首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bartolomé C  Maside X  Yi S  Grant AL  Charlesworth B 《Genetics》2005,169(3):1495-1507
We have investigated patterns of within-species polymorphism and between-species divergence for synonymous and nonsynonymous variants at a set of autosomal and X-linked loci of Drosophila miranda. D. pseudoobscura and D. affinis were used for the between-species comparisons. The results suggest the action of purifying selection on nonsynonymous, polymorphic variants. Among synonymous polymorphisms, there is a significant excess of synonymous mutations from preferred to unpreferred codons and of GC to AT mutations. There was no excess of GC to AT mutations among polymorphisms at noncoding sites. This suggests that selection is acting to maintain the use of preferred codons. Indirect evidence suggests that biased gene conversion in favor of GC base pairs may also be operating. The joint intensity of selection and biased gene conversion, in terms of the product of effective population size and the sum of the selection and conversion coefficients, was estimated to be approximately 0.65.  相似文献   

2.
Hughes AL 《Gene》2007,392(1-2):266-272
In the seven protein-coding genes in the Marburg virus (MARV) genome, the synonymous nucleotide diversity substantially exceeded the nonsynonymous nucleotide diversity, indicating strong purifying selection. Likewise, there was evidence of purifying selection on 5'UTR and 3'UTR, where nucleotide diversity (pi) was significantly less than piS in the coding regions. Nonsynonymous polymorphic sites showed significantly reduced mean gene diversity in comparison to other polymorphic sites, indicating that purifying selection at certain slightly deleterious nonsynonymous polymorphisms is ongoing. Moreover, nonsynonymous polymorphic sites showed significantly reduced gene diversity in comparison to adjacent synonymous sites, even though the vast majority of such adjacent synonymous sites were in the same codon or an adjacent codon. Thus purifying selection, in conjunction with recombination and/or backward mutation, can act to break up linkage relationships at a micro-scale in the MARV genome. The ability of purifying selection to break up linkage between synonymous and nonsynonymous polymorphisms on such a fine scale has not been reported in any other genome.  相似文献   

3.
Ford MJ 《Molecular ecology》2000,9(7):843-855
This paper describes DNA sequence variation within and among four populations of chinook salmon (Oncorhynchus tshawytscha) at the transferrin, somatolactin and p53 genes. Patterns of variation among salmon species at the transferrin gene have been hypothesized to be shaped by positive natural selection for new alleles because the rate of nonsynonymous substitution is significantly greater than the rate of synonymous substitution. The twin goals of this study were to determine if the history of selection among salmon species at the transferrin gene is also reflected in patterns of intraspecific variation in chinook salmon, and to look for evidence of local adaptation at the transferrin gene by comparing patterns of nonsynonymous and synonymous variation among chinook salmon populations. The analyses presented here show that unlike patterns of variation between species, there is no evidence of greater differentiation among chinook salmon populations at nonsynonymous compared to synonymous sites. There is also no evidence of a reduction of within-species variation due to the hitchhiking effect at the transferrin gene, although in some populations nonsynonymous and synonymous derived mutations are both at higher frequencies than expected under a simple neutral model. Population size weighted selection coefficients (4Ns) that are consistent with both the inter and intraspecific data range from approximately 10 to approximately 235, and imply that between 1 and 40% of new nonsynonymous mutations at the transferrin gene have been beneficial.  相似文献   

4.
Comparison of the ratio of nonsynonymous to synonymous polymorphisms within species with the ratio of nonsynonymous to synonymous substitutions between species has been widely used as a supposed indicator of positive Darwinian selection, with the ratio of these 2 ratios being designated as a neutrality index (NI). Comparison of genome-wide polymorphism within 12 species of bacteria with divergence from an outgroup species showed substantial differences in NI among taxa. A low level of nonsynonymous polymorphism at a locus was the best predictor of NI < 1, rather than a high level of nonsynonymous substitution between species. Moreover, genes with NI < 1 showed a strong tendency toward the occurrence of rare nonsynonymous polymorphisms, as expected under the action of ongoing purifying selection. Thus, our results are more consistent with the hypothesis that a high relative rate of between-species nonsynonymous substitution reflects mainly the action of purifying selection within species to eliminate slightly deleterious mutations rather than positive selection between species. This conclusion is consistent with previous results highlighting an important role of slightly deleterious variants in bacterial evolution and suggests caution in the use of the McDonald-Kreitman test and related statistics as tests of positive selection.  相似文献   

