首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Although deregulation of Hedgehog signalling is considered to play a crucial oncogenic role and commonly occurrs in medulloblastoma, genetic lesions in components of this pathway are observed in a minority of cases. The recent identification of a novel putative tumor suppressor (RENKCTD11) on chromosome 17p13.2, a region most frequently lost in human medulloblastoma, highlights the role of allelic deletion of the gene in this brain malignancy, leading to the loss of growth inhibitory activity via suppression of Gli-dependent activation of Hedgehog target genes. The presence on 17p13 of another tumor suppressor gene (p53) whose inactivation cooperates with Hedgehog pathway for medulloblastoma formation, suggests that 17p deletion unveils haploinsufficiency conditions leading to abrogation of either direct and indirect checkpoints of Hedgehog signalling in cancer.  相似文献   

2.
Loss of heterozygosity for sequences located on chromosome 17p in several tumor types is often associated with mutations in the tumor suppressor gene p53. We previously showed consistent deletion of chromosome 17p12-13.1 in medulloblastoma, a common childhood brain tumor. Using denaturing gradient gel electrophoresis and direct sequencing, we have detected p53 mutations in only two of 20 medulloblastoma specimens. Moreover, additional RFLP studies of these 20 specimens showed loss of heterozygosity at a more distal and distinct site, 17p13.3. Deletion of 17p almost invariably signified a negative prognosis. Our results suggest that p53 mutations may contribute to the pathogenesis of medulloblastoma in relatively few cases. The consistent deletion of other discrete loci on 17p suggests that additional or alternative tumor suppressor genes may contribute to the tumor's phenotype.  相似文献   

3.
Suppressors of hedgehog signaling   总被引:4,自引:0,他引:4  
Subversion of signals that physiologically suppress Hedgehog pathway results in aberrant neural progenitor development and medulloblastoma, a malignancy of the cerebellum. The Hedgehog antagonist RENKCTD11 maps to chromosome 17p13.2 and is involved in the withdrawal of the Hedgehog signaling at the granule cell progenitor transition from the outer to the inner external germinal layers, thus promoting growth arrest and differentiation. Deletion of chromosome 17p, the most frequent genetic lesion observed in this tumor, is responsible for the loss of function of RENKCTD11, resulting in upregulated Hedgehog signaling and medulloblastoma. Persistence of signals that limit Hedgehog activity is also associated with malignancy. Hedgehog signaling- induced downregulation of ErbB4 receptor expression is attenuated in medulloblastoma subsets in which the extent of Hedgehog pathway activity is limited, thus favoring the accumulation of ErbB4 with imbalanced alternative splice CYT-1 isoform over the CYT-2. This is responsible for both Neuregulin ligand-induced CYT-1-dependent prosurvival activity and loss of CYT-2-mediated growth arrest.  相似文献   

4.
Von Hippel-Lindau (VHL) disease is a dominantly inherited familial cancer syndrome characterised by the development of retinal and central nervous system haemangioblastomas, renal cell carcinoma (RCC), phaeochromocytoma and pancreatic tumours. The VHL disease gene maps to chromosome 3p25-p26. To investigate the mechanism of tumourigenesis in VHL disease, we analysed 24 paired blood/tumour DNA samples from 20 VHL patients for allele loss on chromosome 3p and in the region of tumour suppressor genes on chromosomes 5, 11, 13, 17 and 22. Nine out of 24 tumours showed loss of heterozygosity (LOH) at at least one locus on chromosome 3p and in each case the LOH included the region to which the VHL gene has been mapped. Chromosome 3p allele loss was found in four tumour types (RCC, haemangioblastoma, phaeochromocytoma and pancreatic tumour) suggesting a common mechanism of tumourigenesis in all types of tumour in VHL disease. The smallest region of overlap was between D3S1038 and D3S18, a region that corresponds to the target region for the VHL gene from genetic linkage studies. The parental origin of the chromosome 3p25-p26 allele loss could be determined in seven tumours from seven familial cases; in each tumour, the allele lost had been inherited from the unaffected parent. Our results suggest that the VHL disease gene functions as a recessive tumour suppressor gene and that inactivation of both alleles of the VHL gene is the critical event in the pathogenesis of VHL neoplasms. Four VHL tumours showed LOH on other chromosomes (5q21, 13q, 17q) indicating that homozygous VHL gene mutations may be required but may not be sufficient for tumourigenesis in VHL disease.  相似文献   

