首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has recently been reported that diabetes mellitus is strongly associated with neurodegenerative and functional disorders of the central nervous system. In the present study, we investigated the changes in proliferating neurons in the dentate gyrus of type II diabetic rats using doublecortin (DCX), a marker of progenitors differentiating into neurons. At 4 weeks after birth, there were no differences in the blood glucose levels of Zucker diabetic fatty (ZDF) rats or Zucker lean control (ZLC) rats. DCX-immunoreactive neurons were detectable in the subgranular zone of the dentate gyrus in both the ZDF and ZLC rats; however, DCX immunoreactivity was higher in the ZLC rats than in the ZDF rats. At 12 weeks after birth, the blood glucose level was significantly increased by 400 mg/dl in the ZDF rats, but the blood glucose level in the ZLC rats was only slightly increased by 152.3 mg/dl. DCX immunoreactivity was significantly decreased in 12-week-old rats in comparison to 4-week-old rats. Some DCX-immunoreactive neurons were detectable in the subgranular zone of the dentate gyrus in the ZLC rats. However, only a few DCX-immunoreactive neurons were observed in the ZDF rats, and the DCX-immunoreactive neurons in the ZDF rats did not show fully developed processes. These results suggest that DCX-immunoreactive neurons were significantly decreased in an age-dependent manner and that DCX-immunoreactive neurons were also reduced in diabetic rats. In addition, the reduction in DCX-immunoreactive neurons in age matched rats may be associated with type II diabetes.  相似文献   

2.
Diabetes is a metabolic disorder that is associated with the dysregulation of a number of systems within the body. In the present study, we investigated glucocorticoid receptor (GR) immunoreactivity and its protein levels in the paraventricular nuclei of 4-, 12-, 20- and 30-week-old Zucker diabetic fatty (fa/fa, ZDF) and in Zucker lean control (fa/+ or +/+, ZLC) rats, because the progressive induction of diabetes is detectable in this model after 7 weeks of age and chronic diabetic conditions are maintained after 12 weeks of age. GR immunoreactivity was detected in parvocellular paraventricular nuclei and this and GR protein levels were exponentially increased according to the ages. In particular, GR immunoreactivities and protein levels were markedly more increased in 30-week-old ZDF rats than in age-matched ZLC group and in younger ZDF group. The present study suggests that GR immunoreactivity and its protein level is associated with a degenerative phenotype in the hypothalamus of from 12-weeks old in the ZDF rat type II diabetes model.  相似文献   

3.
In this study, we observed the effects of metformin, one of the most widely prescribed drugs for the treatment of type 2 diabetes, on cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus (SZDG) in Zucker diabetic fatty (ZDF) rats, which are a model for type 2 diabetes. For this, metformin was administered orally once a day to 14-week-old ZDF rats for 2 weeks and the animals were sacrificed at 16 weeks of age. During this period, blood glucose levels were higher in the vehicle-treated ZDF rats than in the Zucker lean control (ZLC) rats. Metformin treatment significantly decreased the blood glucose levels from 15.5 weeks of age. In the SZDG, Ki67 (a marker for cell proliferation)- and doublecortin (DCX, a marker for differentiated neuroblasts)-immunoreactive cells were much lower in the vehicle-treated ZDF rats than in the ZLC rats. In the metformin-treated ZDF group, Ki67- and DCX-immunoreactive cells were significantly increased in the SZDG compared to those in the vehicle-treated ZDF group. These results suggest that diabetes significantly reduces cell proliferation and neuroblast differentiation in the SZDG and that metformin treatment normalizes the reduction of cell proliferation and neuroblast differentiation in the SZDG in diabetic rats.  相似文献   

