首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vaccinia virus genome is a single, linear, duplex DNA molecule whose complementary strands are naturally cross-linked. The molecular weight has been determined by contour length measurements from electron micrographs to be 122 ± 2.2 × 106. Denaturation mapping techniques indicate that the nucleotide sequence arrangement of the DNA is unique. Two forms of cross-linked vaccinia DNA were observed in alkaline sucrose gradients. The relative S-values of the two cross-linked species were appropriate for a single-stranded circle and a linear single strand, each with a molecular weight twice that expected for an intact, linear, complementary strand of vaccinia DNA. The fraction of sheared vaccinia DNA able to “snap back” after denaturation suggested a minimum of two crosslinks per molecule. Full-length single-stranded circles were observed in the electron microscope after denaturation of vaccinia DNA. Partial denaturation produced single-stranded loops at the ends of all full-length molecules. Exposure of native vaccinia DNA to a single strand-specific endonuclease isolated from vaccinia virions caused disruption of the cross-links, as assayed by alkaline sedimentation, and produced free single-strand ends when partially denatured DNA was observed in the electron microscope. We conclude that vaccinia DNA contains two cross-links, one at or near (within 50 nucleotides) each end in a region of single-stranded DNA. Two models for the cross-links are presented.  相似文献   

2.
We have isolated and partially purified a DNA endonuclease from nuclei of the yeast Saccharomyces cerevisiae. Although purified on the basis of its ability to degrade denatured DNA, the enzyme can also attack native DNA. Denatured oligonucleotide products of the enzyme are sensitive to venom phosphodiesterase (EC3.1.4.1.) but not to bovine spleen phosphodiesterase (EC3.1.4.18). The enzyme has an estimated molecular weight of 6.6--7.5 X 10(4), more than twice as large as the endonucleases involved in DNA repair in Escherichia coli. When analyzed on glycerol gradients, the endonuclease sedimented as a single activity against both denatured DNA and closed circular DNA duplexes. The enzyme showed a 10-fold preference for denatured over native T7 DNA substrate, and appears to produce random nicks in a supercoiled replicative form of phiX174 DNA (RFI) with no discernable preference for the unpaired bases in the supercoiled duplex. The endonuclease appears to be distinct from the yeast endonucleases previously described.  相似文献   

3.
Mouse L cell fibroblasts were infected with vaccinia virus and labeled 2 to 3 h postinfection with [35S]methionine. Labeled proteins were fractionated on native and denatured DNA-cellulose columns and then analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Twenty-four 90,000 to 12,500, were detected. VDP-12A (molecular weight, 29,750) had affinity for denatured but not native DNA, and its synthesis was dependent on viral DNA replication. VDP-20 (molecular weight, 41,000) bound very tightly to native and denatured DNA and was displaced only after boiling the protein-DNA-cellulose matrix in 1% sodium dodecyl sulfate. VDP-8,-11,-12,-13, -and-14 behaved electrophoretically like the polypeptide species previously shown to be present in DNA-protein complexes prepared from infected cells. The molecular weights of VDP-10 (50,000), VDP-11 (36,000), and VDP-8 (67,000) were similar to the polypeptide subunits of polyadenylate polymerase and phosphohydrolase I, enzymes purified from virions which have also been shown to have affinity for DNA.  相似文献   

4.
Low-angle light scattering results reported previously demonstrated that measurements on high molecular weight native DNA must be made at angles below 30° in order to obtain correct molecular weights. Earlier light-scattering data obtained on denaturated DNA at angles above 30° showed no change in molecular weight upon denaturation, even though other techniques clearly showed that strand separation occurred. This paper reports low-angle measurements on solutions of calf thymus and T7 DNA denatured under acidic conditions. The results demonstrate that a halving of molecular weight consistent with strand separation is detected by light scattering only when low-angle data are used to obtain correct molecular weights for native material. As expected from theoretical considerations, the scattering from denatured DNA is a linear function of sin2(θ/2), where θ is the angle of observation. This result shows that anticipated experimental artifacts have no significant effect on the low-angle measurements and demonstrates that the curvature in the scattering envelope observed for native DNA below 30° is an inherent property of the native molecule.  相似文献   

5.
The sedimentation properties of pulse-labeled and long-term labeled mRNA from highly purified HeLa cell free-polysomes, selected for poly(A) content by two successive passages through poly(T)-cellulose columns, were analyzed under native and denatured conditions. The sedimentation profile of the mRNA on both sodium dodecyl SO4-sucrose gradients and formaldehyde-sucrose gradients showed a broad distribution of components with estimated molecular weights ranging from 2 × 105 to 5.5 × 106 daltons and a weight-average molecular weight of 8.5 × 105 daltons.  相似文献   