5.
6.
Neuroblastomas often show loss of heterozygosity of the chromosomal region 1p36 (LOH 1p), probably reflecting loss of a tumor-suppressor gene. Here we describe three neuroblastoma tumors and two cell lines in which LOH 1p results from an unbalanced translocation between the p arm of chromosome 1 and the q arm of chromosome 17. Southern blot and cytogenetic analyses show that in all cases the chromosome 17 homologue from which the 1;17 translocation was derived is still present and intact. This suggests a model in which a translocation between the short arm of chromosome 1 and the long arm of chromosome 17 takes place in the S/G2 phase of the cell cycle and results in LOH 1p. Nonhomologous mitotic recombination in the S/G2 phase is a novel mechanism of LOH.  相似文献   

7.
8.
The development of Wilms' tumor has been associated with two genetic loci on chromosome 11: WTI in 11p13 and WT2 in 11p15.5. Here, we have used loss of heterozygosity (LOH) in Wilms' tumors to narrow the WT2 locus distal to the D11S988 locus. A similar region was apparent for the clinically associated tumor, embryonal rhabdomyosarcoma. We have also demonstrated that a constitutional chromosome translocation breakpoint associated with Beckwith-Wiedemann syndrome and an acquired somatic chromosome translocation breakpoint in a rhabdoid tumor each occur in the same chromosomal interval as the smallest region of LOH in Wilms' tumors and embryonal rhabdomyosarcoma. Finally, we report the first Wilms' tumor without a cytogenetic deletion that shows targeted LOH for 11p15 and 11p13 while maintaining germline status for 11p14.  相似文献   

9.
Cytogenetic studies of normal and tumor cells in a patient with gonadal dysgenesis and bilateral gonadoblastoma were performed. The karyotype was 46,XY in peripheral blood lymphocytes and skin fibroblasts. The conserved region of the SRY gene was detected by polymerase chain reaction amplification. Sequencing of this region did not reveal any alterations. A 46,XY chromosome constitution was observed in the right gonadoblastoma, but a partial deletion of chromosome 13 was present in the left tumor. This deletion included band 13q14, where the retinoblastoma gene is mapped. The study of the polymorphism of the variable number of tandem repeats region in intron 17 of the RB1 locus disclosed loss of heterozygosity in both the left tumor, which showed the deletion of chromosome 13, and in the right tumor, where no chromosome alterations of chromosome 13 were detected. In situ hybridization covering 130 kb of RB1 showed that a partial deletion of one of the RB1 alleles had occurred in the right tumor. Since the deletions affected different alleles in each tumor, independent events must have been involved in the development of the tumors. These findings point toward a significant role of RB1 in the development of gonadoblastoma. Received: 17 October 1995 / Accepted: 14 July 1997  相似文献   

10.
Chromosome 11p15 deletions occur frequently in several types of human cancer, both sporadic and familial, suggesting that a tumor suppressor gene is present within the deleted chromosome region. We carried out a restriction fragment length polymorphism analysis of chromosome 11p in two types of human brain tumors: malignant astrocytoma, the most common glial tumor in adults; and primitive neuroectodermal tumor (PNET), a malignant embryonic tumor that afflicts children. Loss of heterozygosity was found in 11/43 malignant astrocytomas (26%) and in 3/11 PNETs (27%). Deletion mapping revealed a region of loss on chromosome 11p (p15.4-pter) that was common to both tumor types. To determine whether the c-H-ras gene, located on chromosome 11p in the common region of deletion, was a candidate gene, we analyzed polymerase chain reaction products corresponding to all four c-H-ras coding exons for single-strand conformation polymorphisms. The absence of electrophoretic mobility shifts in tumor DNA compared to leukocyte DNA indicated that c-H-ras gene mutations were most likely not present. These results suggested that loss of a gene on chromosome 11p15 distinct from c-H-ras is an important step in tumorigenesis within the central nervous system in both children and adults.  相似文献   