5.
We characterized rates and patterns of synonymous and nonsynonymous substitution in 242 duplicated gene pairs on chromosomes 2 and 4 of Arabidopsis thaliana. Based on their collinear order along the two chromosomes, the gene pairs were likely duplicated contemporaneously, and therefore comparison of genetic distances among gene pairs provides insights into the distribution of nucleotide substitution rates among plant nuclear genes. Rates of synonymous substitution varied 13.8-fold among the duplicated gene pairs, but 90% of gene pairs differed by less than 2.6-fold. Average nonsynonymous rates were approximately fivefold lower than average synonymous rates; this rate difference is lower than that of previously studied nonplant lineages. The coefficient of variation of rates among genes was 0.65 for nonsynonymous rates and 0.44 for synonymous rates, indicating that synonymous and nonsynonymous rates vary among genes to roughly the same extent. The causes underlying rate variation were explored. Our analyses tentatively suggest an effect of physical location on synonymous substitution rates but no similar effect on nonsynonymous rates. Nonsynonymous substitution rates were negatively correlated with GC content at synonymous third codon positions, and synonymous substitution rates were negatively correlated with codon bias, as observed in other systems. Finally, the 242 gene pairs permitted investigation of the processes underlying divergence between paralogs. We found no evidence of positive selection, little evidence that paralogs evolve at different rates, and no evidence of differential codon usage or third position GC content.  相似文献   

6.
We surveyed the molecular evolutionary characteristics of 11 nuclear genes from 10 conifer trees belonging to the Taxodioideae, the Cupressoideae, and the Sequoioideae. Comparisons of substitution rates among the lineages indicated that the synonymous substitution rates of the Cupressoideae lineage were higher than those of the Taxodioideae. This result parallels the pattern previously found in plastid genes. Likelihood-ratio tests showed that the nonsynonymous-synonymous rate ratio did not change significantly among lineages. In addition, after adjustments for lineage effects, the dispersion indices of synonymous and nonsynonymous substitutions were considerably reduced, and the latter was close to 1. These results indicated that the acceleration of evolutionary rates in the Cupressoideae lineage occurred in both the nuclear and plastid genomes, and that generally, this lineage effect affected synonymous and nonsynonymous substitutions similarly. We also investigated the relationship of synonymous substitution rates with the nonsynonymous substitution rate, base composition, and codon bias in each lineage. Synonymous substitution rates were positively correlated with nonsynonymous substitution rates and GC content at third codon positions, but synonymous substitution rates were not correlated with codon bias. Finally, we tested the possibility of positive selection at the protein level, using maximum likelihood models, assuming heterogeneous nonsynonymous-synonymous rate ratios among codon (amino acid) sites. Although we did not detect strong evidence of positively selected codon sites, the analysis suggested that significant variation in nonsynonymous-synonymous rate ratio exists among the sites. The most likely sites for action of positive selection were found in the ferredoxin gene, which is an important component of the apparatus for photosynthesis.  相似文献   

7.
The two mechanisms for generating hypervariability at the reactive center of serine proteases and their inhibitors are gene conversion followed by natural selection and natural selection for point mutation. One way to clarify the effects of these two mechanisms is to calculate separately the number of nonsynonymous substitutions and that of synonymous substitutions at the variable regions and at the conserved regions. Our data analysis shows that not only the number of nonsynonymous substitutions but also the number of synonymous substitutions at the variable regions exceed the corresponding numbers at the conserved regions. Thus gene conversion has provided needed variability at the variable regions of serine proteases and their inhibitors. Natural selection has helped perpetuate such variability.  相似文献   