6.
The melting transition of DNA in alkaline CsCl can be followed in the analytical ultracentrifuge. Equilibrium partially denatured states can be observed. These partially denatured DNA bands have bandwidths of up to several times those of native DNA. Less stable molecules melt early and are found at heavier densities in the melting region. An idealized ultracentrifuge melting transition is described. The melting transition of singly nicked PM-2 DNA resembles the idealized curve. The DNA profile is a Gaussian band at all points in the melt. DNA's from mouse, D. Melanogaster, M. lysodeikticus, T4, and T7 also show equilibrium bands at partially denatured densities, some of which are highly asymmetric. Simple sequence satellite DNA shows an all-or-none transition with no equilibrium bands at partially denatured densities. The temperature at which a DNA denatures is an increasing function of the (G + C) content of the DNA. The Tm does not show a molecular-weight dependence in the range 1.2 × 106–1.5 × 107 daltons (single strand) for mouse, M. lysodeikticus, or T4 DNA. The mouse DNA partially denatured bands do not change shape as a function of molecular weight. The T4 DNA intermediate band develops a late-melting tail at low molecular weight. M. lysodeikticus DNA bands at partially denatured densities become broader as the molecular weight is decreased. Mouse DNA is resolved into six Gaussian components at each point in the melting transition.  相似文献   

7.
When closed circular duplex DNAs are exposed to alkali in the presence of ethidium bromide, from 0 to 100% of the DNA can be recovered as the fully base-paired duplex (native) form upon neutralization of the solutions. The fraction of native DNA depends on the concentration of ethidium bromide, time of incubation, ionic strength and temperature of the solutions before neutralization as well as the molecular weight and superhelix density of the DNA. Limiting ethidium concentrations exist below and above which 0 and 100% of the DNA, respectively, is recovered as native material under a given set of incubation conditions regardless of the length of time of incubation before neutralization. The strong molecular weight dependence of the fraction of DNA recovered in the native form after a given time of pre-neutralization incubation at ethidium concentrations between the limiting values noted above allows larger DNAs to remain fully denatured upon neutralization while smaller DNAs in the same mixture are fully renatured. This permits the rapid fractionation of mixtures of closed duplex DNAs on the basis of molecular weight when a technique for the separation of denatured from fully base-paired DNA is applied to such mixtures. Such a separation has been demonstrated through the marked enrichment of plasmid cloning vector DNA containing cloned inserts in the fractions that remain denatured after neutralization of alkaline solutions of these DNAs containing ethidium bromide.  相似文献   

8.
G Ia Sherman 《Genetika》1975,11(5):127-131
The efficiency of phages T4rIIB-638v+ and T4rIIB-638v- transformation by native and denatured DNA treated with UV, nitrous acid, hydroxylamine and visible light in the presence of methylene blue is studied. A greater transformation efficiency of UV-irradiated T4r+ phage native and denatured DNA was observed in the v+ recipient as compared with v- recipients. Denatured donor DNA treated with nitrous acid has higher transformation activity in spheroplasts infected with T4v+ phage than in those infected with T4v- phage. Native donor DNA, treated with methylene blue and visible light-irradiated, developed a decrease of the transformation activity in T4v- phage-infected spheroplasts as compared with T4v+ phage-infected spheroplasts. Hydroxylamine treatment of native and denatured donor DNA did not reveal any differences in the transforming activity for v+ and v- recipients. Denatured donor DNA was more resistant to the effect of hydroxylamine than native DNA.  相似文献   

9.
Low-angle light-scattering studies on alkali- and heat-denatured DNA   总被引:4,自引:0,他引:4  
A I Krasna 《Biopolymers》1970,9(9):1029-1038
The molecular weight of native DNA is shown to decrease by at least a factor of two on denaturation by heat or alkali. This result is obtained only if low-angle (<30°) light-scattering measurements are used. High-angle measurements (>30°) do not reveal a decrease in molecular weight on denaturation due to the incorrect value for native DNA. The dn/dc value for both native and denatured DNA is 0.166 ml/g ± 0.003 ml/g. Methods are described for the clarification of native and denatured DNA solutions for light scattering by the use of membrane filters.  相似文献   

10.
The effects of temperature and ethidium bromide on the banding of heat-denatured DNA was studied during equilibrium centrifugation in density gradients of NaI. Centrifugation at 10 degrees C prevents the partial renaturation of Escherichia coli DNA and Clostridium perfringens DNA that occurs at 20 degrees C. A centrifugation temperature of --5 degrees C is required to prevent renaturation of T7 phage DNA. Ethidium bromide decreases renaturation of Escherichia coli DNA during centrifugation at 20 degrees C and causes a small shift in the buoyant density of both denatured and native DNA. Equilibrium centrifugation at lower temperatures prevents DNA renaturation and permits increased utilization of the large buoyant density difference between native and heat-denatured DNA in gradients of NaI.  相似文献   