4.
Chronic inflammation exacerbates the cardiovascular complications of diabetes. Complement activation plays an important role in the inflammatory response and is known to be involved in ischemia-reperfusion (I/R) injury in the nondiabetic heart. The purpose of this study was to determine if increased complement deposition explains, in part, the increased severity of neutrophil-mediated I/R injury in the type 2 diabetic heart. Nondiabetic Zucker lean control (ZLC) and Zucker diabetic fatty (ZDF) rats underwent 30 min of coronary artery occlusion followed by 120 min of reperfusion. Another group of ZDF rats was treated with the complement inhibitor FUT-175 before reperfusion. Left ventricular (LV) tissue samples were stained for complement deposition and neutrophil accumulation following reperfusion. We found significantly more complement deposition in the ZDF LV compared with the ZLC (P < 0.05), and complement deposition was associated with significantly greater neutrophil accumulation. In whole blood samples taken preischemia and at 120 min reperfusion, neutrophils exhibited significantly more CD11b expression in the ZDF group compared with the ZLC group (P < 0.05). Furthermore, intracellular adhesion molecule (ICAM)-1 expression following I/R was increased significantly in ZDF hearts compared with ZLC hearts (P < 0.001). These results indicate that, in the ZDF heart, increased ICAM-1 and polymorphonuclear neutrophil (PMN) CD11b expression play a role in increasing PMN accumulation following I/R. The infarct size of the ZDF was significantly greater than ZLC (P < 0.05), and treatment with FUT-175 significantly decreased infarct size, complement deposition, and PMN accumulation in the diabetic heart. These findings indicate an exacerbated inflammatory response in the type 2 diabetic heart that contributes to the increased tissue injury observed following ischemia and reperfusion.  相似文献   

5.
Gene expression changes have been associated with type 2 diabetes mellitus (T2DM); however, the alterations are not fully understood. We investigated the effects of anti-diabetic drugs on gene expression in Zucker diabetic fatty (ZDF) rats using oligonucleotide microarray technology to identify gene expression changes occurring in T2DM. Global gene expression in the pancreas, adipose tissue, skeletal muscle, and liver was profiled from Zucker lean control (ZLC) and anti-diabetic drug treated ZDF rats compared with those in ZDF rats. We showed that anti-diabetic drugs regulate the expression of a large number of genes. We provided a more integrated view of the diabetic changes by examining the gene expression networks. The resulting sub-networks allowed us to identify several biological processes that were significantly enriched by the anti-diabetic drug treatment, including oxidative phosphorylation (OXPHOS), systemic lupus erythematous, and the chemokine signaling pathway. Among them, we found that white adipose tissue from ZDF rats showed decreased expression of a set of OXPHOS genes that were normalized by rosiglitazone treatment accompanied by rescued blood glucose levels. In conclusion, we suggest that alterations in OXPHOS gene expression in white adipose tissue may play a role in the pathogenesis and drug mediated recovery of T2DM through a comprehensive gene expression network study after multi-drug treatment of ZDF rats.  相似文献   

6.
Abnormal excess of glucocorticoid is one of feature characteristics in type 2 diabetes. In the present study, we investigated the effect of treadmill exercise at chronic diabetic stages on glucocorticoid receptor (GR) immunoreactivity in the hippocampal CA1 region and dentate gyrus, which are very vulnerable to diabetes. For this study, we used Zucker diabetic fatty (ZDF) rats and Zucker lean control (ZLC) rats. Twenty-three-week-old ZLC and ZDF rats were put on the treadmill with or without running for 7 weeks and sacrificed at 30 weeks of age. Treadmill exercise significantly decreased diabetes-induced blood glucose and serum corticosteroid levels although they did not drop to control levels. In sedentary ZLC rats, GR immunoreactivity was detected in pyramidal cells of the CA1 region as well as in granule cells of the dentate gyrus. In the sedentary ZDF rats, GR immunoreactivity was significantly increased in these regions. However, treadmill exercise significantly decreased GR immunoreactivity in these regions. These results indicate that treadmill exercise in chronic diabetic rats significantly decreased GR immunoreactivity in the hippocampal CA1 region and dentate gyrus, although blood glucose and serum corticosteroid levels did not fully recover to normal state.  相似文献   

7.

[Purpose]

In the present study, we investigated the effects of 8 weeks of progressive resistance training on the level of skeletal muscle derived BDNF as well as glucose intolerance in Zucker diabetic rats.

[Methods]

Six week-old male Zucker diabetic fatty (ZDF) and Zucker lean control (ZLC) rats were randomly divided into 3 groups: sedentary ZLC (ZLC-Con), sedentary ZDF (ZDF-Con), and exercised ZDF (ZDF-Ex). Progressive resistance training using a ladder and tail weights was performed for 8 weeks (3 days/week).

