首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study is to evaluate the status of plasma essential trace elements selenium (Se), zinc (Zn), copper (Cu), and iron (Fe) concentrations and their related acute-phase proteins, ceruloplasmin (Cp), ferritin, transferrin (Tf), and albumin levels in patients with vivax malaria. Plasma Cu and Zn concentrations were determined by atomic absorption spectrometry (AAS). Se concentrations were determined by graphite furnace AAS. Fe, Cp, Tf, and albumin levels were determined by colorimetric methods. Plasma Se, Fe, and albumin levels were found to be significantly lower (p<0.01, p<0.001, and p<0.05, respectively) and Cu, Cp, and ferritin levels and Cu/Zn ratios were significantly higher (p<0.001, p<0.001, p<0.001, and p<0.05, respectively) in patients when compared with those of healthy subjects. Plasma, Tf, and Zn levels were not found to be significantly different (p>0.05) in patients and controls. There were positive important correlations between Cu and Cp (r=0.908, p<0.001), Zn and albumin (r=0.633, p<0.001), and negative correlations between Fe and ferritin content (r=−0.521, p<0.05) and Fe and Tf (r=−0.616, p<0.01) in the patients group. Our findings demonstrated that plasma essential trace elements Se, Cu, and Fe change, but these changes might be dependent on acute-phase proteins, which were regulated as a part of defense strategies of the organism, induced by hormonelike substances.  相似文献   

2.
In six chronic dialyzed uremic patients, an intravenous sodium selenite (Se 50 μg during 5 wk and then 100 μg) and zinc gluconate (Zn 5 mg) supplementation was performed during 20 wk at each dialysis session three times weekly. Before supplementation, plasma Se and Zn, plasma and erythrocytes (RBC) antioxidant metalloenzymes glutathione peroxidase (GPX), and superoxide dismutase (SOD) were significantly decreased, whereas lipid peroxidation (as thiobarbituric acid reactants TBARs) was increased. To obtain a significative change in plasma selenium, we had to use an Se dose of 100 μg/dialysis session. Then, treatment-increased plasma Se (from 0.58 ±0.09 to 0.89±0.16 μmol/L) led to a repletion of RBC-GPX (from 29.6±6 to 43±5.8 U/g Hb) and increased plasma GPX levels (from 62±13 to 151±43 U/L). Plasma Zn and RBC-SOD did not vary significantly. The change of TBARs was not observed between wk 1 and 4. They decreased significantly between wk 4 (4.80±0.21μmol/L) and wk 20 (4.16±0.26 μmol/L). We noted a low correlation between TBARs and plasma GPX. A strong correlation was observed between Se and plasma GPX. The reversal of Se deficiencies should reduce oxidative damage observed in these patients.  相似文献   

3.
In recent years, a great number of studies have investigated the possible role of trace elements in the etiology and pathogenesis of rheumatoid arthritis (RA) and osteoartritis (OA). We studied synovial fluid and plasma concentrations of selenium (Se), zinc (Zn), copper (Cu), and iron (Fe) in patients with RA and OA and compared them with sex- and age-matched healthy subjects. Plasma albumin levels were measured as an index of nutritional status. Plasma Se, Cu, and Zn concentrations were determined by atomic absorption spectrophotometry and Fe concentrations were determined by the colorimetric method. Although plasma and synovial fluid Se concentration were found to be significantly lower (p<0.05, and p<0.05, respectively), Cu concentrations were significantly higher in patients with RA than those of healthy subjects and OA (p<0.05 and p<0.05, respectively). There were no significant differences in plasma and synovial fluid Zn concentrations and albumin levels among three groups (p>0.05). On the other hand, synovial fluid Cu and Fe concentrations were significantly higher in patients with OA than those of healthy subjects (p<0.05). There was a significantly positive correlation between synovial fluid Se−Cu values and Zn−Fe values in patients with RA. Our results showed that synovial fluid and plasma trace element concentrations, excluding Zn, change in inflammatory RA, but not in OA. These alterations in trace element concentrations in inflammatory Ra might be a result on the changes of the immunoregulatory cytokines.  相似文献   