11.
An enzyme which specifically cleaves very-fast-sedimenting DNA of bacteriophage T4 is synthesized after infection of T4, and its synthesis is controlled by gene 49 [1,2]. This enzyme has been proved to be a DNase [2]. We have purified this DNase 3000-fold from extracts of E. coli infected with T4. The purified preparation was practically free from other DNases, and the DNase activity was not detectable in cells infected with a mutant defective in gene 49. The enzyme activity from cells infected with a temperature-sensitive mutant of gene 49 was also temperature-sensitive, suggesting strongly that gene 49 is a structural gene of the DNase. The molecular weight of the wild-type enzyme was estimated to be 50 x 10(3) by gel filtration chromatography. The purified DNase did not cleave native and denatured DNAs of T3 and T4, but cleaved renatured T3 DNA with enzymatically fragmented T3 DNA, indicating that gaps in the DNA duplex are structures susceptible to the DNase. Cleavage of the hybridized T3 DNA occurred when the fragmented DNA was phosphorylated at either the 3' or 5'-strand termini.  相似文献   

12.
The cytoplasmic DNA-binding proteins of Physarum polycephalum were recovered by chromatography of cytosol extracts on sequential columns of native and denatured calf thymus DNA-cellulose. 5.4% of the total cytosol protein was bound to native DNA-cellulose, while 4.4% was bound to denatured DNA-cellulose. Stepwise salt gradient elution of the columns separated the DNA-binding proteins into 9 fractions which were analysed by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Several hundred discrete polypeptide bands were identified, with many more high molecular weight polypeptides (greater than 100 000 D) binding to native than to denatured DNA. Continuous in vivo labelling of microplasmodia in KH2[32P]O4 and [3H]leucine was used to determine which of the DNA-binding proteins were phosphorylated, and to approximate their phosphorus content. About 30–40 phosphoproteins were resolved among the DNA-binding proteins. Most phosphoproteins contained less than 3 phosphates per polypeptide, but a small number of low molecular weight phosphoproteins (less than 50 000 D) contained from 5 to 10 phosphates per polypeptide. The majority of high molecular weight DNA-binding phosphoproteins bound to native DNA and were eluted with 0.25 M NaCl. As a group, the DNA-binding proteins were enriched in protein-bound phosphorus when compared with the cytosol proteins which did not bind to DNA. The phosphorus content of the cytoplasmic DNA-binding proteins was similar to that of the acidic nuclear proteins.  相似文献   

13.
Separate estimations of intact apurinic sites and single-strand breaks in DNA necessitates the use of neutral sucrose gradients for sedimentation analysis after denaturation with formamide or with NaOH followed by reneutralization. The number of breaks per strand in the denatured sample, relative to a control, can be determined with the computer program of Gillespie et al. 6; the particular equation for denatured DNA in neutral sucrose gradient that relates the molecular weight and the sedimentation rate is given. The reliability of the whole technique was proven in an experiment with T7 phage [32P]DNA in which the 32P transmutations into 32S were the origin of the strand breaks.  相似文献   

14.
Human diploid cells (WI38) were pre-labeled with 32Pi, exposed to ultraviolet irradiation and then pulse labeled with [3H]thymidine. The extracted DNA from these cells was subsequently treated with the T4-endonuclease V, an enzyme which specifically nicks DNA strands at positions adjacent to pyrimidine dimers. Sedimentation in alkaline sucrose gradients revealed that the DNA synthesized after irradiation, as well as that made before, contained endonuclease-sensitive sites. Our results suggest that pyrimidine dimers are transferred from parental to daughter DNA strands during post-irradiation incubation. Sedimentation in neutral sucrose gradients showed that the molecular weight of native DNA was not affected by the endonuclease treatment, suggesting that the gaps appearing in daughter strands after irradiation are not opposite dimers or that the enzyme cannot recognize dimers in the gap regions.  相似文献   

15.
An endonuclease purified approximately 3,200-fold from Micrococcus luteus is active on native ultraviolet-irradiated deoxyribonucleic acid (DNA), but is inactive on unirradiated native or denatured DNA and has no activity toward irradiated denatured DNA. The major type of lesion for the nucleolytic activity is the cyclobutane pyrimidine dimer. The enzyme makes a number of single-strand breaks approximately equal to the number of dimers, but dimers are not excised. This endonuclease-a small molecular weight protein-therefore has all the attributes hypothesized for the first enzyme in the sequential steps in repair of DNA in vivo. Another paper shows that the endonuclease is able to reactivate ultraviolet-irradiated transforming DNA.  相似文献   

