首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of elevated UV-B radiation on growth, symbiotic function and concentration of metabolites were assessed in purely symbiotic and NO3-fed nodulated plants of Lupinus luteus and Vicia atropurpurea grown outdoors either on tables under supplemental UV-B radiation or in chambers covered with different types of plexi-glass to attenuate solar ultraviolet radiation. Moderately and highly elevated UV-B exposures simulating 15% and 25% ozone depletion as well as sub- ambient UV-B did not alter organ growth, plant total dry matter and N content per plant in both L. luteus and V. atropurpurea. In contrast, elevated UV-B increased (P <0.05) flavonoid and anthocyanin concentrations in roots and leaves of L. luteus, but not of V. atropurpurea. Feeding nodulated plants of L. luteus under elevated UV-B radiation with 2 mM NO3 increased (P <0.05) nodule, leaf and total dry matter, and whole plant N content. With V. atropurpurea, NO3 reduced (P <0.05) nodule activity, root %N and concentrations of flavonoids, anthocyanins in roots and leaves and soluble sugars in roots, in contrast to an observed increase (P <0.05) in nodule dry matter per plant. Similarly, supplying 2 mM NO3 to L. luteus plants exposed to sub-ambient UV-B radiation significantly reduced individual organ growth, plant total biomass, nodule dry matter, nodule %N, and whole plant N content, as well as root concentrations of flavonoids, anthocyanins, soluble sugars, and starch of L. luteus, but not V. atropurpurea plants. These results show no adverse effect of elevated UV-B radiation on growth and symbiotic function of L. luteus and V. atropurpurea plants. However, NO3 supply promoted growth in L. luteus plants exposed to the highly elevated UV-B radiation.  相似文献   

2.
Spring wheat (Triticum aestivum) was grown in the field under ambient and supplemental levels of ultraviolet-B (UV-B, 280–315 nm) radiation to determine the potential for alteration in plant nutrients, decomposition, leaf quality and dry matter yield. Supplemental UV-B radiation simulating a 12, 20 and 25% stratospheric ozone depletion significantly decreased dry matter yield, but had no significant impact on harvest index. UV-B radiation resulted in an increase of the concentrations of N and K in all plant parts; changes of the concentrations of P, Mg, Fe and Zn varied in a tissue-dependent manner, as the decrease of P in leaves and stems, and its increase in spikes and grains. The mass of N, P, K, Mg, Fe and Zn in various plant parts and whole plant was generally decreased except leaf N mass was increased by enhanced UV-B radiation. Enhanced UV-B radiation decreased the concentrations of soluble carbohydrates in leaves and increased that of holocellulose and soluble proteins. After 60 and 100 days of decomposition of leaves and stems in the field, enhanced UV-B radiation stimulated the loss of organic C. As a consequence, the nutrient content of soils might be less diminished under enhanced UV-B radiation.  相似文献   

3.
Levizou  E.  Manetas  Y. 《Plant Ecology》2001,154(1-2):179-186
Seedlings of two Mediterranean plants, the slow-growing, evergreen sclerophyll Ceratonia siliqua L. and the fast growing drought semi-deciduous Phlomis fruticosa L., were grown for one year in the field at ambient or ambient plus supplemental UV-B radiation (equivalent to a 15% ozone depletion) and two levels of applied fertilizers (NPK). The effects on growth, morphological, anatomical and physiological parameters were measured at final plant harvest. Additional nutrients increased leaf nitrogen, improved growth and reduced the root/shoot ratio in both plants, yet these effects were more pronounced in the fast growing P. fruticosa. A nutrient-induced increase in chlorophyll content was also observed in this plant. The growth responses to UV-B radiation were different for the two species. Growth in C. siliqua was not affected by UV-B radiation at both nutrient levels and the same was true for P. fruticosa at low nutrients. However, at the high nutrient level, supplemental UV-B radiation improved growth in P. fruticosa, indicating a strong interaction between the treatments. Photosystem II (PSII) photochemical efficiency, methanol-extractable UV-B absorbing capacity, total phenolics and tannins were not affected by either treatment in both plants. It is concluded that nutrient levels can strongly modify the UV-B radiation effects on growth of P. fruticosa. We presume that this may be correlated to the fast growing habit of this species.  相似文献   