4.
The aim of the present study is to evaluate the status of plasma essential trace element selenium (Se), manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) concentrations and the effect of these elements on oxidative status in patients with childhood asthma. Plasma Se, Mn, Cu, and Zn concentrations were determined by atomic absorption spectrophotometry (AAS) and Fe concentrations, malondialdehyde (MDA), and total antioxidant capacity (TAC) were determined by the colorimetric method. The plasma MDA/TAC ratio was calculated as an index of oxidative status. Plasma albumin levels were measured to determine nutritional status. Plasma Fe concentrations, MDA levels and the MDA/TAC ratio were significantly higher (p<0.001, p<0.001, and p<0.01, respectively) and Se and Mn concentrations and TAC were lower (p<0.01, p<0.05, and p<0.01, respectively) in patients when compared to the healthy subjects. Plasma Zn, Cu, and albumin levels were not found to be significantly different in patients and controls (p>0.05). There were positive relationships between plasma MDA and Fe (r=0.545, p<0.001) and TAC and Se (r=0.485, p<0.021), and a negative correlation between TAC and MDA values (r= −0.337, p<0.031) in patients with childhood asthma. However, there was no correlation between these trace elements and albumin content in patient groups. These observations suggest that increased Fe and decreased Se concentrations in patients with childhood asthma may be responsible for the oxidant/antioxidant imbalance.  相似文献   

5.
The aim of this study is to investigate the relationship between trace elements and the incidence of cervical cancer. Tissue and serum levels of six elements (Cu, Zn, Fe, Mn, Ca, and Se) and the Cu/Zn ratio in 40 cases of patients with cervical cancer, 30 cases of uterine myoma, and 50 healthy subjects were measured by atomic absorption spectrophotometry; the selenium content was determined by atomic fluorescence spectrometry. The results showed that the tissue contents of Zn, Se, and Ca were significantly lower and the Cu and Fe concentrations and Cu/Zn ratio were significantly higher in cervical cancer tissue than that for paired nonlesion tissue (p<0.02 and p<0.001, respectively). The serum levels of Zn, Se, Ca, and Fe were lower and Cu and Mn levels and Cu/Zn ratio were higher in patients with cervical cancer than in healthy subjects (p<0.01 and p<0.001, respectively) and in the uterine myoma group compared with healthy subjects (p< 0.05–0.001). There are no significant differences in the contents of six elements and the Cu/Zn ratio between uterine myoma tissue and paired nonlesion tissue. The results showed also that the Fe level and Cu/Zn ratio were significantly higher and the Zn and Se levels were significantly lower in cervical cancer tissue than in uterine myoma tissue (p<0.01 and p<0.001, respectively). The serum Cu level and Cu/Zn ratio were significantly higher in the cervical cancer group than the uterine myoma group (p<0.01). Data were also analyzed using multivarate logistic regression. After adjustment for age, occupation, life habit, and other covariates for the development of cervical cancer, the odds ratios were 22.64 (95% confidence interval [CI]: 5.64–90.88, p=0.001) for Cu, 0.11 (95% CI: 0.034–0.373; p=0.005) for Zn, and 0.60 (95% CI: 0.36–0.99, p=0.01) for Se. Thus, the serum and tissue levels of Cu increase and the deficiency of Zn and Se may be risk factors for the development of cervical cancer.  相似文献   

6.
Polyphenol-rich plant products as feed supplements have been shown to exert beneficial effects on feed efficiency in piglets. However, tannins as components of polyphenol-rich plant products are able to reduce the absorption of various trace elements. The present study investigated the effect of two polyphenol-rich dietary supplements, grape seed and grape marc meal extract (GME) and spent hops (SH), on iron (Fe), zinc (Zn) and copper (Cu) status in piglets supplied adequately with those trace elements. A trial with three groups of piglets which received a Control diet or the same diet supplemented with either 1% GME or 1% SH over a period of 4 weeks was performed. Concentrations of Fe, Zn and Cu in plasma, total iron binding capacity and saturation of transferrin in plasma did not differ between the three groups. Piglets fed the diet supplemented with SH showed no differences in the concentrations of Fe, Zn and Cu in the liver in comparison to the Control group. Piglets fed the diets supplemented with GME showed slightly lower concentrations of Zn and Cu in the liver than Control piglets (p < 0.05); however, concentrations of both elements remained in the physiological range. Overall, this study shows that the polyphenol-rich plant products GME and SH had marginal effect on the status of Fe, Zn and Cu in piglets.  相似文献   