[Results]

After 8 weeks of resistance training, substantial reduction in body weight was observed in ZDF-Ex compared to ZDF-Con. Though the skeletal muscle volume did not change, grip strength grip strength was significantly higher in ZDF-Ex compared to ZDF-Con. In the soleus, the level of BDNF was increased in ZDF-Con, but was significantly decreased (p<0.05) in ZDF-Ex, showing a training effect. Moreover, we found that there was a negative correlation (r=-0.657; p=0.004) between grip strength and BDNF level whereas there was a positive correlation (r=0.612; p=0.008) between plasma glucose level and BDNF level in skeletal muscle.

[Conclusion]

Based upon our results, we demonstrated that resistance training inhibited the elevation of skeletal muscle derived-BDNF expression concomitant with the improvement of muscle strength in zucker diabetic rats. In addition, muscle-derived BDNF might be a potential mediator for the preventive effect of resistance training on the progress of type 2 diabetes.  相似文献   

8.
In this study, we investigated the differences in calbindin D-28k (CB), calretinin, (CR) and parvalbumin (PV) immunoreactivity in the hippocampus of Zucker diabetic fatty (ZDF) rats and Zucker lean control (ZLC) rats. In addition, we observed the effects of hypothyroidism on the levels of immunoreactivity of these proteins in ZDF rats. For this study, 7-week-old ZDF rats were used, and methimazole treatment was continued for 5 weeks to induce hypothyroidism. The animals were sacrificed at 12 weeks of age. ZDF rats showed increased blood glucose levels compared to those in ZLC rats. Methimazole intervention significantly reduced total and free T3 levels, and it ameliorated the increase of blood glucose levels in ZDF rats. In ZLC rats, CB, CR, and PV immunoreactivity was detected in regions of the hippocampus proper. In vehicle-treated ZDF rats, CB, CR, and PV immunoreactivity was significantly decreased in the hippocampus. However, in the methimazole-treated rats, CB, CR, and PV immunoreactivity was significantly increased compared to that in the vehicle-treated rats. These results suggest that hypothyroidism ameliorated the diabetes-induced reduction of CB, CR, and PV immunoreactivity in the hippocampus.  相似文献   

9.
In the present study, we investigated the effects of a treadmill exercise on serum glucose levels and Ki67 and doublecortin (DCX) immunoreactivity, which is a marker of cell proliferation expressed during cell cycles except G0 and early G1 and a marker of progenitors differentiating into neurons, respectively, in the subgranular zone of the dentate gyrus (SZDG) using a type II diabetic model. At 6 weeks of age, Zucker lean control (ZLC) and Zucker diabetic fatty (ZDF) rats were put on a treadmill with or without running for 1 h/day/5 consecutive days at 22 m/min for 5 weeks. Body weight was significantly increased in the control (without running)-ZDF rats compared to that in the other groups. In the control groups blood glucose levels were increased by 392.7 mg/dl in the control-ZDF rats and by 143.3 mg/dl in the control-ZLC rats. However, in the exercise groups, blood glucose levels were similar between the exercise-ZLC and ZDF rats: The blood glucose levels were 110.0 and 118.2 mg/dl, respectively. Ki67 positive nuclei were detected in the SZDG in control and exercise groups. The number of Ki67 positive nuclei was significantly high in exercise groups compared to that in the control groups. In addition, Ki67 positive cells were abundant in ZLC groups compared to those in ZDF groups. DCX-immunoreactive structures in the control-ZDF rats were lower than that in the control-ZLC rats. In the exercise groups, DCX-immunoreactive structures (somata and processes with tertiary dendrites) and DCX protein levels were markedly increased in both the exercise-ZLC and ZDF rats compared to that in the control groups. These results suggest that a treadmill exercise reduces blood glucose levels in ZDF rats and increases cell proliferation and differentiation in the SZDG in ZLC and ZDF rats compared to those in control groups.  相似文献   