4.
Glycine max (L.) Merr plants were grown outdoors in potted sand exposed to elevated ultraviolet-B (UV-B) radiation provided by filtered fluorescent lamps to determine the effects of UV-B on seed yield and UV-B-induced carryover effects in the F1 generation. Increased UV-B radiation had no detectable effects on reproductive parameters except for a reduction on seed number per plant and an increase in the number of unseeded pods per plant and dry weight of unseeded pods per plant in the field supplemental UV-B experiment. Studies on carryover effects in the greenhouse progeny growth trial also showed no effect of parental treatment with UV-B on biomass production, and most symbiotic-N traits and plant metabolite measured. However, the concentrations of N in nodules and starch in roots were significantly increased in the F1 generation progeny from elevated UV-B radiation relative to their F1 counterparts from ambient radiation. Assessing the effects of seed size on plant growth and symbiotic function in the F1 progeny showed that total biomass, dry matter yield of individual organs (leaves, stems, roots and nodules), total plant N and fixed-N rose with increasing seed size. Seed concentration of flavonoids was also enhanced with increasing seed size. These findings suggest that subtle changes did occur in the F1 generation progeny of parental plants exposed to elevated UV-B with potential to accumulate with further exposure to elevated UV-B radiation.  相似文献   

5.
The effects of ultraviolet-B (UV-B between 290 and 320 nm) on photosynthesis and growth characteristics were investigated in field grown cassava (Manihot esculentum Crantz). Plants were grown at ambient and ambient plus a 5.5kJ m?2 d?1 supplementation of UV-B radiation for 95 d. The supplemental UV-B fluence used in this experiment simulated a 15% depletion in stratospheric ozone at the equator (0°N). Carbon dioxide exchange, oxygen evolution, and the ratio of variable to maximum fluorescence (Fv/Fm) were determined for fully expanded leaves after 64–76 d of UV-B exposure. AH plants were harvested after 95 d of UV-B exposure, assayed for chlorophyll and UV-B absorbing compounds, and separated into leaves, petioles, stems and roots. Exposure to UV-B radiation had no effect on in situ rates of photosynthesis or dark respiration. No difference in the concentration of UV-B absorbing compounds was observed between treatments. A 2-d daytime diurnal comparison of Fv to Fm ratios indicated a significant decline in Fv/Fm ratios and a subsequent increase in photoinhibition under enhanced UV-B radiation if temperature or PPF exceeded 35°C or 1800μmol m?2 s?1, respectively. However, UV-B effects on fluorescence kinetics appeared to be temporal since maximal photosynthetic rates as determined by oxygen evolution at saturated CO2 and PPF remained unchanged. Although total biomass was unaltered with UV-B exposure, alterations in the growth characteristics of cassava grown with supplemental UV-B radiation are consistent with auxin destruction and reduced apical dominance. Changes in growth included an alteration of biomass partitioning with a significant increase in shoot/root ratio noted for plants receiving supplemental UV-B radiation. The increase in shoot/root ratio was due primarily to a significant decrease in root weight (–32%) with UV-B exposure. Because root production determines the harvest-able portion of cassava, UV-B radiation may still influence the yield of an important tropical agronomic species, even though photosynthesis and total dry biomass may not be directly affected.  相似文献   

