-mediated LPS responses.  相似文献   

8.
Bacterial lipopolysaccharide (LPS) is a key mediator in the vascular leak syndromes associated with Gram-negative bacterial infections. LPS opens the paracellular pathway in pulmonary vascular endothelia through protein tyrosine phosphorylation. We now have identified the protein-tyrosine kinases (PTKs) and their substrates required for LPS-induced protein tyrosine phosphorylation and opening of the paracellular pathway in human lung microvascular endothelial cells (HMVEC-Ls). LPS disrupted barrier integrity in a dose- and time-dependent manner, and prior broad spectrum PTK inhibition was protective. LPS increased tyrosine phosphorylation of zonula adherens proteins, VE-cadherin, gamma-catenin, and p120(ctn). Two SRC family PTK (SFK)-selective inhibitors, PP2 and SU6656, blocked LPS-induced increments in tyrosine phosphorylation of VE-cadherin and p120(ctn) and paracellular permeability. In HMVEC-Ls, c-SRC, YES, FYN, and LYN were expressed at both mRNA and protein levels. Selective small interfering RNA-induced knockdown of c-SRC, FYN, or YES diminished LPS-induced SRC Tyr(416) phosphorylation, tyrosine phosphorylation of VE-cadherin and p120(ctn), and barrier disruption, whereas knockdown of LYN did not. For VE-cadherin phosphorylation, knockdown of either c-SRC or FYN provided total protection, whereas YES knockdown was only partially protective. For p120(ctn) phosphorylation, knockdown of FYN, c-SRC, or YES each provided comparable but partial protection. Toll-like receptor 4 (TLR4) was expressed both on the surface and intracellular compartment of HMVEC-Ls. Prior knockdown of TLR4 blocked both LPS-induced SFK activation and barrier disruption. These data indicate that LPS recognition by TLR4 activates the SFKs, c-SRC, FYN, and YES, which, in turn, contribute to tyrosine phosphorylation of zonula adherens proteins to open the endothelial paracellular pathway.  相似文献   

9.
Innate immune response after transient ischemia is the most common cause of myocardial inflammation and may contribute to injury, yet the detailed signaling mechanisms leading to such a response are not well understood. Herein we tested the hypothesis that myocardial ischemia activates interleukin receptor-associated kinase-1 (IRAK-1), a kinase critical for the innate immune signaling such as that of Toll-like receptors (TLRs), via a mechanism that involves heat shock proteins (HSPs) and TLRs. Coronary artery occlusion induced a rapid myocardial IRAK-1 activation within 30 min in wild-type (WT), TLR2(-/-), or Trif(-/-) mice, but not in TLR4(def) or MyD88(-/-) mice. HSP60 protein was markedly increased in serum or in perfusate of isolated heart following ischemia/reperfusion (I/R). In vitro, recombinant HSP60 induced IRAK-1 activation in cells derived from WT, TLR2(-/-), or Trif(-/-) mice, but not from TLR4(def) or MyD88(-/-) mice. Both myocardial ischemia- and HSP60-induced IRAK-1 activation was abolished by anti-HSP60 antibody. Moreover, HSP60 treatment of cardiomyocytes (CMs) led to marked activation of caspase-8 and -3, but not -9. Expression of dominant-negative mutant of Fas-associated death domain protein or a caspase-8 inhibitor completely blocked HSP60-induced caspase-8 activation, suggesting that HSP60 likely activates an apoptotic program via the death-receptor pathway. In vivo, I/R-induced myocardial apoptosis and cytokine expression were significantly attenuated in TLR4(def) mice or in WT mice treated with anti-HSP60 antibody compared with WT controls. Taken together, the current study demonstrates that myocardial ischemia activates an innate immune signaling via HSP60 and TLR4, which plays an important role in mediating apoptosis and inflammation during I/R.  相似文献   