10.
The obese (ob) gene product leptin, secreted from adipose tissue, acts in the hypothalamus to regulate body energy stores. In vitro experiments showed that insulin increases both leptin mRNA expression and leptin secretion by adipocytes. Here, we report on the relationship between plasma insulin and plasma leptin in a longitudinal in vivo study. In Zucker diabetic fatty (ZDF) rats, an animal model for non-insulin-dependent diabetes mellitus (NIDDM), and in ZDF control rats, blood glucose, body weight, plasma insulin and plasma leptin levels were measured from 10 to 25 weeks of age. In ZDF control rats, body weight, plasma leptin and plasma insulin levels increased gradually during the study period. In ZDF rats, the time course of plasma leptin was similar to that of plasma insulin, but did not parallel that of body weight. Calculation of partial correlation coefficients revealed that in ZDF control rats plasma leptin correlated with body weight rather than with plasma insulin. However, in ZDF rats, plasma leptin correlated with plasma insulin rather than with body weight, suggesting an important role for insulin in the modulation of leptin secretion in this animal model for NIDDM.  相似文献   

11.
12.
The appropriate animal model of diabetes mellitus type 2 is Zucker diabetic fatty (ZDF) rats. The goal of this study was to analyse the effect of chronic high-energy diet on diabetes mellitus (DM) complications in ZDF rats. Male ZDF rats (n?=?20) and their lean controls (non-diabetic, n?=?10) in the age of 3 months were involved in the experiment. Rats were provided with water and diet on ad libitum base. Animals were divided into three groups as follows: lean untreated rats (C) fed by KKZ-P/M (10 MJ/kg), obese rats fed by KKZ-P/M (10 MJ/kg, E1) and obese rats fed by enriched high energy diet (E2, enriched KKZ-P/M, 20 MJ/kg). Glucose, ketones levels, the consumption of feed, water and the live weight was measured weekly during the whole experiment. At the end of the experiment rats were anesthetized and selected haematological parameters were measured. ZDF rats in E1 and E2 group developed obesity, hyperglycaemia, non-insulin dependent diabetes, aggravations in haematological parameters and accumulation of sorbitol in sciatic nerve and lens of rats. High-energy diet immediately induced hyperglycaemia followed by accelerating the secondary symptoms of diabetes complications expressed by disturbed haematology parameters. High-energy diet caused ketoacidosis what meant two cases of death. Extended research on diabetes is needed.  相似文献   

13.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPARgamma in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPARgamma agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPARgamma, glucose transporter-4 and alpha-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPARgamma, glut-4, and alpha-MHC expression levels in diabetic ZDF rats. Cardiac [(18)F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPARgamma agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPARgamma expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin.  相似文献   

14.
Physical activity improves glycemic control in type 2 diabetes (T2D), but its contribution to preserving β-cell function is uncertain. We evaluated the role of physical activity on β-cell secretory function and glycerolipid/fatty acid (GL/FA) cycling in male Zucker diabetic fatty (ZDF) rats. Six-week-old ZDF rats engaged in voluntary running for 6 wk (ZDF-A). Inactive Zucker lean and ZDF (ZDF-I) rats served as controls. ZDF-I rats displayed progressive hyperglycemia with β-cell failure evidenced by falling insulinemia and reduced insulin secretion to oral glucose. Isolated ZDF-I rat islets showed reduced glucose-stimulated insulin secretion expressed per islet and per islet protein. They were also characterized by loss of the glucose regulation of fatty acid oxidation and GL/FA cycling, reduced mRNA expression of key β-cell genes, and severe reduction of insulin stores. Physical activity prevented diabetes in ZDF rats through sustaining β-cell compensation to insulin resistance shown in vivo and in vitro. Surprisingly, ZDF-A islets had persistent defects in fatty acid oxidation, GL/FA cycling, and β-cell gene expression. ZDF-A islets, however, had preserved islet insulin mRNA and insulin stores compared with ZDF-I rats. Physical activity did not prevent hyperphagia, dyslipidemia, or obesity in ZDF rats. In conclusion, islets of ZDF rats have a susceptibility to failure that is possibly due to altered β-cell fatty acid metabolism. Depletion of pancreatic islet insulin stores is a major contributor to islet failure in this T2D model, preventable by physical activity.  相似文献   