6.
Seedlings of Ceratonia siliqua L. were grown for 1 year in the field under ambient or ambient plus supplemental UV-B radiation (corresponding to 15% ozone depletion over Patras) and received two levels of additional irrigation during the summer dry period. The experiment was started during February 1998 and two major samplings were performed, the first at the end of the dry period (September 1998) and the second at the end of the experiment (January 1999). Plants receiving additional irrigation showed significantly higher leaf number, plant height and chlorophyll content at the end of the summer, but these differences were abolished at the final harvest. Plants growing under enhanced UV-B radiation had significantly fewer leaves and less nitrogen content at the end of the dry period, but these effects were also abolished at the final harvest, during which significant UV-B induced increases in stem dry mass were observed. None of the other measured parameters (mean leaf area, leaf dry mass, leaf thickness, UV-B absorbing compounds, phenolics, tannins and photochemical efficiency of PSII) were affected by either treatment. Combined UV-B / water effects were not significant. We may conclude that although some minor responses to enhanced UV-B radiation were evident, C. siliqua is resistant against UV-B radiation damage at the level applied.  相似文献   

7.
Very few studies have evaluated the effects of UV-B radiation on trees. especially deciduous species. In this study we evaluate the effects of supplemental UV-B radiation on the growth and photosynthetic capacity of sweetgum (Liquidambar styraciflua L.). Sweetgum seedlings were grown for 2 years in the field under either ambient or supplemental UV-B radiation. Artificial UV-B radiation was supplied by fluorescent lamps at a maximum daily supplementation of either 3.1 or 5.0 kJ of biologically effective UV-B radiation. Over the 2-year period, supplemental UV-B radiation had little effect on total plant biomass or photosynthetic capacity. However, subtle changes in leaf physiology, carbon allocation, and growth were observed. Supplemental UV-B radiation reduced photosynthetic capacity only during the first year, while leaf area and biomass were reduced in the second year. Alterations in carbon allocation included an increase in branch number and root to shoot ratio. While these data do not indicate that the productivity of sweetgum would likely be compromised by an increase in solar UV-B radiation, they do suggest that the UV-B portion of the solar spectrum contributes to the regulation of sweetgum growth and development. Therefore the possibility of significant consequences to sweetgum due to possible increases in UV-B radiation cannot be ruled out.  相似文献   

8.
Petropoulou  Y.  Georgiou  O.  Psaras  G.K.  Manetas  Y. 《Plant Ecology》2001,154(1-2):57-64
The winter annual species Anthemis arvensis L. (Asteraceae) was grown for 3.5 months in the field under ambient or ambient plus supplemental UV-B radiation, simulating a 15% ozone depletion over Patras (38.3° N, 29.1° E). Enhanced UV-B radiation had no effect on the methanol extractable UV-B absorbing capacity of leaves, phenological and morphometric parameters of anthesis (flowering time, anthesis duration, head life span, number of heads per plant, number of tubular and ligulate florets per head, area per ligulate floret). Concerning the optical properties of heads, enhanced UV-B radiation had no significant effect on the extractable absorbance of both floret types nor on the spectral reflectance of the tubular florets. However, under UV-B supplementation the white ligulate florets exhibited a slight, statistically significant decrease of reflectance in the visible region of the spectrum. This may be due to structural changes of the floret surface, since microscopic examination under SEM revealed the papillae of the adaxial epidermal cells to be swollen. The above ground dry mass measured at plant harvest was not affected but a significant increase in root biomass (and accordingly in root/shoot ratio) was observed. We conclude that Anthemis arvensis is resistant against UV-B radiation damage. The possible consequences of UV-B induced structural changes on floret epidermis are discussed.  相似文献   

9.
IR68 and Dular rice cultivars were grown under ambient, 13.0 (simulating 20% ozone depletion) and 19.1 (simulating 40% ozone depletion) kJ m-2 day-1 of biologically effective ultraviolet-B (UV-BBE) for 4 weeks. Plant height and leaf area were significantly reduced by supplemental UV-BBE radiation. Greater reduction in leaf area than of plant height was observed. A decrease in indole-3-acetic acid (IAA) content and increase in peroxidase and IAA oxidase activities of UV-B treated plants in both cultivars were observed compared with ambient control. Calmodulin content also decreased after plants were treated with high supplemental UV-B for two weeks and medium UV-B treatment for four weeks. The results indicated that peroxidase and IAA oxidase activities in rice leaves were stimulated by supplemental UV-B, resulting in the destruction of IAA which in turn may cause inhibition of rice leaf growth. Although the mechanism is unclear, calmodulin is most likely involved in leaf growth.  相似文献   