7.
This study examined the effect of diet-induced, marginal zinc deficiency for 7 wks in 15 men (aged 25.3 +/- 3.3 yrs; mean +/- SD) on selected indices of iron and copper status. The regimen involved low-zinc diets based on egg albumin and soy protein with added phytate and calcium such that mean [phytate]/[Zn] and [phytate] X [Ca]/[Zn] molar ratios were 209 and 4116, respectively, for 1 wk, followed by 70 and 2000, respectively, for 6 wks. Subjects were then repleted with 30 mg Zn/d for 2 wks. Plasma copper, Cu,Zn-superoxide dismutase (Cu,Zn-SOD) activity in plasma and red blood cells (RBC), hemoglobin, hematocrit, and serum ferritin were determined weekly on fasting blood samples. Significant reductions (p less than 0.05) after 7 wks in RBC Cu,Zn-superoxide dismutase (49.5 +/- 7.2 vs 33.6 +/- 6.3 U/mg Hb) and serum ferritin (69.2 +/- 38.7 vs 53.8 +/- 33.7 micrograms/L) occurred; no comparable decline was noted for plasma Cu, hemoglobin, or hematocrit. Significant (p less than 0.05) but less consistent changes were also observed in plasma superoxide dismutase activity. None of the changes were associated with the decreases in plasma, urinary and hair zinc concentrations, and alkaline phosphatase activity in RBC membranes. Results indicate that the biochemical iron and copper status of the subjects was marginally impaired, probably from the dietary regimen that induced marginal zinc deficiency.  相似文献   

8.
It is known that certain trace elements can affect various heart diseases. In this study, we aimed to evaluate the changes in concentrations of certain serum trace elements in patients with chronic rheumatic heart disease (RHD). Serum analysis of selenium (Se), zinc (Zn), and copper (Cu) trace elements was assayed by atomic absorption spectrophotometry. RHD patients had significantly lower serum concentrations of Se and Zn than control subjects (p<0.05 and p<0.001, respectively). However, the serum Cu concentration was significantly higher in RHD patients than in controls (1.93±0.59 μg/L vs 1.06±0.29 μg/L; p<0.001). Similarly, the Cu/Zn ratio in RHD patients was higher than in control subjects (4.70±0.92 vs 1.68±0.45; p<0.001). Additionally, no significant correlation was found among these trace element concentrations and the functional capacity classes (p>0.05). RHD patients had decreased serum Se and Zn element concentrations and increased serum Cu element concentration. We suggest that Se and Zn deficiency might be contributory factors in the development of rheumatic heart disease, and a high Cu concentration and a high Cu/Zn ratio might reflect an ongoing inflammatory process in this disease.  相似文献   

9.
We have previously shown that a low-copper (Cu) diet produced alterations in placental Cu transport and fetal Cu stores. Because Cu deficiency has been associated with lipid deposition in rat dam liver, we hypothesized that a high fat intake, a prevalent dietary habit in many populations, may worsen fetal Cu status and its closely linked iron (Fe) deposits. Pregnant rats were fed one of four diets during the second half of gestation: NFNCu: normal fat (7%), normal Cu (6 mg/kg); HFNCu: high fat (21%), normal Cu; NFLCu: normal fat, low Cu (0.6 mg/kg), and HFLCu: high fat, low Cu. One day before delivery, dams were anesthetized, and maternal as well as fetal plasma and tissues were obtained. Maternal, fetal, and placental weights were indistinguishable regardless of the group. Dam plasma Cu and placental Cu were lower in both LCu groups than in the NFNCu or the HFNCu groups. However, fetal plasma Cu was similar in all treatment groups. Dam and fetal liver Cu stores were reduced in the LCu groups compared to the NCu groups. This resulted in lower fetal/maternal liver Cu ratios in the NFLCu (1.79 ± 0.14,p < 0.05) and HFLCu (1.59 ± 0.21,p < 0.05) as compared to the NFNCu (4.12 ± 0.44) and the HFNCu (4.15 ± 0.27). Dam liver Fe was higher in the NFNCu than in HFNCu group (1.10 ± 0.8 vs. 0.89 ± 0.06 μmol/g,p < 0.05); fetal liver Fe from HFNCu and NFLCu dams was lower than that from NFNCu fetuses (NFNCu: 2.42 ± 0.14; HFNCu: 1.92 ± 0.15,p < 0.05; NFLCu: 1.81 ± 0.10,p < 0.01). Fetuses of the HFLCu group had a lower heart Fe than the NFNCu group (0.56 ± 0.03 vs. 44.0 ± 3.0 μg/g,p < 0.01). These data indicate that a maternal high-fat diet can potentially aggravate the effects of Cu deficiency by further altering fetal Cu and Fe tissue stores.  相似文献   