15.
Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D) are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF) rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD) and cardiovascular disease (CVD) biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin) or related to disease development (collagen). Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level.  相似文献   

16.
Endothelial dysfunction in resistance arteries alters end organ perfusion in type 2 diabetes. Superoxides and cyclooxygenase-2 (COX-2) derivatives have been shown separately to alter endothelium-mediated relaxation in aging and diabetes but their role in the alteration of vascular tone in old diabetic subjects is not clear, especially in resistance arteries. Consequently, we investigated the role of superoxide and COX-2-derivatives on endothelium-dependent relaxation in 3 and 12 month-old Zucker diabetic fatty (ZDF) and lean (LZ) rats. Mesenteric resistance arteries were isolated and vascular tone was investigated using wire-myography. Endothelium (acetylcholine)-dependent relaxation was lower in ZDF than in LZ rats (60 versus 84% maximal relaxation in young rats and 41 versus 69% in old rats). Blocking NO production with L-NAME was less efficient in old than in young rats. L-NAME had no effect in old ZDF rats although eNOS expression level in old ZDF rats was similar to that in old LZ rats. Superoxide level and NADPH-oxidase subunits (p67phox and gp91phox) expression level were greater in ZDF than in LZ rats and were further increased by aging in ZDF rats. In young ZDF rats reducing superoxide level with tempol restored acetylcholine-dependent relaxation to the level of LZ rats. In old ZDF rats tempol improved acetylcholine-dependent relaxation without increasing it to the level of LZ rats. COX-2 (immunolabelling and Western-blot) was present in arteries of ZDF rats and absent in LZ rats. In old ZDF rats arterial COX-2 level was higher than in young ZDF rats. COX-2 blockade with NS398 restored in part acetylcholine-dependent relaxation in arteries of old ZDF rats and the combination of tempol and NS398 fully restored relaxation in control (LZ rats) level. Accordingly, superoxide production and COX-2 derivatives together reduced endothelium-dependent relaxation in old ZDF rats whereas superoxides alone attenuated relaxation in young ZDF or old LZ rats.  相似文献   

17.
An increased rate of fatty acid transport into skeletal muscle has been has been linked to the accumulation of intramuscular lipids and insulin resistance, and red muscles are more susceptible than white muscles in developing fatty acid-mediated insulin resistance. Therefore, we examined in Zucker diabetic fatty (ZDF) rats, relative to lean rats, 1) whether rates of fatty acid transport and transporters (FAT/CD36 and FABPpm) were upregulated in skeletal muscle during the transition from insulin resistance (week 6) to type 2 diabetes (weeks 12 and 24), 2) whether such changes occurred primarily in red skeletal muscle, and 3) whether changes in FAT/CD36 and GLUT4 were correlated. In red muscles of ZDF compared with lean rats, the rates of fatty acid transport were upregulated (+66%) early in life (week 6). Compared with the increase in fatty acid transport in lean red muscle from weeks 12-24 (+57%), the increase in fatty acid transport rate in ZDF red muscle was 50% greater during this same period. In contrast, no differences in fatty acid transport rates were observed in the white muscles of lean and ZDF rats at any time (weeks 6-24). In red muscle only, there was an inverse relationship between FAT/CD36 and GLUT4 protein expression as well as their plasmalemmal content. These studies have shown that, 1) before the onset of diabetes, as well as during diabetes, fatty acid transport and FAT/CD36 expression and plasmalemmal content are upregulated in ZDF rats, but importantly, 2) these changes occurred only in red, not white, muscles of ZDF rats.  相似文献   