10.
The effects of sub-ambient levels of UV-B radiation on the shrub Rosmarinus officinalis L. were investigated in a field filtration experiment in which the ambient UV-B was manipulated by a combination of UV-B transmitting and UV-B absorbing filters. As a result, the plants were receiving near-ambient or drastically reduced UV-B radiation doses. Drastic reduction of UV-B radiation had no effect on mean, total and maximum stem length, number of stems per plant, dry mass of leaves, stems and roots and leaf nitrogen and phenolic contents. However, flowering was more pronounced under reduced UV-B radiation during the winter period which coincides with ascending ambient UV-B radiation. In contrast, during autumn and early winter, a period which coincides with descending ambient UV-B radiation, flowering was unaffected by reduced UV-B radiation. We can conclude that natural UV-B radiation does not affect growth of Rosmarinus officinalis, but its reduction could influence the flowering pattern of the species.  相似文献   

11.
Predicted increase in ultraviolet-B (UV-B: 280–320 mn) radiation may have adverse impacts on growth and yield of rice ( Oryza sativa L.), as has been found in studies hitherto. However, most of the studies were conducted in growth chambers or greenhouses where the plants are generally more sensitive to UV-B than in the field, presumably because of the distorted balance between UV-B and ultraviolet-A as well as PAR. This study was conducted to address the effects of enhanced UV-B on growth and yield of rice under a realistic spectral balance in the field. Three cultivars, "Koshihikari",'IR 45'and'IR 74'were pot-grown and irradiated with enhanced UV-B for most of the growing season in the field at Tsukuba, Japan (36°01'N, 140°07'E). The UV-B enhancement simulated ca 38% depletion of stratospheric ozone at Tsukuba. The results showed no UV-B effects on plant height, numbers of tillers and panicles, dry weight of the plant parts or the grain yield for any of the 3 cultivars. Natural abundance of 13C in the flag leaves was not altered by the UV-B enhancement either. While UV-absorbing compounds showed no response to the UV-B enhancement, chlorophyll contents decreased with enhanced UV-B. However, the decrease of chlorophyll was limited to an early growth stage with no effect later. We thus found no extraordinary impact of the nearly doubled UV-B radiation on rice in the field, and it would appear that a reliable prediction of the effects of UV-B will require experiments carried out over a number of years under various climatic and solar UV-B regimes.  相似文献   

12.
The effects of enhanced UV-B (290-320 nm) radiation on two native Mediterranean pines (Pinus pinea L., Pinus halepensis Mill.) were recorded during a one-year field study. Plants received ambient or ambient plus supplemental UV-B radiation (simulating a 15% stratospheric ozone depletion over Patras. Greece, 38.3°N. 29.1°E) and only natural precipitation, i.e. they were simultaneously exposed to other natural stresses. particularly water stress during summer. Supplemental UV-B irradiation started in early February, 1993 and up to late June, no effects were observed on growth and photochemical efficiency of photosystem II, as measured by chlorophy II fluorescence induction. Water stress during the summer was manifested in the control plants as a decline in the ratio of variable to maximum fluorescence (Fv/Fm), the apparent photon yield for oxygen evolution (φl) and the photosynthetic capacity at 5% CO2 (Pm). In addition, a partial needle loss was evident. Under supplemental UV-B radiation, however, the decreases in Fv/Fm, φi, and Pm. as well as needle losses were significantly less. Soon after the first heavy autumn rains. photosynthetic parameters in both control and UV-B treated plants recovered to similar values. but the transient summer superiority of UV-B irradiated plants resulted in a significant increase in their dry weight measured at plant harvest. during late January. 1994. Plant height. UV-B absorbing compounds, photosynthetic pigments and relative water content measured at late spring. late summer and at plant harvest, were not significantly affected by supplemental UV-B radiation. The results indicate that enhanced UV-B radiation may be beneficial for Mediterranean pines through a partial alleviation of the adverse effects of summer drought.  相似文献   

