首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The importance of aortic chemoreceptors in the circulatory and metabolic responses during acute anemia was studied in anesthetized dogs. Data were obtained from nine dogs in which the aortic chemoreceptors were surgically denervated prior to induction of anemia, and from seven sham-operated dogs. Cardiac output (QT), limb blood flow (QL), limb and whole body oxygen uptake (VO2) were determined at normal hematocrit (Hct) and at 30 min of anemia (Hct = 13%) produced by isovolemic dextran-for-blood exchange. At 30 min of anemia, QT was increased from 91 to 186 mL . kg-1 . min-1 (p less than 0.01) and from 99 to 153 mL . kg-1 . min-1 (p less than 0.01) in the sham and denervated groups, respectively. The increase in QT during anemia was less (p less than 0.05) in the aortic-denervated series. Limb flow was also increased during anemia in both groups (p less than 0.01); the mean value of 89 mL . kg-1 . min-1 in the denervated group was less than that of 130 mL . kg-1 . min-1 observed in the sham animals (p less than 0.05). Whole body VO2 decreased (p less than 0.05) in the denervated group at 30 min of anemia; limb VO2 was maintained at the preanemic control value in both groups. The data indicate that during acute anemia the aortic chemoreceptors contribute to the increase in QT.  相似文献   

2.
We questioned whether carbon monoxide hypoxia (COH) would affect peripheral blood flow by neural activation of adrenoceptors to the extent we had found in other forms of hypoxia. We studied this problem in hindlimb muscles of four groups of anesthetized dogs (untreated, alpha 1-blocked, alpha 1 + alpha 2-blocked, and beta 2-blocked). Cardiac output increased, but hindlimb blood flow (QL) and resistance (RL) remained at prehypoxic levels during COH (O2 content reduced 50%) in untreated animals. When activity in the sciatic nerve was reversibly cold blocked, QL doubled and RL decreased 50%. These changes with nerve block were the same during COH, suggesting that neural activity to hindlimb vasculature was not increased by COH. In animals treated with phenoxybenzamine (primarily alpha 1-blocked), RL dropped (approximately 50%) during COH, an indication that catecholamines played a significant role in maintaining tone to skeletal muscle. Animals with both alpha 1 + alpha 2-adrenergic blockade (phenoxybenzamine and yohimbine added) did not survive COH. RL was higher in beta 2-block than in the untreated group during COH, but nerve cooling indicated that beta 2-adrenoceptor vasodilation was accomplished primarily by humoral means. The above findings demonstrated that adrenergic receptors were important in the regulation of QL and RL during COH, but they were not activated by sympathetic nerve stimulation to the limb muscles.  相似文献   

3.
The role of sympathetic innervation in the regulation of hindlimb skeletal muscle blood flow (QL) and metabolism was studied prior to and during acute anemia in anesthetized, paralyzed, and ventilated dogs (n = 8). Neural activity in the sciatic nerve was reversibly cold blocked for a 15-min period at control hematocrit (Hct., 51%) and again at 30 min of anemia (Hct., 14%). At the end of each experiment the sciatic nerve was transected and maximally stimulated (frequency, 10 Hz; duration, 2.0 ms). Arterial blood pressure and QL were measured continuously; skeletal muscle vascular hindrance (ZL) and oxygen uptake (VO2) were calculated. When the sciatic nerve was cold blocked prior to and during anemia, ZL decreased to the same absolute value and VO2 remained unchanged. Prior to anemia the mean QL increased (p less than 0.05) from 99 to a peak value of 165 mL.kg-1.min-1 during cold block; QL had returned to control by 10 min of cooling. During anemia, QL increased (p less than 0.05) from 160 to 307 mL.kg-1.min-1 during sympathetic cold block, while maximal sympathetic stimulation decreased QL to 87 mL.kg-1.min-1. QL remained above (p less than 0.05) the anemia control value (160 mL.kg-1.min-1) at 10 min of cooling. Hindrance increased from 0.30 to 0.38 peripheral resistance units/centipoise following the induction of anemia and this was shown to be sympathetically mediated because hindrance was decreased to the same level during cold block prior to and during anemia.  相似文献   

