首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligomerization of the initiator protein, DnaA, on the origin of replication (oriC) is crucial for initiation of DNA replication. Studies in Escherichia coli (Gram-negative) have revealed that binding of DnaA to ATP, but not hydrolysis of ATP, is sufficient to promote DnaA binding, oligomerization and DNA strand separation. To begin understanding the initial events involved in the initiation of DNA replication in Mycobacterium tuberculosis (Gram-positive), we investigated interactions of M. tuberculosis DnaA (DnaA(TB)) with oriC using surface plasmon resonance in the presence of ATP and ADP. We provide evidence that, in contrast to what is observed in E. coli, ATPase activity of DnaA(TB) promoted rapid oligomerization on oriC. In support, we found that a recombinant mutant DnaA(TB) proficient in binding to ATP, but deficient in ATPase activity, did not oligomerize as rapidly. The corresponding mutation in the dnaA gene of M. tuberculosis resulted in non-viability, presumably due to a defect in oriC-DnaA interactions. Dimethy sulphate (DMS) footprinting experiments revealed that DnaA(TB) bound to DnaA boxes similarly with ATP or ADP. DnaA(TB) binding to individual DnaA boxes revealed that rapid oligomerization on oriC is triggered only after the initial interaction of DnaA with individual DnaA boxes. We propose that ATPase activity enables the DnaA protomers on oriC to rapidly form oligomeric complexes competent for replication initiation.  相似文献   

2.
The origin of replication (oriC) region in some clinical strains of Mycobacterium tuberculosis is a hot spot for IS6110 elements. To understand how clinical strains with insertions in oriC can replicate their DNA, we characterized the oriC regions of some clinical strains. Using a plasmid-based oriC-dependent replication assay, we showed that IS6110 insertions that disrupted the DnaA box sequence CCGTTCACA abolished oriC activity in M. tuberculosis. Furthermore, by using a surface plasmon resonance technique we showed that purified M. tuberculosis DnaA protein binds native but not mutant DnaA box sequence, suggesting that stable interactions of the DnaA protein with the CCGTTCACA DnaA box are crucial for replication of oriC plasmids in vivo. Replacement by homologous recombination of the CCGTTCACA DnaA box sequence of the laboratory strain M. tuberculosis H37Ra with a mutant sequence did not result in nonviability. Together, these results suggest that M. tuberculosis strains have evolved mechanisms to tolerate mutations in the oriC region and that functional requirements for M. tuberculosis oriC replication are different for chromosomes and plasmids.  相似文献   

3.
The biochemical aspects of the initiation of DNA replication in Mycobacterium avium are unknown. As a first step towards understanding this process, M. avium DnaA protein, the counterpart of Escherichia coli replication initiator protein, was overproduced in E. coli with an N-terminal histidine tag and purified to homogeneity on a nickel affinity column. The recombinant DnaA protein bound both ATP and ADP with high affinity and showed a weak ATPase activity. ADP, following the hydrolysis of ATP, remained bound to the protein strongly and the exchange of ATP for bound ADP was found to be weak. Acidic phospholipids such as phosphatidylinositol, phosphatidylglycerol, and cardiolipin, promoted the dissociation of ADP from the DnaA protein, whereas the neutral phospholipid, phosphatidylethanolamine, did not. The phospholipid promoted dissociation of ADP from DnaA protein was stimulated in the presence of the M. avium origin of replication. We suggest that the initiation of DNA replication in M. avium involves an interplay among DnaA, adenine nucleotides and phospholipids.  相似文献   

4.
An improved, simplified method for the purification of recombinant, tagged DnaA proteins is described. The presented protocol allowed us to purify soluble DnaA proteins from two different bacterial species: Helicobacter pylori and Streptomyces coelicolor, but it can most likely also be used for the isolation of DnaA proteins from other bacteria, as it was adapted for Mycobacterium tuberculosis DnaA. The isolation procedure consists of protein precipitation with ammonium sulphate followed by affinity chromatography. The composition of the buffers used at each purification step is crucial for the successful isolation of the recombinant DnaA proteins. The universality of the method in terms of its application to differently tagged proteins (His-tagged or GST-tagged) as well as different properties of purified proteins (e.g., highly aggregating truncated forms) makes the protocol highly useful for all studies requiring purified and active DnaA proteins.  相似文献   