10.
Selenium, copper and zinc status is important in pregnant women. The aim of this study was to establish updated normal ranges for these elements in serum of pregnant women from the Spanish region of Aragon, and to study variation in levels with respect to gestational period and maternal age. The study group consisted of 159 pregnant women who did not suffer from serious pathologies. These samples were classified into four gestational-period groups. Zn and Cu determinations were obtained by flame atomic absorption spectroscopy in a Perkin-Elmer 1100B apparatus, and Se was determined by electrothermal atomic absorption spectrometry with Zeeman correction, in a Perkin-Elmer 4110 ZL apparatus. The concentrations of Cu, Zn and Se averaged 73.61±43.67 μg/dL, 65.37±12.87 μg/dL and 99.59±21.74 μg/L, respectively. The Cu/Zn ratio increased from first trimester to the third trimester (2.07–3.49). There was no significant correlation between Zn and Se levels, but a significant correlation was found between Cu and Se levels (p<0.05) and between Cu and Zn levels (p<0.001). Serum Zn and Se levels decreased over gestation, while serum Cu concentrations increased; in all cases the variation occurred mostly in the first 3 or 4 months, with mean levels then remaining fairly stable until the end of pregnancy. Maternal age did not influence levels of any of the three metals.  相似文献   

11.
The purpose of this study was to investigate iron (Fe), zinc (Zn), and copper (Cu) levels of aqueous humor, lens, and serum in nondiabetics and diabetics and to determine the effects of diabetes on Fe, Zn, and Cu contents in the lens. Fe, Zn, and Cu contents of aqueous humor, lens, and serum samples of 19 patients (9 nondiabetic patients with a mean age of 62.3±5.4 yr, and 10 diabetic patients with a mean age of 59.5±5.9 yr) were analyzed by atomic absorption spectrometry using a prospective study design. The lens levels of Cu in diabetic patients were significantly higher compared with nondiabetic patients (p=0.02); however; there was no difference in the other elements (Zn, Fe; p=0.28, p=0.74, respectively). The levels of Fe, Zn, and Cu in the aqueous humor and serum of diabetic patients were not found to be statistically significant when compared to nondiabetics (p=0.46, p=0.11, p=0.18, and p=0.22, p=0.43, p=0.72, respectively). These results demonstrate that increased Cu content of the lens presumably has a greater association with the development of lens opacification in diabetics than Zn and Fe content.  相似文献   

12.
Trace element status is known to be altered in the diabetic state, although the factors affecting trace element homeostasis in this condition are not well understood. The authors examined the effects of a high fructose diet (40% wt:wt) vs a control diet on the copper (Cu), zinc (Zn), and iron (Fe) concentrations in the kidney, plasma, and red blood cells of islet transplanted (TX) and shamoperated (SHAM) rats. Male, Wistar Furth rats made diabetic by streptozotocin injection (55 mg/kg, iv) were given an intraportal islet transplant (1000 islets); control animals were shaminjected, shamoperated (SHAM). Rats within TX and SHAM groups were assigned to either a high fructose diet (40% fructose, 25% cornstarch, FR) or a purified control diet (33% cornstarch, 33% dextrose, CNTL) containing identical amounts of mineral mixture for a period of 6 wk. Kidney Cu concentration was significantly elevated among hyperglycemie TXCNTL rats (224 ± 25 nmol/g wet wt), but was markedly reduced in hyperglycemic TXFR rats (109 ± 14 nmol/g) relative to normoglycemic controls. This occurred in spite of similar levels of glucose, insulin (fed and fasted), insulin secretory capacity, body weight, and food intake in the TXCNTL and TXFR groups. Among the subgroup of rats with normal glucose levels post-TX, kidney Cu levels normalized and were unaffected by dietary treatment (normoglycemic TXCNTL = 60 ± 5 nmol/g; normoglycemic TXFR = 40 ± 2 nmol/g). Kidney Cu concentrations also were unaffected by fructose feeding in SHAM animals (CNTL, 60 ± 4 nmol/g and FR, 51 ± 5 nmol/g). Kidney Zn and Fe concentrations were similar among the treatment groups. Plasma and red blood cell (RBC) Cu, Zn, and Fe concentrations were also similar among the groups. Since fructose feeding led to a substantial reduction of kidney Cu concentrations in the presence of hyperglycemia, the authors suggest that this model can be useful in examining effects of altered kidney Cu accumulation in the diabetic animal.  相似文献   