4.
The metabolic and cardiovascular adjustments of the whole body and skeletal muscle were studied during moderate and severe acute anemia. In 15 anesthetized dogs, venous outflow from the gastrocnemius-plantaris muscle group was isolated. Cardiac output (QT) muscle blood flow (QM), total body and muscle oxygen uptake (VO2) were determined during a control period, and at 30 and 60 min of either (i) moderate anemia (n = 8) in which the mean hematocrit (Hct) was 25% or (ii) progressive anemia (n = 7) in which the mean Hct values were 25% at 30 min and 16% at 60 min of anemia. Muscle VO2, QT, and QM were increased in both groups at 30 min of anemia. By 60 min, QT and QM declined to preanemic control values in the moderate anemia group; whole body VO2 was maintained at the control level. Arterial oxygen transport was the same in the two groups at both 30 and 60 min of anemia despite the difference in Hct at 60 min. Muscle VO2 showed a further and similar rise in both groups between 30 and 60 min of anemia. These data show that the rise in muscle VO2 during acute anemia was not directly proportional to the degree of the hematocrit reduction. Further, the findings suggest that the muscle VO2 response was related to the decrease in arterial oxygen transport.  相似文献   

5.
The effect of increased sympathetic activity on skeletal muscle blood flow during acute anemic hypoxia was studied in 16 anesthetized dogs. Sympathetic activity was altered by clamping the carotid arteries bilaterally below the carotid sinus. One group (n = 8) was beta blocked by administration of propranolol (1 mg/kg); a second group (n = 8) was untreated. Venous outflow from the left hindlimb was isolated for measurement of blood flow and O2 uptake (VO2). After a 20-min control period, both carotid arteries were clamped (CC) for 20 min followed by a 20-min recovery period. The sequence was repeated after hematocrit was lowered to about 15% by dextran exchange for blood. Prior to anemia, CC did not alter cardiac output or limb blood flow in either group. After induction of anemia, hindlimb resistance was higher with CC in the beta block than in the no block group. Both limb blood flow and VO2 fell in the beta-block group with CC during anemia. Beta block also prevented the additive increases in whole body VO2 seen with CC and induction of anemia. The data showed that the increased vasoconstrictor tone that was obtained with beta block during anemia was successful in redistributing the lower viscosity blood away from resting skeletal muscle, even to the point that muscle VO2 was decreased.  相似文献   

6.
In this study we determined whether the decline in exercise stroke volume (SV) observed when endurance-trained men stop training for a few weeks is associated with a reduced blood volume. Additionally, we determined the extent to which cardiovascular function could be restored in detrained individuals by expanding blood volume to a similar level as when trained. Maximal O2 uptake (VO2max) was determined, and cardiac output (CO2 rebreathing) was measured during upright cycling at 50-60% VO2max in eight endurance-trained men before and after 2-4 wk of inactivity. Detraining produced a 9% decline in blood volume (5,177 to 4,692 ml; P less than 0.01) during upright exercise, due primarily to a 12% lowering (P less than 0.01) of plasma volume (PV; Evans blue dye technique). SV was reduced by 12% (P less than 0.05) and VO2max declined 6% (P less than 0.01), whereas heart rate (HR) and total peripheral resistance (TPR) during submaximal exercise were increased 11% (P less than 0.01) and 8% (P less than 0.05), respectively. When blood volume was expanded to a similar absolute level in the trained and detrained state (approximately 5,500 +/- 200 ml) by infusing a 6% dextran solution in saline, the effects of detraining on cardiovascular response were reversed. SV and VO2max were increased (P less than 0.05) by PV expansion in the detrained state to within 2-4% of trained values. Additionally, HR and TPR during submaximal exercise were lowered to near trained values. These findings indicate that the decline in cardiovascular function following a few weeks of detraining is largely due to a reduction in blood volume, which appears to limit ventricular filling during upright exercise.  相似文献   