5.
DnaA protein (the initiator protein) binds and clusters at the four DnaA boxes of the Escherichia coli chromosomal origin (oriC) to promote the strand opening for DNA replication. DnaA protein activity depends on the tight binding of ATP; the ADP form of DnaA protein, generated by hydrolysis of the bound ATP, is inactive. Rejuvenation of ADP-DnaA protein, by replacement with ATP, is catalyzed by acidic phospholipids in a highly fluid bilayer. We find that interaction of DnaA protein with oriC DNA is needed to stabilize DnaA protein during this rejuvenation process. Whereas DnaA protein bound to oriC DNA responds to phospholipids, free DnaA protein is inactivated by phospholipids and then fails to bind oriC. Furthermore, oriC DNA facilitates the high affinity binding of ATP to DnaA protein during treatment with phospholipids. A significant portion of the DnaA protein associated with oriC DNA can be replaced by the ADP form of the protein, suggesting that all of the DnaA protein bound to oriC DNA need not be rejuvenated between rounds of replication.  相似文献   

6.
In the absence of adequate levels of cellular acidic phospholipids, Escherichia coli remain viable but are arrested for growth. Expression of a DnaA protein that contains a single amino acid substitution in the membrane-binding domain, DnaA(L366K), in concert with expression of wild-type DnaA protein, restores growth. DnaA protein has high affinity for ATP and ADP, and in vitro lipid bilayers that are fluid and contain acidic phospholipids reactivate inert ADP-DnaA by promoting an exchange of ATP for ADP. Here, nucleotide and lipid interactions and replication activity of purified DnaA(L366K) were examined to gain insight into the mechanism of how it restores growth to cells lacking acidic phospholipids. DnaA(L366K) behaved like wild-type DnaA with respect to nucleotide binding affinities and hydrolysis properties, specificity of acidic phospholipids for nucleotide release, and origin binding. Yet, DnaA(L366K) was feeble at initiating replication from oriC unless augmented with a limiting quantity of wild-type DnaA, reflecting the in vivo requirement that both wild-type and a mutant form of DnaA must be expressed and act together to restore growth to acidic phospholipid deficient cells.  相似文献   

7.
The early secretory antigenic target (ESAT)-6 purified protein and peptides from Mycobacterium tuberculosis were evaluated as antigens for the immunodiagnosis of tuberculosis (TB). Because the control of TB requires improved diagnostic procedures, efforts have increased to identify Mycobacterium tuberculosis-specific epitopes for the immunodiagnosis of active TB and to discriminate between active and latent states of infection. Two multiepitopic peptides from ESAT-6 protein were selected by computational analysis. Patients with active TB (7 HIV(+) and 20 HIV(-)) and control patients (17 HIV(+) and 28 HIV(-)) were enrolled. Enzyme-linked immunospot assay analysis for interferon-g expression by peripheral blood mononuclear cells was quantified after stimulation with selected ESAT-6 peptides, purified protein derivative, or the intact ESAT-6 protein. During active TB, 20 of 27 patients responded in vitro to ESAT-6 peptides and 23 of 27 patients to purified protein derivative. None of the controls without active TB, including individuals with latent TB infection, recognized ESAT-6 peptides. By contrast, latently infected individuals did respond in vitro to both intact ESAT-6 protein and purified protein derivative. Thus, high T-cell response frequencies to ESAT-6 peptides are present only during active TB and can be used to discriminate between active and latent forms of infection.  相似文献   

8.
Tuberculosis (TB) is one of three major infectious diseases, and the control of TB is becoming more difficult because of the emergence of multidrug-resistant and extensively drug-resistant strains. In this study, we explored the (1)H NMR-based metabolomics of TB using an aerobic TB infection model. Global profiling was applied to characterize the responses of C57Bl/6 mice to an aerobic infection with virulent Mycobacterium tuberculosis (MTB). The metabolic changes in organs (i.e., the lung, the target organ of TB, and the spleen and liver, remote systemic organs) and in serum from control and MTB-infected rats were investigated to clarify the host-pathogen interactions in MTB-infected host systems. Principal components analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots showed distinct separation between control and MTB-infected rats for all tissue and serum samples. Several tissue and serum metabolites were changed in MTB-infected rats, as compared to control rats. The precursors of membrane phospholipids, phosphocholine, and phosphoethanolamine, as well as glycolysis, amino acid metabolism, nucleotide metabolism, and the antioxidative stress response were altered based on the presence of MTB infection. This study suggests that NMR-based global metabolite profiling of organ tissues and serum could provide insight into the metabolic changes in host infected aerobically with virulent Mycobacterium tuberculosis.  相似文献   