18.
Exercise training is known to exert multiple beneficial effects including renal protection in type 2 diabetes mellitus and obesity. However, the mechanisms regulating these actions remain unclear. The present study evaluated the effects of chronic running exercise on the early stage of diabetic nephropathy, focusing on nitric oxide synthase (NOS), oxidative stress and glycation in the kidneys of Zucker diabetic fatty (ZDF) rats. Male ZDF rats (6 weeks old) underwent forced treadmill exercise for 8 weeks (Ex-ZDF). Sedentary ZDF (Sed-ZDF) and Zucker lean (Sed-ZL) rats served as controls. Exercise attenuated hyperglycemia (plasma glucose; 242 ± 43 mg/dL in Sed-ZDF and 115 ± 5 mg/dL in Ex-ZDF) with increased insulin secretion (plasma insulin; 2.3 ± 0.7 and 5.3 ± 0.9 ng/mL), reduced albumin excretion (urine albumin; 492 ± 70 and 176 ± 11 mg/g creatinine) and normalized creatinine clearance (9.7 ± 1.4 and 4.5 ± 0.8 mL/min per body weight) in ZDF rats. Endothelial (e) and neuronal (n) NOS expression in kidneys of Sed-ZDF rats were lower compared with Sed-ZL rats (p<0.01), while both eNOS and nNOS expression were upregulated by exercise (p<0.01). Furthermore, exercise decreased NADPH oxidase activity, p47phox expression (p<0.01) and α-oxoaldehydes (the precursors for advanced glycation end products) (p<0.01) in the kidneys of ZDF rats. Additionally, morphometric evidence indicated renal damage was reduced in response to exercise. These data suggest that upregulation of NOS expression, suppression of NADPH oxidase and α-oxoaldehydes in the kidneys may, at least in part, contribute to the renal protective effects of exercise in the early progression of diabetic nephropathy in ZDF rats. Moreover, this study supports the theory that chronic aerobic exercise could be recommended as an effective non-pharmacological therapy for renoprotection in the early stages of type 2 diabetes mellitus and obesity.  相似文献   

19.
In the present study, we investigated the effects of treadmill exercise in early and chronic diabetic stages on parvalbumin (PV) immunoreactivity in the subgranular zone of the dentate gyrus of Zucker diabetic fatty (ZDF) and its lean control rats (ZLC). To investigate the effects, ZLC and ZDF rats at 6 or 23 weeks of age were put on a treadmill with or without running for 1 h/day/5 consecutive days at 16–22 m/min for 5 weeks or 12–16 m/min for 7 weeks, respectively. Physical exercise in pre-diabetic rats prevented onset of diabetes, while exercise in rats at chronic diabetic stage significantly reduced blood glucose levels. In addition, physical exercise in the pre-diabetic rats significantly increased PV immunoreactive fibers in the strata oriens and radiatum of the CA1-3 region and in the polymorphic and molecular layers of the dentate gyrus compared to that in sedentary controls. However, in rats at chronic stages, PV immunoreactivity was slightly increased in the CA1-3 region as well as in the dentate gyrus compared to that in the sedentary controls. These results suggest that physical exercise has differential effects on blood glucose levels and PV immunoreactivity according to diabetic stages. Early exercise improves diabetic phenotype and PV immunoreactive fibers in the rat hippocampus.  相似文献   

20.
Lu T  Ye D  He T  Wang XL  Wang HL  Lee HC 《Biophysical journal》2008,95(11):5165-5177
The large-conductance Ca2+-activated K+ (BK) channels play an important role in the regulation of cellular excitability in response to changes in intracellular metabolic state and Ca2+ homeostasis. In vascular smooth muscle, BK channels are key determinants of vasoreactivity and vital-organ perfusion. Vascular BK channel functions are impaired in diabetes mellitus, but the mechanisms underlying such changes have not been examined in detail. We examined and compared the activities and kinetics of BK channels in coronary arterial smooth muscle cells from Lean control and Zucker Diabetic Fatty (ZDF) rats, using single-channel recording techniques. We found that BK channels in ZDF rats have impaired Ca2+ sensitivity, including an increased free Ca2+ concentration at half-maximal effect on channel activation, a reduced steepness of Ca2+ dose-dependent curve, altered Ca2+-dependent gating properties with decreased maximal open probability, and a shortened mean open-time and prolonged mean closed-time durations. In addition, the BK channel β-subunit-mediated activation by dehydrosoyasaponin-1 (DHS-1) was lost in cells from ZDF rats. Immunoblotting analysis confirmed a 2.1-fold decrease in BK channel β1-subunit expression in ZDF rats, compared with that of Lean rats. These abnormalities in BK channel gating lead to an increase in the energy barrier for channel activation, and may contribute to the development of vascular dysfunction and complications in type 2 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号