首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Runx proteins are essential for a number of developmental processes and are aberrantly expressed in many human cancers. Runx factors bind DNA and co‐factors to activate or repress genes crucial for bone formation, hematopoiesis, and neuronal development. Co‐activator activator (CoAA) is a nuclear protein that regulates gene expression, RNA splicing and is overexpressed in many human tumors. In this study, we identified CoAA as a Runx2 binding protein. CoAA repressed Runx factor‐dependent activation of reporter genes in a histone deacetylase‐independent manner. CoAA also blocked Runx2‐mediated repression of the Axin2 promoter, a novel Runx target gene. The carboxy‐terminus of CoAA is essential for binding the Runt domains of Runx1 and Runx2. In electophoretic mobility shift assays, CoAA inhibited Runx2 interactions with DNA. These data indicate that CoAA is an inhibitor of Runx factors and can negate Runx factor regulation of gene expression. CoAA is expressed at high levels in human fetal osteoblasts and osteosarcoma cell lines. Suppression of CoAA expression by RNA interference reduced osteosarcoma cell viability in vitro, suggesting that it contributes to the proliferation and/or survival of osteoblast lineage cells. J. Cell. Biochem. 108: 378–387, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The lethal giant larvae (lgl) gene was first identified more than 30 years ago in Drosophila and characterized as a tumor suppressor gene. Studies in budding yeast, flies and mammals all indicate that the evolutionarily conserved Lgl family proteins play an important role in cell polarity. Sro7/77, the yeast Lgl homologues, are important for the establishment and reinforcement of cell polarity through their localized interaction and kinetic activation of the post-Golgi secretion machinery. As for higher eukaryotes, both in epithelial polarity and asymmetric cell division, the role of Lgl protein is deployed by localizing proteins to the membrane in a polarized fashion. In addition, Lgl is transiently required during the establishment phase of polarity, implicating that Lgl functions at strategic time points for proliferation control. Studies in cancer biology provide direct connections between malfunction of Lgl and formation, progression and metastasis of various cancers. Here, we review recent advances in the field, focusing on the function of the Lgl family in cellular polarization.  相似文献   

4.
5.
6.
7.
lats基因(large tumor suppressor gene)最早在果蝇中发现,在小鼠和人中均有同源基因.该基因的功能从果蝇到人是高度保守的.lats基因的功能包括:作为肿瘤抑制基因,其突变会导致肿瘤的发生;磷酸化的Lats与Cdc2结合,参与细胞周期的调控;通过细胞-细胞间的通讯,可能参与生物体个体大小的调控机制.从果蝇到人lats基因功能的研究,提供了以果蝇作为模式生物研究哺乳动物基因功能的方法.  相似文献   

8.
5-methylcytosine is an important epigenetic modification involved in gene control in vertebrates and many other complex living organisms. Its presence in Drosophila has been a matter of debate and recent bisulfite sequencing studies of early-stage fly embryos have concluded that the genome of Drosophila is essentially unmethylated. However, as we outline here, the Drosophila genome harbors a well-conserved homolog of the TET protein family. The mammalian orthologs TET1/2/3 are known to convert 5-methylcytosine into 5-hydroxymethylcytosine. We discuss several possible explanations for these seemingly contradictory findings. One possibility is that the 2 modified cytosine bases are generated in Drosophila only at certain developmental stages and in a cell type-specific manner during neurogenesis. Alternatively, Drosophila Tet and its mammalian homologs may carry out catalytic activity-independent functions, and the possibility that these proteins may oxidize 5-methylcytosine in RNA created by the methyltransferase Dnmt2 should also be strongly considered.  相似文献   

9.
Regionalization and segmentation of the leech body plan have been examined by numerous approaches over the years. A wealth of knowledge has accumulated regarding the normally invariant cell lineages of the leech and the degree of developmental plasticity that is possible in each cell line in early development and in neurogenesis. Homologues of genes that control regionalization and segmentation in Drosophila have been cloned from the leech and the expression patterns reveal conserved features with those in Drosophila and other organisms. Possible developmental functions of the en-class proteins in spatial and temporal modes of segment formation are discussed in light of leech and Drosophila development. Annelida and Arthropoda cell lineages of engrailed-class gene expression are compared in leech blast cell clones and crustacean parasegments. In addition, future directions for molecular analysis of segmentation of the leech are summarized. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
11.
Tel2, a protein conserved from yeast to vertebrates, is an essential regulator of diverse cellular processes including telomere maintenance, DNA damage checkpoints, DNA repair, biological clocks, and cell signaling. The Drosophila Tel2 protein is produced as a translational fusion with EpsinR, a Clathrin adapter that facilitates vesicle trafficking between the Golgi and endosomes. EpsinR and Tel2 are encoded by a Drosophila gene called lqfR. lqfR is required for viability, and its specific roles include cell growth, proliferation, and planar cell polarity. We find that all of these functions of lqfR are attributed entirely to Tel2, not EpsinR. In addition, we find that Drosophila LqfR/Tel2 is a component of one or more protein complexes that contain E-cadherin and Armadillo. Moreover, Tel2 modulates E-cadherin and Armadillo cellular dynamics. We propose that at least one of the functions of Drosophila Tel2 is regulation of Wingless signaling.  相似文献   

12.
13.
14.
This paper describes genes from yeast and mouse with significant sequence similarities to aDrosophila gene that encodes the blood cell tumor suppressor pendulin. The protein encoded by the yeast gene, Srp1p, and mouse pendulin share 42% and 51% amino acid identity withDrosophila pendulin, respectively. All three proteins consist of 10.5 degenerate tandem repeats of 42 amino acids each. Similar repeats occur in a superfamily of proteins that includes theDrosophila Armadillo protein. All three proteins contain a consensus sequence for a bipartite nuclear localization signal (NLS) in the N-terminal domain, which is not part of the repeat structure. Confocal microscopic analysis of yeast cells stained with antibodies against Srp1p reveals that this protein is intranuclear throughout the cell cycle. Targeted gene disruption shows thatSRP1 is an essential gene. Despite their sequence similarities,Drosophila and mouse pendulin are unable to rescue the lethality of anSRP1 disruption. We demonstrate that yeast cells depleted of Srp1p arrest in mitosis with a G2 content of DNA. Arrested cells display abnormal structures and orientations of the mitotic spindles, aberrant segregation of the chromatin and the nuclei, and threads of chromatin emanating from the bulk of nuclear DNA. This phenotype suggests that Srplp is required for the normal function of microtubules and the spindle pole bodies, as well as for nuclear integrity. We suggest that Srp1p interacts with multiple components of the cell nucleus that are required for mitosis and discuss its functional similarities to, and differences fromDrosophila pendulin.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号