9.
Isoniazid is a frontline drug used in the treatment of tuberculosis (TB). Isoniazid is a prodrug, requiring activation in the mycobacterial cell by the catalase/peroxidase activity of the katG gene product. TB kills two million people every year and the situation is getting worse due to the increase in prevalence of HIV/AIDS and emergence of multidrug-resistant strains of TB. Arylamine N-acetyltransferase (NAT) is a drug-metabolizing enzyme (E.C. 2.1.3.5). NAT can acetylate isoniazid, transferring an acetyl group from acetyl coenzyme A onto the terminal nitrogen of the drug, which in its N-acetylated form is therapeutically inactive. The bacterium responsible for TB, Mycobacterium tuberculosis, contains and expresses the gene encoding the NAT protein. Isoniazid binds to the NAT protein from Salmonella typhimurium and we report here the mode of binding of isoniazid in the NAT enzyme from Mycobacterium smegmatis, closely related to the M. tuberculosis and S. typhimurium NAT enzymes. The mode of binding of isoniazid to M. smegmatis NAT has been determined using data collected from two distinct crystal forms. We can say with confidence that the observed mode of binding of isoniazid is not an artifact of the crystallization conditions used. The NAT enzyme is active in mycobacterial cells and we propose that isoniazid binds to the NAT enzyme in these cells. NAT activity in M. tuberculosis is likely therefore to modulate the degree of activation of isoniazid by other enzymes within the mycobacterial cell. The structure of NAT with isoniazid bound will facilitate rational drug design for anti-tubercular therapy.  相似文献   

10.
In order to initiate chromosomal DNA replication in Escherichia coli, the DnaA protein must bind to both ATP and the origin of replication (oriC). Acidic phospholipids are known to inhibit DnaA binding to ATP, and here we examine the effects of various phospholipids on DnaA binding to oriC. Among the phospholipids in E. coli membrane, cardiolipin showed the strongest inhibition of DnaA binding to oriC. Synthetic phosphatidylglycerol containing unsaturated fatty acids inhibited binding more potently than did synthetic phosphatidylglycerol containing saturated fatty acids, suggesting that membrane fluidity is important. Thus, acidic phospholipids seem to inhibit DnaA binding to both oriC and adenine nucleotides in the same manner. Adenine nucleotides bound to DnaA did not affect the inhibitory effect of cardiolipin on DnaA binding to oriC. A mobility-shift assay re-vealed that acidic phospholipids inhibited formation of a DnaA-oriC complex containing several DnaA molecules. DNase I footprinting of DnaA binding to oriC showed that two DnaA binding sites (R2 and R3) were more sensitive to cardiolipin than other DnaA binding sites. Based on these in vitro data, the physiological relevance of this inhibitory effect of acidic phospholipids on DnaA binding to oriC is discussed.  相似文献   

11.
DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, seems to be regulated through its binding to acidic phospholipids, such as cardiolipin. In our previous paper (Hase, M., Yoshimi, T., Ishikawa, Y., Ohba, A., Guo, L., Mima, S., Makise, M., Yamaguchi, Y., Tsuchiya, T., and Mizushima, T. (1998) J. Biol. Chem. 273, 28651-28656), we found that mutant DnaA protein (DnaA431), in which three basic amino acids (Arg(360), Arg(364), and Lys(372)) were mutated to acidic amino acids showed a decreased ability to interact with cardiolipin in vitro, suggesting that DnaA protein binds to cardiolipin through an ionic interaction. In this study, we construct three mutant dnaA genes each with a single mutation and examined the function of the mutant proteins in vitro and in vivo. All mutant proteins maintained activities for DNA replication and ATP binding. A mutant protein in which Lys(372) was mutated to Glu showed the weakest interaction with cardiolipin among these three mutant proteins. Thus, Lys(372) seems to play an important role in the interaction between DnaA protein and acidic phospholipids. Plasmid complementation analyses revealed that all these mutant proteins, including DnaA431 could function as an initiator for chromosomal DNA replication in vivo.  相似文献   