7.
Ventilation with O2 was previously shown to decrease whole-body and hindlimb muscle O2 uptake (VO2) in anesthetized dogs, particularly during anemia. To determine whether this was a purely local effect of hyperoxia (HiOx), we pump perfused isolated dog hindlimb muscles with autologous blood made hyperoxic (PO2 greater than 500 Torr) in a membrane oxygenator while the animals were ventilated with room air. Both constant-flow and constant-pressure protocols were used, and half the dogs were made anemic by exchange transfusion of dextran to hematocrit (Hct) approximately 15%. Thus there were four groups of n = 6 dogs each. A 30-min period of HiOx was preceded and followed by similar periods of perfusion with normoxic blood. In HiOx all four groups showed increased leg hindrance, increased leg venous PO2, and no significant changes in leg O2 inflow. Limb blood flow and VO2 decreased approximately 20% in HiOx with constant-pressure perfusion, regardless of Hct. In the constant-flow protocol, leg VO2 in HiOx was maintained by the anemic animals and actually increased in the normocythemic group. We conclude that HiOx directly affected vascular smooth muscle to cause flow restriction and maldistribution. Constant flow offset these effects, but the increased limb VO2 may have been a toxic effect. Anemia appeared to exaggerate the microcirculatory maldistribution caused by HiOx.  相似文献   

8.
We subjected anesthetized mechanically ventilated rabbits (n = 6) to sequential exchanges of blood for a 6% dextran solution and compared their responses with those obtained in a previous study on progressive hypoxemia (n = 7). Right atrial PO2 (PVO2)RA and hindlimb PO2 (PVO2)limb, measured at the level of the iliac bifurcation, were compared with tissue PO2 (PtiO2) histograms obtained with an array of surface microelectrodes placed over the biceps femoris muscle. Systemic O2 consumption (VO2) was measured with the expired gas method. Cardiac output and systemic O2 transport (TO2) were calculated. Six exchanges of blood for dextran produced decreases in hemoglobin from 10.8 +/- 0.4 to 2.7 +/- 0.2 g/dl (P less than 0.001). Critical TO2 (TO2crit), defined as the level of TO2 associated with initial decreases in control VO2, was similar for anemia and hypoxemia (40.5 +/- 5.6 and 40.1 +/- 5.3 ml.min-1.kg-1, respectively). At any given TO2 other than control TO2, the levels of (PVO2)RA and (PVO2)limb were greater in anemia than in hypoxemia (P less than 0.01), but the mean and the distribution of the PtiO2 histograms were similar in both conditions. Mean PtiO2 was significantly less than (PVO2)RA or (PVO2)limb, except for those values obtained during the control period. These results confirm our previous finding that PVO2 is not an accurate index of PtiO2 under conditions of tissue hypoxia. Furthermore, similar PtiO2 levels during anemia and hypoxemia suggest that VO2 is limited by decreases in O2 diffusion from the capillaries to the cells.  相似文献   

9.
An increased hematocrit could enhance peripheral O2 transport during exercise by improving arterial O2 content. Conversely, it could reduce maximal delivery of O2 by limiting cardiac output during exercise or by limiting the distribution of blood flow to peripheral capillaries with high O2 extractions. We studied O2 transport at rest and during graded treadmill exercise in splenectomized tracheostomized dogs at normal hematocrit (38 +/- 3%), and 48 h after transfusion of type-matched donor cells. This procedure increased hematocrit (60 +/- 3%) but also increased blood volume (P less than 0.05). Following transfusion, resting cardiac output (QT) and heart rate were not different. During exercise, QT was significantly lower at each level of O2 consumption (VO2) at high hematocrit (P less than 0.01). A reduction in QT was also seen during polycythemic exercise with hypoxemia produced by breathing 12 or 10% O2 in N2. Despite the reduction in QT, mixed venous PO2 was not lower at high hematocrit, and the increase in base deficit with VO2 was not different from control measurements. O2 delivery (QT X arterial content) was similar at each level of VO2 at both levels of hematocrit, during both normoxic and hypoxic studies. Both systemic and pulmonary arterial pressures were increased at rest after transfusion (P less than 0.05). However, pulmonary and systemic pressures were not higher than control during exercise at high hematocrit. We conclude that a hematocrit of 60% with increased blood volume is not associated with a cardiac limitation of O2 delivery, nor does it interfere with peripheral O2 extraction during exercise in the dog.  相似文献   