11.
Recently, the EXTL1 gene, a member of the EXT tumor suppressor gene family, has been mapped to 1p36, a chromosome region which is frequently implicated in a wide variety of malignancies, including breast carcinoma, colorectal cancer and neuroblastoma. In this study, we show that the EXTL1 gene is located between the genetic markers D1S511 and D1S234 within 200 kb of the LAP18 gene on chromosome 1p36. 1, a region which has been proposed to harbor a tumor suppressor gene implicated in MYCN-amplified neuroblastomas. In addition, we determined the genomic structure of the EXTL1 gene, revealing that the EXTL1 coding sequence spans 11 exons within a 50-kb region.  相似文献   

12.
P G Eipers  J M Lahti  V J Kidd 《Genomics》1992,13(3):613-621
  相似文献   

13.
D Becker  A A Sahin 《Genomics》1989,4(1):97-100
It was recently reported that loss of heterozygosity occurred at the chromosomal region 3p in small-cell as well as in non-small-cell carcinoma of the lung. A recent report also indicated genetic changes involving sequences on chromosomes 13q and 17p in small-cell and in non-small-cell carcinomas. In the present study normal and tumor DNAs representing mostly adeno-and squamous cell carcinomas of the lung were examined for loss of heterozygosity on chromosomes 3p, 13q, 11p, and 1p. With the exception of two non-small-cell carcinomas which demonstrated loss of alleles on chromosome 3p and one small-cell carcinoma which demonstrated loss of heterozygosity at chromosome 3p as well as at 13q, evidence for loss of alleles on chromosomes 3p, 13q, 11p, and 1p could not be obtained in greater than 75% of the non-small-cell carcinoma DNAs tested. Given this result it appears unlikely that a recessive gene is located on either chromosome 3p or 13q in the majority of non-small-cell carcinomas of the lung.  相似文献   

14.
A gene (BRCA1) predisposing for familial breast and ovarian cancer has been mapped to chromosome band 17q12-21. Based on the observation that ovarian tumors from families with breast and ovarian cancer lose the wild-type allele in the region for the BRCA1 locus, it has been suggested that the gene functions as a tumor suppressor gene. We have studied chromosomal deletions in the BRCA1 region in seven breast tumors, three ovarian tumors, one bladder cancer, and one colon cancer from patients in six families with breast-ovarian cancer, in order to test the hypothesis of the tumor suppressor mechanism at this locus. We have found a low frequency of loss of heterozygosity at this region, and our results do not support the idea that BRCA1 is a tumor suppressor gene. Alternatively, the disease segregating in these families is linked to one or more different loci.  相似文献   

15.
Two intercomplementary methods of 17p11.2 duplication/deletion identification have been elaborated: STR allelic variants analysis and direct PMP22 gene dosage measuring by means of quantitative Real-Time PCR. It has been carried out detection and analysis of 17p11.2 chromosome region rearrangements in CMT1 patients from Ukraine. It has been registered the high level of de novo cases with 17p11.2-duplication. It has been shown the 17p11.2 chromosome region duplication/deletion association with CMT1A and HNPP clinical phenotypes which may be used in differential diagnosis of this type of CMT polyneuropathy. The article is published in the original.  相似文献   

16.
Two members of the zinc finger Krüppel family, ZNF24 (KOX17) and ZNF29 (KOX26), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization to human chromosomes 18q12 and 17p13-p12, respectively. The mapping of ZNF29 together with the previously reported localization of ZFP3 suggests that a zinc finger gene complex is located on human chromosome 17p. ZNF29 maps centromeric to the human p53 tumor antigen gene (TP53). In the analogous murine position, the two mouse zinc finger genes Zfp2 and Zfp3 have recently been assigned to the distal region of mouse chromosome 11, the murine homolog of human chromosome 17. Both human zinc finger genes ZNF24 and ZNF29 are in chromosomal regions that have been noted to be deleted in neoplasms of the lung and of the central nervous system at chromosome 17p and in colorectal neoplasia at chromosomes 17p and 18q.  相似文献   