8.
Widespread positive selection in synonymous sites of mammalian genes   总被引:5,自引:0,他引:5  
Evolution of protein sequences is largely governed by purifying selection, with a small fraction of proteins evolving under positive selection. The evolution at synonymous positions in protein-coding genes is not nearly as well understood, with the extent and types of selection remaining, largely, unclear. A statistical test to identify purifying and positive selection at synonymous sites in protein-coding genes was developed. The method compares the rate of evolution at synonymous sites (Ks) to that in intron sequences of the same gene after sampling the aligned intron sequences to mimic the statistical properties of coding sequences. We detected purifying selection at synonymous sites in approximately 28% of the 1,562 analyzed orthologous genes from mouse and rat, and positive selection in approximately 12% of the genes. Thus, the fraction of genes with readily detectable positive selection at synonymous sites is much greater than the fraction of genes with comparable positive selection at nonsynonymous sites, i.e., at the level of the protein sequence. Unlike other genes, the genes with positive selection at synonymous sites showed no correlation between Ks and the rate of evolution in nonsynonymous sites (Ka), indicating that evolution of synonymous sites under positive selection is decoupled from protein evolution. The genes with purifying selection at synonymous sites showed significant anticorrelation between Ks and expression level and breadth, indicating that highly expressed genes evolve slowly. The genes with positive selection at synonymous sites showed the opposite trend, i.e., highly expressed genes had, on average, higher Ks. For the genes with positive selection at synonymous sites, a significantly lower mRNA stability is predicted compared to the genes with negative selection. Thus, mRNA destabilization could be an important factor driving positive selection in nonsynonymous sites, probably, through regulation of expression at the level of mRNA degradation and, possibly, also translation rate. So, unexpectedly, we found that positive selection at synonymous sites of mammalian genes is substantially more common than positive selection at the level of protein sequences. Positive selection at synonymous sites might act through mRNA destabilization affecting mRNA levels and translation.  相似文献   

9.
To determine the relative importance of gene conversion followed by natural selection and of natural selection for point mutation in generating variability in immunoglobulins, the numbers of synonymous and nonsynonymous substitutions in immunoglobulin sequences of various subgroups were estimated for complementarity-determining regions (CDRs) and for framework regions (FRs). Both the number of synonymous substitutions and the number of nonsynonymous substitutions in the CDR were found to exceed the corresponding numbers in the FR. Therefore, gene conversion is likely to be an important mechanism for providing variability in the CDR of immunoglobulins. The correlation coefficients between the number of synonymous substitutions and the number of nonsynonymous substitutions and between the substitution number in the CDR and that in the FR were found to be very low. Again, gene conversion is thought to be responsible for this finding.  相似文献   

10.
The relative rates of nucleotide substitution at synonymous and nonsynonymous sites within protein-coding regions have been widely used to infer the action of natural selection from comparative sequence data. It is known, however, that mutational and repair biases can affect rates of evolution at both synonymous and nonsynonymous sites. More importantly, it is also known that synonymous sites are particularly prone to the effects of nucleotide bias. This means that nucleotide biases may affect the calculated ratio of substitution rates at synonymous and nonsynonymous sites. Using a large data set of animal mitochondrial sequences, we demonstrate that this is, in fact, the case. Highly biased nucleotide sequences are characterized by significantly elevated dN/dS ratios, but only when the nucleotide frequencies are not taken into account. When the analysis is repeated taking the nucleotide frequencies at each codon position into account, such elevated ratios disappear. These results suggest that the recently reported differences in dN/dS ratios between vertebrate and invertebrate mitochondrial sequences could be explained by variations in mitochondrial nucleotide frequencies rather than the effects of positive Darwinian selection.  相似文献   

11.
In asexual lineages, both synonymous and nonsynonymous sequence polymorphism may be reduced due to severe founder effects when asexual lineages originate. However, mildly deleterious (nonsynonymous) mutations may accumulate after asexual lineages are formed, because the efficiency of purifying selection is reduced even in the nonrecombining mitochondrial genome. Here we examine patterns of synonymous and nonsynonymous mitochondrial sequence polymorphism in asexual and sexual lineages of the freshwater snail Campeloma. Using clade-specific estimates, we found that synonymous sequence polymorphism was significantly reduced by 75% in asexuals relative to sexuals, whereas nonsynonymous sequence polymorphism did not differ significantly between sexuals and asexuals. Two asexual clades had high negative values for Tajima's D statistic. Coalescent simulations confirmed that various bottleneck scenarios can account for this result. We also used branch-specific estimates of the ratio of amino acid to silent substitutions, K(a)/K(s). Our study revealed that K(a)/K(s) ratios are six times higher in terminal branches of independent asexual lineages compared to sexuals. Coalescent-based reconstruction of gene networks for all sexual and asexual clades indicated that nonsynonymous mutations occurred at a higher frequency in recently derived asexual haplotypes. These findings suggest that patterns of synonymous and nonsynonymous nucleotide polymorphism in asexual snail lineages may be shaped by both severe founder effect and relaxed purifying selection.  相似文献   