10.
Military antishock trousers (MAST) inflated to 50 mmHg were used with 12 healthy males (mean age 28 +/- 1 yr) to determine the effects of lower-body positive pressure on cardiac output (Q), stroke volume (SV), heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MABP), total peripheral resistance (TPR), and O2 uptake (VO2) during graded arm-cranking exercise. Subjects were studied while standing at rest and at 25, 50, and 75% of maximal arm-cranking VO2. At each level, rest or work was continued for 6 min with MAST inflated and for 6 min with MAST deflated. Order of inflation and deflation was alternated at each experimental rest or exercise level. Measurements were obtained during the last 2 min at each level. Repeated-measures analysis of variance revealed significant increases (P less than 0.001) in Q, SV, and MABP and a consistent decrease in HR with MAST inflation. There was no apparent change in Q/VO2 between inflated and control conditions. There was no effect of MAST inflation on VO2 or TPR. MAST inflation counteracts the gravitational effect of venous return in upright exercise, restoring central blood volume and thereby increasing Q and MABP from control. HR is decreased consequent to increased MABP through arterial baroreflexes. The associated decrease in TPR is not observed, being offset by the mechanical compression of leg vasculature with MAST inflation.  相似文献   

11.
Redistribution of blood flow away from resting skeletal muscles does not occur during anemic hypoxia even when whole body oxygen uptake is not maintained. In the present study, the effects of sympathetic nerve stimulation on both skeletal muscle and hindlimb blood flow were studied prior to and during anemia in anesthetized, paralyzed, and ventilated dogs. In one series (skeletal muscle group, n = 8) paw blood flow was excluded by placing a tourniquet around the ankle; in a second series (hindlimb group, n = 8) no tourniquet was placed at the ankle. The distal end of the transected left sciatic nerve was stimulated to produce a maximal vasoconstrictor response for 4-min intervals at normal hematocrit (Hct.) and at 30 min of anemia (Hct. = 14%). Arterial blood pressure and hindlimb or muscle blood flow were measured; resistance and vascular hindrance were calculated. Nerve stimulation decreased blood flow (p less than 0.05) in the hindlimb and muscle groups at normal Hct. Blood flow rose (p less than 0.05) during anemia and was decreased (p less than 0.05) in both groups during nerve stimulation. However, the blood flow values in both groups during nerve stimulation in anemic animals were greater (p less than 0.05) than those at normal Hct. Hindlimb and muscle vascular resistance fell significantly during anemia and nerve stimulation produced a greater increase in vascular resistance at normal Hct. Vascular hindrance in muscle, but not hindlimb, was less during nerve stimulation in anemia than at normal Hct.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Studies were carried out to determine the relative importance of volume and hemodilution on hemodynamic adjustments to acute volume expansion. Systemic and renal hemodynamics were monitored in unanesthetized and unrestrained rats during progressive and equivalent blood volume expansion with saline (Sal; 1, 2, and 4% body wt), 7% BSA solution (0.35, 0.7, and 1.4% body wt), and reconstituted whole blood from donor rats (WBL; 0.35, 0.7, and 1.4% body wt). Mean arterial pressure remained unchanged in Sal and BSA but increased progressively in WBL-expanded rats (from 92 to 106 mmHg after maximal expansion). In Sal and BSA-expanded rats, cardiac output (CO) and renal blood flow (RBF) increased (CO: Sal from 19 to 20, 22, and 25; BSA from 21 to 23, 27, and 31; RBF: Sal from 1.6 to 1.8, 2.2, and 2.5; BSA from 2 to 2.4, 2.7, and 3.1 ml. min(-1). 100 g body wt(-1)), whereas total peripheral (TPR) and renal vascular (RVR) resistance decreased in parallel with the expansions. After expansion with WBL, CO increased progressively but less extensively than in cell-free expanded rats (21 to 22, 24, and 26 ml. min(-1). 100 g body wt(-1)), whereas TPR and RVR remained unchanged. Systemic hematocrit (Hct) decreased approximately the same after expansion with Sal or BSA solutions but remained unchanged after expansion with WBL. Isovolemic hemodilution to Hct levels comparable to those seen after maximal expansion with cell-free solutions also reduced SVR and RVR, although less extensively. These findings suggest that in unanesthetized rats hemodilution plays a major role in the systemic and renal hemodynamics during expansion.  相似文献   