13.
This study aimed to investigate effect of erythrocyte suspension (ES) transfusion on Cu, Zn, and Fe levels. It was conducted on 53 premature infants who were admitted to Hacettepe Hospital and received EST for first time. Blood samples were drawn before and 96 h after ES transfusion to determine Cu, Zn, and Fe levels in plasma and/or erythrocytes. The mean plasma Cu levels were 99 ± 3 μg/dl and 113 ± 3 μg/dl; Zn levels were 105 ± 2 μg/dl and 115 ± 23 μg/dl; mean plasma Fe level was 58.1 ± 19.4 and 75.2 ± 25.4 μg/dl and mean erythrocyte Fe level was 4182 ± 2314 μg/ml and 7009 ± 5228 μg/ml, before and after ES transfusion. The differences between before and after ES transfusion in Cu, Zn and Fe levels were significant. Correlation between plasma and erythrocyte Fe levels was significant both before and after ES transfusion. Though Fe overload is a major cause of morbidity/mortality after ES transfusion, alterations in trace elements should also be considered when transfusing blood to infants and children.  相似文献   

14.
Laparoscopic adjustable gastric banding (LAGB) causes significant weight loss in morbidly obese adults. However, its consequences on nutritional status still remain unclear. There are a few studies determining the nutritional status after LAGB and none have focused on the serum levels of zinc (Zn), copper (Cu), and ceruloplasmin (CP). We aimed to investigate the effects of LAGB surgery on plasma Zn, Cu, and CP levels. Thirty patients with LAGB with morbid obesity were included. Blood samples were collected preooperatively and in the postoperative third month to determine plasma Zn, Cu, and CP levels. The mean preoperative and postoperative body mass indexes (BMI) were 44.9 ± 7.4 kg/m2 and 44.1 ± 6.5 kg/m2, respectively. The mean weight loss was 12.9 ± 3.3 kg at the postoperative third month. The postoperative Zn (500 ± 130 ng/ml), Cu (280 ± 80 ng/ml), and CP (23.9 ± 8.8 mg/dl) values were statistically significantly lower than the preooperative Zn (740 ± 230 ng/ml), Cu (370 ± 80 ng/ml) and CP (33.3 ± 15.7 mg/dl) levels (p < 0.05). Decreases in the plasma levels of Zn, Cu, and CP were seen postoperatively following LAGB surgery. The nutritional status of LAGB-applied patients should be monitored and mineral supplementation may be considered.  相似文献   

15.
The identification of an enzyme activity that responds to changes in Zn intake may serve as a useful biomarker for Zn status. Alkaline phosphatase (ALP) is a dimeric protein with each subunit containing two Zn atoms. The activity of ALP in erythrocytes (E) decreases as a result of a low Zn diet, which suggests that this enzyme may be a marker of Zn status. To investigate this further, we determined the response of E-ALP in six healthy subjects following supplementation with 50 mg Zn (4.2×RDI) daily for 4 wk. A small but significant increase in plasma Zn was observed with supplementation (p<0.05), whereas there was no significant change in E-Zn over the same period. Plasma and E-Cu showed no change. Conversely, the activity of E-ALP increased in all subjects from 1.7±0.5 to 5.9±0.7 U/g protein (mean±SE) (p<0.0001). The small change observed in plasma Zn is not biologically significant in view of the many documented factors that influence its concentration. Our data support the hypothesis that E-ALP is a marker of Zn status in humans.  相似文献   

16.
Alterations of serum zinc (Zn) and copper (Cu) concentrations are commonly found in patients suffering from gastrointestinal infections and with hepatic, renal, cardiovascular, and malignant diseases. In this study, the serum Zn and Cu levels in 20 children with giardiasis and in 40 children with amebiasis were evaluated. The serum Zn levels showed a significant decrease when compared to controls (p<0.001). After metronidazole therapy, a significant increase in Zn levels was observed (p<0.001). There was no significant difference in serum Cu levels between patients and controls before therapy. Before therapy, the serum Cu/Zn ratio in children with either giardiasis or amebiasis was significantly higher than that of the control group. After therapy, the Cu/Zn ratio was found to be back to normal. There were no significant differences in serum Zn levels and Cu/Zn ratios between children with and without diarrhea and there was no significant difference in children with or without failure to thrive. We concluded that Zn deficiency and elevated Cu/Zn ratio could be acute-phase responses to parasitic infections in children with giardiasis or amebiasis and that a successful treatment of the primary disorder will lead to complete recovery. Further studies are in progress to confirm the benefit of Zn supplementation during the acute phase of the disease, particularly in zinc-deficient regions of the world, such as in the case of Turkey.  相似文献   