16.
Procedure for purification of intact DNA from vaccinia virus.   总被引:2,自引:1,他引:1       下载免费PDF全文
A procedure for the isolation of intact vaccinia DNA molecules by chromatography on hydroxyapatite in the presence of 6 M urea is described. When lysates of virions containing 0.5 to 10 microgram of DNA were employed, over 95% of the viral DNA could be recovered free of poteins. Vaccinia DNA molecules isolated in this manner sedimented at 68S in neutral sucrose gradients and had an average contour length of 62.3 micrometer when examined in an electron microscope, and the DNA could be cleaved with the restriction endonuclease EcoRI and BamHI. The results of these analyses showed that intact vaccinia DNA molecules of 120 X 10(6) to 130 X 10(6) molecular weight could be obtained by the procedures described.  相似文献   

17.
Composition and Size of Shope Fibroma Virus Deoxyribonucleic Acid   总被引:2,自引:1,他引:1       下载免费PDF全文
Deoxyribonucleic acid (DNA) extracted from purified virions of Shope fibroma virus (SFV) (by using DNA from Microccocus lysodeikticus as marker) had a buoyant density of 1.6996 +/- 0.0003 g/ml), hence a guanine plus cytosine (G + C) content of 40.4 +/- 0.3%, which is close to the G + C content of the DNA of susceptible rabbit cells (40.9 +/- 0.4%) and different from that of vaccinia virus DNA (35.5 +/- 0.4%). For the determination of the molecular weight of DNA, SFV and vaccinia purified virions, treated with Pronase and detergent, were cosedimented in sucrose density gradients. Results showed that SFV-DNA has a molecular weight of about 153 x 10(6) daltons. By electron microscopy, only one molecule corresponding to this value was observed (its length was 80.3 mum). The others had a median size of 49.8 mum +/- 0.9.  相似文献   

18.
Size and Composition of Marek''s Disease Virus Deoxyribonucleic Acid   总被引:15,自引:12,他引:3       下载免费PDF全文
Deoxyribonucleic acid (DNA) extracted from purified nucleocapsids of Marek's disease herpesvirus (MDV) was cosedimented with T4 and with herpes simplex virus (HSV) DNA in neutral sucrose density gradients and with T4 DNA in alkaline sucrose density gradients. These experiments indicated that the intact MDV DNA had a sedimentation constant of 56S corresponding to a molecular weight of 1.2 x 10(8) daltons. In the alkaline gradients, the largest and most prominent band contains a DNA sedimenting at 70S corresponding to 6.0 x 10(7) daltons in molecular weight. The DNA is therefore double-stranded and not cross-linked. Isopycnic sedimentation of the MDV DNA molecules with SPO1, Micrococcus lysodeikticus, and HSV DNA gave a density of 1.705 g/cm(3) corresponding to 46 guanine plus cytosine moles per cent. Lastly, in hybridization tests the DNA hybridized with RNA of infected cells but not with that of uninfected cells supporting the conclusion that it is viral.  相似文献   

19.
20.
We have compared the properties of the DNA of Epstein-Barr virus (EBV) purified from HR-1 (EBV HR-1 DNA) and B95-8 (EBV B95-8 DNA) continuous lymphoblast cultures. Our data indicate that (i) the S suc of native EBV DNA relative to T4D DNA is 55S. Using the modified Burgi-Hershey relationship (5), we estimate the molecular weight of native EBV DNA is 101 (plus or minus the molecular weight of native FBV DNA by measurement of the length of 3) times 106. Estimation of the molecule relative to form II PM2 DNA yields a value of 105 (plus or minus 3) times 106. (ii) After alkali denaturation, less than 50% of EBV DNA sediments as a single band in alkaline sucrose gradients in the region expected for DNA of 50 times 406 daltons. (iii) Intact EBV HR-1 and EBV B 95-8 DNAs band at 1.718 g/cm3 and a smaller band (approximately 25% of the DNA) AT 1.720 G/CM3. (IV) EBV HR-1 DNA possesses greater than 97% of the sequences of EBV B95-8 DNA. Hybrid DNA molecules formed between (3H)EBV HR-1 DNA and EBV HR-1 DNA or EBV B95-8 DNA had identical thermal stability. EBV B95-8 DNA lacks approximately 15% of the DNA sequences of EBV HR-1 DNA. We interpret these data to mean that EBV B95-8 is derived from a parental EBV through loss of genetic complexity. This defect may be linked to the ability of EBV B95-8 to "transform" lymphocytes invitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号