13.
We tested the hypotheses that continuous total peripheral resistance (TPR) measurements are superior to intermittent data collection and that variables related to TPR can be used to distinguish between survivors and nonsurvivors (NS), respectively, of prolonged hemorrhagic hypotension (HH). One week after a transit-time ultrasound probe was implanted on their ascending aortas, 21 rats were subjected to 4 h of HH at 40 mmHg. Measurements were made before and up to 4 h after initiation of HH. Additional bleeding or Ringer L-lactate (RL) infusion was used to maintain HH. TPR was continuously measured online using recordings of blood flow and arterial pressure. Approximately 67% of the rats survived > or =3 h; others were considered NS. Data collected at 30-min intervals failed to detect the maximum value of TPR (TPRmax). The times to reach TPRmax were similar for survivors and NS and were strongly correlated with the bleeding end points and with the RL infusion-onset times. However, survivors showed higher TPRmax values than NS (P <0.005) and had a significantly longer period than NS during which TPR was above baseline level (116 +/- 20 vs. 51 +/- 10 min). In conclusion, 1) the transit-time ultrasound technique at high sampling rate allowed continuous and accurate real-time monitoring of TPR, 2) the bleeding end point and RL infusion-onset times may be used as surrogates of the time to TPRmax, 3) TPRmax of survivors and NS could be detected only using a continuous TPR measurement, and 4) differences between survivors and NS could be revealed by the continuous TPR curve.  相似文献   

14.
The effects of normobaric hyperoxia on the oxygen uptake (VO2) and cardiovascular responses of the whole body and hindlimb during anemia were investigated. Anesthetized, paralyzed dogs were ventilated for 20-min periods with room air (normoxia), 100% O2 (hyperoxia), and returned to room air. Anemia (hematocrit = 15%) was then induced by isovolemic dextran-for-blood exchange and the normoxia, hyperoxia, normoxia sequence was repeated. Whole body VO2 and cardiac output rose following anemia, and then fell (p less than 0.05) with hyperoxia during anemia. These responses were not abolished by beta-blockade with propranolol (1 mg/kg, iv) or bilateral vagotomy. The hindlimb data for blood flow and VO2 were similar in direction to those of the whole body but were more variable. Section of the sciatic and femoral nerves did not appear to have significant effect on the limb responses to hyperoxia. The decrease in whole body and hindlimb VO2 with hyperoxia during anemia may have resulted from a redistribution of capillary blood flow away from exchange vessels in response to the elevated PO2.  相似文献   

15.
Acute β-blockade with metoprolol has been associated with increased mortality by undefined mechanisms. Since metoprolol is a relatively high affinity blocker of β(2)-adrenoreceptors, we hypothesized that some of the increased mortality associated with its use may be due to its abrogation of β(2)-adrenoreceptor-mediated vasodilation of microvessels in different vascular beds. Cardiac output (CO; pressure volume loops), mean arterial pressure (MAP), relative cerebral blood flow (rCBF; laser Doppler), and microvascular brain tissue Po(2) (G2 oxyphor) were measured in anesthetized mice before and after acute treatment with metoprolol (3 mg/kg iv). The vasodilatory dose responses to β-adrenergic agonists (isoproterenol and clenbuterol), and the myogenic response, were assessed in isolated mesenteric resistance arteries (MRAs; ~200-μm diameter) and posterior cerebral arteries (PCAs ~150-μm diameter). Data are presented as means ± SE with statistical significance applied at P < 0.05. Metoprolol treatment did not effect MAP but reduced heart rate and stroke volume, CO, rCBF, and brain microvascular Po(2), while concurrently increasing systemic vascular resistance (P < 0.05 for all). In isolated MRAs, metoprolol did not affect basal artery tone or the myogenic response, but it did cause a dose-dependent impairment of isoproterenol- and clenbuterol-induced vasodilation. In isolated PCAs, metoprolol (50 μM) impaired maximal vasodilation in response to isoproterenol. These data support the hypothesis that acute administration of metoprolol can reduce tissue oxygen delivery by impairing the vasodilatory response to β(2)-adrenergic agonists. This mechanism may contribute to the observed increase in mortality associated with acute administration of metoprolol in perioperative patients.  相似文献   