17.
Mechanisms for the onset of diabetes and the development of diabetic complications remain under extensive investigations. One of these mechanisms is abnormal homeostasis of metals, as either deficiency or excess of metals, can contribute to certain diabetic outcomes. Therefore, this paper will report the blood levels of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), mercury (Hg), nickel (Ni), lead (Pb), selenium (Se), and zinc (Zn) in subjects with type 1 diabetes (n?=?192, mean age 48.8 years, mean disease duration 20.6 years), type 2 diabetes (n?=?68, mean age 68.4 years, mean disease duration 10.2 years), and in control subjects (n?=?59, mean age 57.2 years), and discuss the results indicating their possible role in diabetes. The metal concentrations were measured by sector field inductively coupled plasma mass spectrometry after microwave-induced acid digestion of blood samples. The accuracy was checked using a blood-based certified reference material, and recoveries of all elements were in the range of 92–101 % of certified values. Type 1 diabetes was found to be associated with Cr (p?=?0.02), Mn (p?<?0.001), Ni (p?<?0.001), Pb (p?=?0.02), and Zn (p?<?0.001) deficiency, and type 2 diabetes with Cr (p?=?0.014), Mn (p?<?0.001), and Ni (p?<?0.001) deficiency. These deficiencies were appreciated also subdividing the understudied patients for gender and age groups. Furthermore, in type 1 diabetes, there was a positive correlation between Pb and age (p?<?0.001, ρ?=?0.400) and Pb and BMI (p?<?0.001, ρ?=?0.309), while a negative correlation between Fe and age (p?=?0.002, ρ?=??0.218). In type 2 diabetes, there was a negative correlation between Fe and age (p?=?0.017, ρ?=??0.294) and Fe and BMI (p?=?0.026, ρ?=??0.301). Thus, these elements may play a role in both forms of diabetes and combined mineral supplementations could have beneficial effects.  相似文献   

18.
The aim of this study was to determine the plasma selenium (Se), copper (Cu), and zinc (Zn) levels and to evaluate their possible association with metabolic syndrome (MetS) components in patients with schizophrenia. The study group consisted of 60 patients with schizophrenia and 60 sex- and age-matched healthy controls. Anthropometric measurements, blood pressure, and biochemical analysis of fasting blood were performed in all subjects. Patients with schizophrenia had significantly higher plasma Cu concentrations compared with controls (0.97?±?0.31 vs. 0.77?±?0.32 mg/L, p?=?0.001). The plasma Cu concentration showed a positive correlation with plasma glucose and diastolic blood pressure in the patient groups (r s ?=?0.263, p?<?0.05 and r s ?=?0.272, p?<?0.05, respectively). The plasma Se level correlated positive with MetS score (r s ?=?0.385, p?<?0.01), waist circumference (r s ?=?0.344, p?<?0.05), plasma glucose (r s ?=?0.319, p?<?0.05), and triglyceride concentrations (r s ?=?0.462, p?<?0.001) in patients with schizophrenia. Plasma Zn did not correlate with any of the MetS components. These results suggest that alterations in plasma Cu and Se levels in medicated patients with schizophrenia could be associated with metabolic risk factors.  相似文献   

19.
The effects of zinc deficiency and supplementation on plasma leptin levels were studied in Sprague-Dawley rats. After 6 wk on a zinc-deficient diet containing 0.65 ppm Zn/g, the mean body weight was significantly lower than that of normal or zinc-supplemented rats, which showed no difference among them. The plasma leptin and zinc levels were lowest in zinc-deficient animals and highest in those that received a normal diet and daily intraperitioneal injections of 3 mg Zn/kg. These results indicate that zinc deficiency leads to a significant inhibition in plasma leptin levels, whereas zinc supplementation significantly increases plasma leptin.  相似文献   

20.
The hair and serum levels of calcium, iron, copper, and zinc levels were measured in a group of 70 healthy pregnant women and in 66 age-matched healthy controls living in the Tianjin city of the People’s Republic of China. The study subjects were classified into three subgroups according to gestational age. The hair concentrations were measured by X-ray fluorescence spectrometry, whereas those in sera were established by atomic absorption spectrometry. The hair concentrations of Ca, Fe, Cu, and Zn in the three groups of gravida were lower or significantly lower than those in controls. In sera, the differences did not show statistical significance in most cases. A deficiency of calcium was observed in subjects in the last trimester of gestation. This reinforces the importance of supplementation with calcium during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号