10.
The active components of a primary pyrogenic liver abscess (PLA) Klebsiella pneumoniae in stimulating cytokine expression in macrophages are still unclear. The capsular polysaccharide (CPS) of PLA K. pneumoniae is important in determining clinical manifestations, and we have shown that it consists of repeating units of the trisaccharide (→3)-β-D-Glc-(1→4)-[2,3-(S)-pyruvate]-β-D-GlcA-(1→4)-α-L-Fuc-(1→) and has the unusual feature of extensive pyruvation of glucuronic acid and acetylation of C(2)-OH or C(3)-OH of fucose. We demonstrated that PLA K. pneumoniae CPS induces secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) by macrophages through Toll-like receptor 4 (TLR4) and that this effect was lost when pyruvation and O-acetylation were chemically destroyed. Furthermore, expression of TNF-α and IL-6 in PLA K. pneumoniae CPS-stimulated macrophages was shown to be regulated by the TLR4/ROS/PKC-δ/NF-κB, TLR4/PI3-kinase/AKT/NF-κB, and TLR4/MAPK signaling pathways.  相似文献   

11.
In the TLR4 signaling pathways, we previously characterized a signal regulator, LRRFIP2, that modulates the time course-dependent changes in NF-κB activity through its dynamic interaction with the TLR adaptor protein, MyD88. However, little is known about the driving force behind the LPS-inducible dynamics between LRRFIP2 and MyD88. We have therefore designed a multiplex label-free quantitative proteomics method to investigate dynamic changes of LRRFIP2 phosphorylation upon LPS stimulation. Given our observation that LRRFIP2 binds to MyD88 through its serine-rich domain in which most of serine residues have the propensity to be phosphorylated, we used collision-activated dissociation- and electron transfer dissociation-based methods in a complementary manner to unambiguously localize phosphorylation sites in the peptides constituting the serine-rich domain. Among 23 phosphorylation sites identified and first quantified by the label-free approach and then verified by the AACT/SILAC (amino acid-coded tagging/stable isotope labeling in cell culture)-based quantitation method, phosphorylation at serine 202 showed a significant LPS-induced dynamic change during the full-course cellular response to LPS stimulation. The substitution of serine 202 with nonphosphorylated residues by site-directed mutagenesis resulted in a weakened LRRFIP2-MyD88 interaction and a concurrently reduced activity in downstream NF-κB. Taking these results together, phosphorylation at serine 202 was found to regulate the dynamics of the LRRFIP2-MyD88 interaction, which in turn modulated the strength and duration of TLR4 signaling. Strategically, we have demonstrated the importance of precise identification of the biologically relevant phosphorylation site(s) using comprehensive mass spectrometry-based quantitative proteomics approaches in guiding downstream biological characterization experiments, which could otherwise be both time- and cost-consuming for a large number of phosphorylation possibilities.  相似文献   

12.
Acute versus chronic inflammation is controlled by the accurate activation and regulation of interdependent signaling cascades. TNF-receptor 1 engagement concomitantly activates NF-κB and JNK signaling. The correctly timed activation of these pathways is the key to account for the balance between NF-κB-mediated cell survival and cell death, the latter fostered by prolonged JNK activation. Tristetraprolin (TTP), initially described as an mRNA destabilizing protein, acts as negative feedback regulator of the inflammatory response: it destabilizes cytokine-mRNAs but also acts as an NF-κB inhibitor by interfering with the p65/RelA nuclear import pathway. Our biochemical studies provide evidence that TTP contributes to the NF-κB/JNK balance. We find that the MAP 3-kinase MEKK1 acts as a novel TTP kinase that, together with the TNF receptor-associated factor 2 (TRAF2), constitutes not only a main determinate of the NF-κB-JNK cross-talk but also facilitates "TTP hypermodification": MEKK1 triggers TTP phosphorylation as prerequisite for its Lys-63-linked, TRAF2-mediated ubiquitination. Consequently, TTP no longer affects NF-κB activity but promotes the activation of JNK. Based on our data, we suggest a model where upon TNFα induction, TTP transits a hypo- to hypermodified state, thereby contributing to the molecular regulation of NF-κB versus JNK signaling cascades.  相似文献   