12.
DnaA protein activity, the initiator of chromosomal DNA replication in bacteria, is regulated by acidic phospholipids such as phosphatidylglycerol (PG) or cardiolipin (CL) via facilitation of the exchange reaction of bound adenine nucleotide. Total lipid isolated from exponentially growing Staphylococcus aureus cells facilitated the release of ATP bound to S. aureus DnaA protein, whereas that from stationary phase cells was inert. Fractionation of total lipid from stationary phase cells revealed that the basic phospholipid, lysylphosphatidylglycerol (LPG), inhibited PG- or CL-facilitated release of ATP from DnaA protein. There was an increase in LPG concentration during the stationary phase. A fraction of the total lipid from stationary phase cells of an integrational deletion mprF mutant, in which LPG was lost, facilitated the release of ATP from DnaA protein. A zwitterionic phospholipid, phosphatidylethanolamine, also inhibited PG-facilitated ATP release. These results indicate that interaction of DnaA protein with acidic phospholipids might be regulated by changes in the phospholipid composition of the cell membrane at different growth stages. In addition, the mprF mutant exhibited an increased amount of origin per cell in vivo, suggesting that LPG is involved in regulating the cell cycle event(s).  相似文献   

13.
Microaerophilic adaptation has been described as one of the in vitro dormancy models for tuberculosis. Studies on Mycobacterium tuberculosis adapted to low oxygen levels showed an enhancement of glycine dehydrogenase (deaminating) activity. We studied the physiology of the fast-growing, nonpathogenic strain of Mycobacterium smegmatis ATCC 607 under low oxygen by shifting the actively growing M. smegmatis cells to static microaerophilic growth conditions. This shifting of M. smegmatis culture resulted in a similar phenomenon as seen with M. tuberculosis, i.e., elevated glycine dehydrogenase activity. Further purification of glycine dehydrogenase from M. smegmatis demonstrated glyoxylate amination, but failed to demonstrate glycine deamination, even in the purified fraction. Moreover, the purified protein showed pyruvate amination as well as L-alanine deamination activities. By activity staining, the protein band positive for glyoxylate amination demonstrated only pyruvate amination in the presence of NAD. Absence of glycine deamination activity strongly suggested that alanine dehydrogenase of M. smegmatis was responsible for glyoxylate amination in the cell lysate. This was further confirmed by demonstrating the similar level of upregulation of both glyoxylate and pyruvate amination activities in the cell lysate of the adapted culture.  相似文献   

14.
目的:在耻垢分枝杆菌中表达重组结核杆菌DnaA蛋白并对表达产物进行鉴定。方法:用PCR的方法扩增结核杆菌dnaA基因并克隆至表达载体pMF406中,构建重组大肠杆菌-分枝杆菌穿梭质粒pMF-dnaA。经双酶切及测序鉴定后,用电转化的方法将重组质粒转至耻垢分枝杆菌mc2155中。用0.02%乙酰胺诱导重组耻垢分枝杆菌,对表达产物进行SDS-PAGE和Western blotting检测和鉴定。结果:重组耻垢分枝杆菌构建成功,SDS-PAGE及Western blotting结果显示该重组耻垢杆菌可以实现结核杆菌DnaA蛋白的同源高效表达。结论:结核杆菌DnaA蛋白的同源表达为结核杆菌DNA复制机制的研究奠定了基础。  相似文献   

15.
Landoulsi A  Kohiyama M 《Biochimie》1999,81(8-9):827-834
The purified DnaA protein has a high affinity for cyclic AMP (cAMP). Using equilibrium dialysis, we determined the K(A) value for cAMP as 0.819 muM(-1). The number of cAMP binding sites per DnaA protein molecule was calculated to be 1.04. This binding was quite specific for cAMP. ATP was also bound by DnaA protein and inhibited cAMP binding. This inhibition was non-competitive in nature with an inhibition constant (K(i)) of about 8.25 muM. However, in vivo we have found not only that the DnaA protein level is reduced in a cyclase deletion mutant strain, Delta++ cya, but also that DnaA protein is not degraded. The Delta cya mutants of E. coli are unable to continue DNA synthesis in the absence of de novo protein synthesis and the initiation of DNA replication in these mutants takes place from oriC.  相似文献   