12.
Mutagenesis with Tn1 transposon was used to isolate mutants of ColE1 plasmid with inactivated gene responsible for immunity to colicin E1. Cells containing such mutants synthesized active colicin E1 and were sensitive to its action. Spontaneous and UV-induced colicin synthesis was strongly changed in the mutants, as compared to the control. Mutations occurring outside the immunity gene, including those within the structural gene for colicin E1, could also affect the immunity gene expression.  相似文献   

13.
There are two tightly linked loci (D and CE) for the human Rh blood group. Their gene products are membrane proteins having 12 transmembrane domains and form a complex with Rh50 glycoprotein on erythrocytes. We constructed phylogenetic networks of human and nonhuman primate Rh genes, and the network patterns suggested the occurrences of gene conversions. We therefore used a modified site-by-site reconstruction method by using two assumed gene trees and detected 9 or 11 converted regions. After eliminating the effect of gene conversions, we estimated numbers of nonsynonymous and synonymous substitutions for each branch of both trees. Whichever gene tree we selected the branch connecting hominoids and Old World monkeys showed significantly higher nonsynonymous than synonymous substitutions, an indication of positive selection. Many other branches also showed higher nonsynonymous than synonymous substitutions; this suggests that the Rh genes have experienced some kind of positive selection. Received: 16 March 1999 / Accepted: 17 June 1999  相似文献   

14.
Two commonly used methods based on likelihood-ratio tests (LRTs) for detecting positive Darwinian selection at the molecular level were applied to a data set of 604 gene families containing two members in the human genome and two members in the mouse genome. These methods detected positive selection in a very high proportion of families; in over 50% of families, there was significant evidence of positive selection by one or both methods. However, less than a third of families showing evidence for positive selection by at least one of the methods showed evidence of positive selection by both methods. The outcome of these tests was predicted better by sequence length, G+C content at third-codon positions, and the level of synonymous substitution than by the level of nonsynonymous substitution or the ratio of nonsynonymous to synonymous substitution. These results suggested that LRT-based tests for positive selection may be sensitive to certain factors that make it difficult to reconstruct the true pattern of nucleotide substitution.  相似文献   

15.
Influenza A virus is one of the best-studied viruses and a model organism for the study of molecular evolution; in particular, much research has focused on detecting natural selection on influenza virus proteins. Here, we study the dynamics of the synonymous and nonsynonymous nucleotide composition of influenza A virus genes. In several genes, the nucleotide frequencies at synonymous positions drift away from the equilibria predicted from the synonymous substitution matrices. We investigate possible reasons for this unexpected behavior by fitting several regression models. Relaxation toward a mutation-selection equilibrium following a host jump fails to explain the dynamics of the synonymous nucleotide composition, even if we allow for slow temporal changes in the substitution matrix. Instead, we find that deep internal branches of the phylogeny show distinct patterns of nucleotide substitution and that these branches strongly influence the dynamics of nucleotide composition, suggesting that the observed trends are at least in part a result of natural selection acting on synonymous sites. Moreover, we find that the dynamics of the nucleotide composition at synonymous and nonsynonymous sites are highly correlated, providing evidence that even nonsynonymous sites can be influenced by selection pressure for nucleotide composition.  相似文献   

16.
Plasmid pLAX3, carrying the colicin E3 gene, was used to direct the in vitro synthesis of a colicin E3* molecule totally devoid of its immunity protein. We established that this molecule is able to kill sensitive Escherichia coli cells in the total absence of immunity protein. Therefore, all of the information required for colicin E3 action is located on the colicin polypeptide itself. Furthermore, our studies indicated that immunity protein protects the C-terminal enzymatic part of native colicin E3 protein against proteolytic degradation before or during its translocation across the cell envelope. These results are discussed in relation to the mode of entry of colicin E3 into bacterial cells.  相似文献   