16.
In order to evaluate the role of the alpha-adrenergic system in the systemic and renal hemodynamic changes of the acute combined blood gas derangement, seven conscious mongrel dogs in careful sodium balance (80 mEq/day for 4 days) were evaluated. Each animal was evaluated during combined acute hypoxemia (PaO2 = 35 +/- 1 mm Hg) and hypercapnic acidosis (PaCO2 = 56 +/- 2 mm Hg; pH = 7.18 +/- 0.01) with (i) vehicle (D5W) alone and (ii) alpha 1-adrenergic blockade with prazosin, 0.1 mg/kg iv. Mean arterial pressure increased during the combined blood gas derangement with vehicle. In contrast, mean arterial pressure fell during combined acute hypoxemia and hypercapnic acidosis with alpha 1-adrenergic blockade. The mechanism for abrogation of the rise in mean arterial pressure during the combined blood gas derangement by alpha 1-adrenergic blockade appeared to be through attenuation of the rise in cardiac output rather than an exaggerated fall in total peripheral resistance. These observations suggest that the alpha-adrenergic system is important in circulatory homeostasis during the combined blood gas derangement.  相似文献   

17.
We tested the hypothesis that the oral alpha1-adrenergic agonist, midodrine, would limit the fall in arterial pressure observed during exercise in patients with pure autonomic failure (PAF). Fourteen subjects with PAF underwent a stand test, incremental supine cycling exercise (25, 50, and 75 W), and ischemic calf exercise, before (control) and 1 h after ingesting 10 mg midodrine. Heart rate (ECG), beat-to-beat blood pressure (MAP, arterial catheter), cardiac output (Q, open-circuit acetylene breathing), forearm blood flow (FBF, Doppler ultrasound), and calf blood flow (CBF, venous occlusion plethysmography) were measured. The fall in MAP after standing for 2 min was similar ( approximately 60 mmHg; P = 0.62). Supine MAP immediately before cycling was greater after midodrine (124 +/- 6 vs 117 +/- 6 mmHg; P < 0.03), but cycling caused a workload-dependent hypotension (P < 0.001), whereas increases in Q were modest but similar. Midodrine increased MAP and total peripheral resistance (TPR) during exercise (P < 0.04), but the exercise-induced fall in MAP and TPR were similar during control and midodrine (P = 0.27 and 0.14). FBF during cycling was not significantly reduced by midodrine (P > 0.2). By contrast, recovery of MAP after cycling was faster (P < 0.04) after midodrine ( approximately 25 mmHg higher after 5 min). Ischemic calf exercise evoked similar peak CBF in both trials, but midodrine reduced the hyperemic response over 5 min of recovery (P < 0.02). We conclude midodrine improves blood pressure and TPR during exercise and dramatically improves the recovery of MAP after exercise.  相似文献   