17.
Wang G  Huang CH  Zhao Y  Cai L  Wang Y  Xiu SJ  Jiang ZW  Yang S  Zhao T  Huang W  Gu JR 《Cell research》2000,10(4):311-323
To elucidate the molecular pathology underlying the development of hepatocellular carcinoma (HCC),we used 41 highly polymorphic microsatellite markers to examine 55 HCC and corresponding non-tumor liver tissues on chromosome 9,16 and 17.Loss-of-heterozygosity(LOH) is observed with high frequency on chromosomal region 17p13(36k/55,65%),9q21-p23(28/55,51%),16q21-23(27/55,49%) in tumors.Meanwhile,microsatellite instability is rarely found in these microsatellite loci.Direct sequencing was performed to detect the tentative mutation of tumor wuppressor genes in these regions:p53,MTS1/p16,and CDH1/E-cadherin.Wihin exon 5-9 of p53 gene,14 out of 55 HCC specimens(24%) have somatic mutations,and nucleotide deletion of this gene is reported in HCC for the first time.Mutation in MTS1/p16 is found only in one tumor case.We do not find mutations in CDH1/E-cadherin.Furthermore,a statistically significant correlation is present between p53 gene mutation and loss of chromosome region 16q21-q23 and 9p21-p23,which indicates that synergism between p53 inactivation and deletion of 16q21-q23 and 9p21-p23 may play a role in the pathogenesis of HCC.  相似文献   

18.
The marker D17S5, mapping to the short arm of chromosome 17, was recently reported by us and others to undergo frequent heterozygous deletion in human primary breast carcinomas, implicating the presence of a tumor suppressor gene in this region. To narrow down the location of this gene more precisely, we have performed a deletion-mapping study in an extended series of 78 breast carcinomas, using nine polymorphic markers for the short arm and two polymorphic markers for the long arm of chromosome 17. Partial allele losses on 17p were observed in nine cases, which, taken together, suggest that the target gene for the deletions maps to the region extending between the markers D17S5 (17p13.3) and D17S67 (17p12).  相似文献   

19.
Deletion of chromosome 10 is one of the most common chromosomal alterations in glioma. At 10p15, the telomeric region of the short arm of chromosome 10, loss of heterozygosity (LOH) has been frequently observed by microsatellite analysis, suggesting the presence of a tumor suppressor gene. We examined LOH in 34 gliomas on chromosome 10, and frequent LOH on 10p was detected on 10p15, in agreement with deletion mapping studies on chromosome 10. We then constructed a bacterial artificial chromosome (BAC) clone contig covering the critical region, which spanned the interval between D10S249 and D10S533 on 10p15. The map contained 68 BAC clones connected by 74 sequenced tag sites (STSs) and covered approximately 2.7 Mb, with one gap. A total of 74 STSs, including 6 microsatellite markers, 29 expressed sequenced tags (ESTs), and 39 BAC end STSs, were physically arranged. Twenty-eight ESTs were mapped in the interval between D10S249 and D10S559 (approximately 1200 kb), and another EST was mapped in the interval between D10S559 and D10S533 (approximately 1300 kb). This sequence-ready BAC clone contig map will be a basic resource for high-quality sequencing and positional cloning of the putative tumor suppressor gene at 10p15 in glioma.  相似文献   

20.
An interstitial deletion, 17cen----q11.2 (or q12), and a small extra chromosome was found in a sporadic case of von Recklinghausen neurofibromatosis (NF1). In situ hybridization with a chromosome 17-specific alpha-satellite probe showed that the small chromosome was derived from the deleted region, most likely by an excision/ring formation. This chromosome rearrangement is in agreement with the localization of the von Recklinghausen neurofibromatosis (NF1) locus to the proximal region of 17q, but with a more distal breakpoint than observed in two previously described reciprocal translocations associated with NF1. If the NF1 gene has been truncated by the present rearrangement, it may suggest that the NF1 gene is a very large gene at the genomic level. Alternatively, NF1 in this patient may be caused by the gradual loss in somatic cells of the small chromosome carrying an intact NF1 gene, thereby suggesting a recessive mechanism at the gene level. Finally, an intact NF1 gene may have been placed in close proximity with alpha-satellite sequences, which might cause inactivation of the gene. The small supernumerary chromosome may not only facilitate the cloning of the NF1 gene itself, but also offers explanations of the mechanism underlying development of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号