17.
The pattern of polymorphisms at major histocompatibility complex loci was studied by computer simulations and by DNA sequence analysis. Two types of selection, overdominance plus short-term selection and maternal–fetal incompatibility, were simulated for a gene family with intra- and interlocus gene conversion. Both types of selection were found to be consistent with the observed patterns of polymorphisms. It was also found that the more interlocus conversion occurs, the higher the divergence becomes at both nonsynonymous and synonymous sites. The ratio of nonsynonymous-to-synonymous divergence among alleles decreases as the interlocus conversion rate increases. These results agree with the interpretation that the rate of interlocus conversion is lower in human genes than in genes of other nonprimate mammals. This is because, in the latter, synonymous divergence at the ARS (antigen recognition site) is often higher than that at the non-ARS, whereas in the former, this is not so. Also, the ratio of nonsynonymous to synonymous substitutions at the ARS tends to be higher in human genes than in other mammalian genes. The main difference between overdominance plus short-term selection and maternal–fetal interaction is that the number of alleles and heterozygosity per locus are higher in the latter than in the former under the presumed selection intensities. However, the average divergence among alleles tends to be lower in the latter than in the former under similar conditions. Received: 30 September 1997 / Accepted: 15 December 1997  相似文献   

18.
Surveys of nucleotide sequence polymorphism in Drosophila melanogaster and Drosophila simulans were performed at 2 interacting loci crucial for gametogenesis: bag-of-marbles (bam) and benign gonial cell neoplasm (bgcn). At the polymorphism level, both loci appear to be evolving under the expectations of the neutral theory. However, ratios of polymorphism and divergence for synonymous and nonsynonymous mutations depart significantly from neutral expectations for both loci consistent with a previous observation of positive selection at bam. The deviations suggest either an excess of synonymous polymorphisms or an excess of nonsynonymous fixations at both loci. Synonymous evolution appears to conform to neutrality at bam. At bgcn, there is evidence of positive selection affecting preferred synonymous mutations along the D. simulans lineage. However, there is also a significantly higher rate of nonsynonymous fixations at bgcn within D. simulans. Thus, the deviation from neutrality detected by the McDonald-Kreitman test at these 2 loci is likely due to the selective acceleration of nonsynonymous fixations. Differences in the pattern of amino acid fixations between these 2 interacting proteins suggest that the detected positive selection is not due to a simple model of coevolution.  相似文献   

19.
There is now a wealth of evidence that some of the most important regions of the genome are found outside those that encode proteins, and noncoding regions of the genome have been shown to be subject to substantial levels of selective constraint, particularly in Drosophila. Recent work has suggested that these regions may also have been subject to the action of positive selection, with large fractions of noncoding divergence having been driven to fixation by adaptive evolution. However, this work has focused on Drosophila melanogaster, which is thought to have experienced a reduction in effective population size (N(e)), and thus a reduction in the efficacy of selection, compared with its closest relative Drosophila simulans. Here, we examine patterns of evolution at several classes of noncoding DNA in D. simulans and find that all noncoding DNA is subject to the action of negative selection, indicated by reduced levels of polymorphism and divergence and a skew in the frequency spectrum toward rare variants. We find that the signature of negative selection on noncoding DNA and nonsynonymous sites is obscured to some extent by purifying selection acting on preferred to unpreferred synonymous codon mutations. We investigate the extent to which divergence in noncoding DNA is inferred to be the product of positive selection and to what extent these inferences depend on selection on synonymous sites and demography. Based on patterns of polymorphism and divergence for different classes of synonymous substitution, we find the divergence excess inferred in noncoding DNA and nonsynonymous sites in the D. simulans lineage difficult to reconcile with demographic explanations.  相似文献   

20.
The use of codon substitution models to compare synonymous and nonsynonymous substitution rates is a widely used approach to detecting positive Darwinian selection affecting protein evolution. However, in several recent papers, Hughes and colleagues claim that codon-based likelihood-ratio tests (LRTs) are logically flawed as they lack prior hypotheses and fail to accommodate random fluctuations in synonymous and nonsynonymous substitutions Friedman and Hughes (2007) also used site-based LRTs to analyze 605 gene families consisting of human and mouse paralogues. They found that the outcome of the tests was largely determined by irrelevant factors such as the GC content at the third codon positions and the synonymous rate d(S), but not by the nonsynonymous rate d(N) or the d(N)/d(S) ratio, factors that should be related to selection. Here, we reanalyze those data. Contra Friedman and Hughes, we found that the test results are related to sequence length and the average d(N)/d(S) ratio. We examine the criticisms of Hughes and suggest that they are based on misunderstandings of the codon models and on statistical errors. Our analyses suggest that codon-based tests are useful tools for comparative analysis of genomic data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号