13.
Toll-like receptor signaling requires interactions of the Toll/IL-1 receptor (TIR) domains of the receptor and adapter proteins. Using the mammalian protein-protein interaction trap strategy, homology modeling, and site-directed mutagenesis, we identify the interaction surfaces in the TLR4 TIR domain for the TLR4-TLR4, TLR4-MyD88 adapter-like (MAL), and TLR4-TRIF-related adapter molecule (TRAM) interaction. Two binding sites are equally important for TLR4 dimerization and adapter recruitment. In a model based on the crystal structure of the dimeric TLR10 TIR domain, the first binding site mediates TLR4-TLR4 TIR-TIR interaction. Upon dimerization, two identical second binding sites of the TLR4 TIR domain are juxtaposed and form an extended binding platform for both MAL and TRAM. In our mammalian protein-protein interaction trap assay, MAL and TRAM compete for binding to this platform. Our data suggest that adapter binding can stabilize the TLR4 TIR dimerization.  相似文献   

14.
The CXCL12/CXCR4 signaling axis plays an important role in human health and disease; however, the molecular mechanisms mediating CXCR4 signaling remain poorly understood. Ubiquitin modification of CXCR4 by the E3 ubiquitin ligase AIP4 is required for lysosomal sorting and degradation, which is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. CXCR4 sorting is regulated by an interaction between endosomal localized arrestin-2 and STAM-1, an ESCRT-0 component. Here, we report a novel role for AIP4 and STAM-1 in regulation of CXCR4 signaling that is distinct from their function in CXCR4 trafficking. Depletion of AIP4 and STAM-1 by siRNA caused significant inhibition of CXCR4-induced ERK-1/2 activation, whereas overexpression of these proteins enhanced CXCR4 signaling. We further show that AIP4 and STAM-1 physically interact and that the proline-rich region in AIP4 and the SH3 domain in STAM-1 are essential for the interaction. Overexpression of an AIP4 catalytically inactive mutant and a mutant that shows poor binding to STAM-1 fails to enhance CXCR4-induced ERK-1/2 signaling, as compared with wild-type AIP4, suggesting that the interaction between AIP4 and STAM-1 and the ligase activity of AIP4 are essential for ERK-1/2 activation. Remarkably, a discrete subpopulation of AIP4 and STAM-1 resides in caveolar microdomains with CXCR4 and appears to mediate ERK-1/2 signaling. We propose that AIP4-mediated ubiquitination of STAM-1 in caveolae coordinates activation of ERK-1/2 signaling. Thus, our study reveals a novel function for ubiquitin in the regulation of CXCR4 signaling, which may be broadly applicable to other G protein-coupled receptors.  相似文献   

15.
β-Interferons (IFN-βs) represent one of the first line treatments for relapsing-remitting multiple sclerosis, slowing disease progression while reducing the frequency of relapses. Despite this, more effective, well tolerated therapeutic strategies are needed. Cannabinoids palliate experimental autoimmune encephalomyelitis (EAE) symptoms and have therapeutic potential in MS patients although the precise molecular mechanism for these effects is not understood. Toll-like receptor (TLR) signaling controls innate immune responses and TLRs are implicated in MS. Here we demonstrate that the synthetic cannabinoid R(+)WIN55,212-2 is a novel regulator of TLR3 and TLR4 signaling by inhibiting the pro-inflammatory signaling axis triggered by TLR3 and TLR4, whereas selectively augmenting TLR3-induced activation of IFN regulatory factor 3 (IRF3) and expression of IFN-β. We present evidence that R(+)WIN55,212-2 strongly promotes the nuclear localization of IRF3. The potentiation of IFN-β expression by R(+)WIN55,212-2 is critical for manifesting its protective effects in the murine MS model EAE as evidenced by its reduced therapeutic efficacy in the presence of an anti-IFN-β antibody. R(+)WIN55,212-2 also induces IFN-β expression in MS patient peripheral blood mononuclear cells, whereas down-regulating inflammatory signaling in these cells. These findings identify R(+)WIN55,212-2 as a novel regulator of TLR3 signaling to IRF3 activation and IFN-β expression and highlights a new mechanism that may be open to exploitation in the development of new therapeutics for the treatment of MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号