18.
Response of red cell and plasma volume to prolonged training in humans   总被引:6,自引:0,他引:6  
To clarify the role of progressive heavy training on vascular volumes and hematologic status, seven untrained males [maximal O2 uptake (VO2max) = 45.1 +/- 1.1 (SE) ml.kg-1.min-1] cycled 2 h/day at an estimated 62% of VO2max. Training was conducted five to six times per week for approximately 8 wk. During this time, VO2max increased (P less than 0.05) by 17.2%. Plasma volume (PV) measured by 125I increased (P less than 0.05) from 3,068 +/- 104 ml at 0 wk to 3,490 +/- 126 ml at 4 wk and then plateaued during the remaining four wk (3,362 +/- 113 ml). Red cell (RBC) mass (RCM) measured by 51Cr-labeled RBC did not change during the initial 4 wk of training (2,247 +/- 66 vs. 2,309 +/- 128 ml). As well, no apparent change occurred in RCM during the final 4 wk of training when RCM was estimated using PV and hematocrit (Hct). Collectively, PV plus RCM, expressed as total blood volume (TBV), increased (P less than 0.05) by 10% at 4 wk and then stabilized for the final 4 wk. During the initial phase of training, reductions (P less than 0.05) were also noted in Hct (4.6%), hemoglobin (Hb, 4.0%), and RBC count (6.3%). In contrast, an increase in mean cell volume (MCV, 1.7%) and mean cell Hb (2.3%) was observed (P less than 0.05). From 4 to 8 wk, no further changes (P greater than 0.05) in Hb, RBC, and MCV were found, whereas both mean cell Hb and Hct returned to pretraining levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Eight healthy male volunteers (aged 19.6+/-3.0 years) were submitted to the unloaded active (AE) and passive (PE) cycling exercise-tests performed on an adapted cycle ergometer at a pedalling rate of 50 rpm. Intensity of active exercise was about 10% of VO2 max. In the PE exercise test the ergometer was moved electrically. During both tests the systolic time intervals (STI), stroke volume (SV), heart rate (HR), blood pressure (BP), oxygen uptake (VO2), rating of perceived exertion (RPE), electrical muscle activity (EMG), plasma adrenaline (A), noradrenaline (NE) and blood lactate (LA) concentrations were measured. Exercise induced changes in VO2, RPE and EMG were significantly higher during AE than PE. Shortening of the pre-ejection period (PEP) and diminishing of the PEP to ejection time (ET) ratio were similar in both types of exercise, whereas HR increased only during AE. A significant increase in cardiac output (p<0.01) resulted from increased SV (p<0.01) during PE and from increased HR (p <0.01) during AE. MAP increased only during PE and it was higher than at rest and during AE (p<0.01). Absence of changes in SV and MAP during AE may be considered as a secondary effect of the decrease in TPR. Plasma catecholamines did not increase above resting values in either type of exercise. Blood LA concentration increased during both PE and AE but it reached higher values (p<0.01) after the latter test. The present data suggest that the inotropic state depends on the mechanoreflexes originated in skeletal muscles. However, contribution of changes in preload to shortening of PEP can not be excluded.  相似文献   

20.
We determined the effects of extracorporeal perfusion with a constant flow (75 ml . min-1 . kg-1) of autologous blood on hemodynamics and fluid balance in sheep lungs isolated in situ. After 5 min, perfusate leukocyte and platelet counts fell by two-thirds. Pulmonary arterial pressure (Ppa) increased to a maximum of 32.0 +/- 3.4 Torr at 30 min and thereafter fell. Lung lymph flow (QL), measured from the superior thoracic duct, and perfusate thromboxane B2 (TXB2) concentrations followed similar time courses but lagged behind Ppa, reaching maxima of 4.1 +/- 1.2 ml/h and 2.22 +/- 0.02 ng/ml at 60 min. Lung weight gain, measured as the opposite of the weight change of the extracorporeal reservoir, and perfusate 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) concentration increased rapidly during the first 60 min and then more gradually. After 210 min, weight gain was 224 +/- 40 g and 6-keto-PGF1 alpha concentration, 4.99 +/- 0.01 ng/ml. The ratio of lymph to plasma oncotic pressure (pi L/pi P) at 30 min was 0.61 +/- 0.06 and did not change significantly. Imidazole (5 mM) reduced the changes in TXB2, Ppa, QL, and weight and platelet count but did not alter 6-keto-PGF1 alpha, pi L/pi P, or leukocyte count. Indomethacin (0.056 mM) reduced TXB2, 6-keto-PGF1 alpha, and the early increases in weight, Ppa, and QL but did not alter the time courses of leukocyte or platelet counts. Late in perfusion, however, Ppa and QL were greater than in either untreated or imidazole-treated lungs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号