16.
Mycobacterium tuberculosis (MTB) remains one of the most significant human pathogens since its discovery in 1882. An estimated 1.5 million people died from tubercle bacillus (TB) in 2006, and globally, there were an estimated 9.27 million incident cases of TB in 2007. Glyoxylate bypass pathway occurs in a wide range of pathogens and plays a key role in the pathogenesis of Mycobacterium tuberculosis. Isocitrate lyase (ICL) can catalyses the first step of this pathway, and reversibly cleaves isocitrate into succinate and glyoxylate. So, ICL may represent a good drug target for the treatment of tuberculosis. ICL was cloned, expressed, and purified, and a high-throughput screen (HTS) developed to screen active molecule from a mannich base compounds library for inhibition of ICL. This assay had signal to noise (S/N) of 650.6990 and Z' factor of 0.8141, indicating that the assay was suitable for HTS. Screening of a collection of 124 mannich base compounds resulted in the identification of one mannich base compound, which has a significant inhibitory activity. So, a new family of compound was first reported to inhibit the activity of Mycobacterium tuberculosis ICL. This family of compound might offer new avenue to explore better anti-tuberculosis and fungi drugs.  相似文献   

17.
J L Kitchen  Z Li  E Crooke 《Biochemistry》1999,38(19):6213-6221
The initiation of Escherichia coli chromosomal replication by DnaA protein is strongly influenced by the tight binding of the nucleotides ATP and ADP. Anionic phospholipids in a fluid bilayer promote the conversion of inactive ADP-DnaA protein to replicatively active ATP-DnaA protein in vitro, and thus likely play a key role in regulating DnaA activity. Previous studies have revealed that, during this reactivation, a specific region of DnaA protein inserts into the hydrophobic portion of the lipid bilayer in an acidic phospholipid-dependent manner. To elucidate the requirement for acidic phospholipids in the reactivation process, the contribution of electrostatic forces in the interaction of DnaA and lipid was examined. DnaA-lipid binding required anionic phospholipids, and DnaA-lipid binding as well as lipid-mediated release of DnaA-bound nucleotide were inhibited by increased ionic strength, suggesting the involvement of electrostatic interactions in these processes. As the vesicular content of acidic phospholipids was increased, both nucleotide release and DnaA-lipid binding increased in a linear, parallel manner. Given that DnaA-membrane binding, the insertion of DnaA into the membrane, and the consequent nucleotide release all require anionic phospholipids, the acidic headgroup may be necessary to recruit DnaA protein to the membrane for insertion and subsequent reactivation for replication.  相似文献   

18.
Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), which kills approximately 2 million people a year despite current treatment options. A greater understanding of the biology of this bacterium is needed to better combat TB disease. The M. tuberculosis genome encodes as many as 15 adenylate cyclases, suggesting that cyclic AMP (cAMP) has an important, yet overlooked, role in mycobacteria. This study examined the effect of exogenous cAMP on protein expression in Mycobacterium bovis BCG grown under hypoxic versus ambient conditions. Both shaking and shallow standing cultures were examined for each atmospheric condition. Different cAMP-dependent changes in protein expression were observed in each condition by two-dimensional gel electrophoresis. Shaking low-oxygen cultures produced the most changes (12), while standing ambient conditions showed the fewest (2). Five upregulated proteins, Rv1265, Rv2971, GroEL2, PE_PGRS6a, and malate dehydrogenase, were identified from BCG by mass spectrometry and were shown to also be regulated by cAMP at the mRNA level in both M. tuberculosis H37Rv and BCG. To our knowledge, these data provide the first direct evidence for cAMP-mediated gene regulation in TB complex mycobacteria.  相似文献   

19.
20.
DnaA protein, the initiation factor for chromosomal DNA replication in Escherichia coli, is activated by ATP. ATP bound to DnaA protein is slowly hydrolyzed to ADP, but the physiological role of ATP hydrolysis is unclear. We constructed, by site-directed mutagenesis, mutated DnaA protein with lower ATPase activity, and we examined its function in vitro and in vivo. The ATPase activity of purified mutated DnaA protein (Glu204-->Gln) decreased to one-third that of the wild-type DnaA protein. The mutation did not significantly affect the affinity of DnaA protein for ATP or ADP. The mutant dnaA gene showed lethality in wild-type cells but not in cells growing independently of the function of oriC. Induction of the mutated DnaA protein in wild-type cells caused an overinitiation of DNA replication. Our results lead to the thesis that the intrinsic ATPase activity of DnaA protein negatively regulates chromosomal DNA replication in E. coli cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号