13.
In order to perform their functions as photosynthetic organs, leaves must cope with excess heat and potentially damaging ultraviolet radiation. Possible increases in the UV-B portion of the solar spectrum may place an additional burden on leaves, and this could be particularly important for young expanding leaves with poorly developed UV-B defense mechanisms. We evaluated the effects of supplemental UV-B radiation on leaf expansion and the development of photosynthetic capacity and pigments in sweetgum (Liquidambar styraciflua L.) seedlings. Seedlings were grown in the field under either ambient or ambient plus 3 or 5.0 kJ of biologically effective supplemental UV-B radiation. Although final leaf size was unaffected, the rate of leaf elongation and accumulation of leaf area was slower in leaves exposed to the lower supplemental UV-B irradiance. In contrast, chlorophyll accumulation and the development of photosynthetic capacity was more rapid in plants exposed to the higher, compared to the lower supplemental UV-B irradiance. The accumulation of anthocyanins and other putative flavonoids or UV-absorbing compounds was scarcely affected by exposure to supplemental UV-B radiation. These results suggest that the UV-B portion of the solar spectrum may, in the absence of gross affects on biomass, exert subtle influences on leaf ontogeny and the development of photosynthetic pigments and capacity in sweetgum.  相似文献   

14.
Soybean, Glycine max (L.) Merr. cv Essex, plants were grown in the field in a 2 × 2 factorial design, under ambient and supplemental levels of ultraviolet-B (UV-B) radiation (supplemental daily dose of 5.1 effective kilojoules per square meter) and were either well-watered or subjected to drought. Soil water potentials were reduced to −2.0 megapascals by the exclusion of natural precipitation in the drought plots and were maintained at approximately −0.5 megapascal by supplemental irrigation in well-watered plots. Plant growth and gas exchange characteristics were affected under both drought and supplemental UV-B radiation. Whole-leaf gas exchange analysis indicated that stomatal limitations on photosynthesis were only significantly affected by the combination of UV-B radiation and drought but substrate (ribulose bisphosphate) regeneration limitations were observed under either stress. The combined effect of both drought and UV-B radiation on photosynthetic gas exchange was a reduction in apparent quantum efficiency and the rapid appearance of biochemical limitations to photosynthesis concomitant with reduced diffusional limitations. However, the combination of stresses did not result in additive effects on total plant growth or seed yield compared to reductions under either stress independently.  相似文献   

15.
Absorption or screening of ultraviolet-B (UV-B) radiation by the epidermis may be an important protective method by which plants avoid damage upon exposure to potentially harmful UV-B radiation. In the present study we examined the relationships among epidermal screening effectiveness, concentration of UV-absorbing compounds, epidermal anatomy and growth responses in seedlings of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.). Seedlings of each species were grown in a greenhouse at the University of Maryland under either no UV-B radiation or daily supplemental UV-B radiation levels of 4, 8 or 11 kJ m?2 of biologically effective UV-B (UV-BBE) radiation. Loblolly pine seedlings were subsequently grown in the field under either ambient or supplemental levels of UV-B radiation. At the conclusion of the growing season, measurements of epidermal UV-B screening effectiveness were made with a fiber-optic microprobe. In loblolly pine, less than 0.5% of incident UV-B radiation was transmitted through the epidermis of fascicle needles and about 1% was transmitted in primary needles. In contrast, epidermal transmittance in sweetgum ranged from about 20% in leaves not preconditioned to UV-B exposure, to about 10% in leaves grown under UV-B radiation. The concentration of UV-absorbing compounds was unaffected by UV-B exposure, but generally increased with leaf age. Increases in epidermal thickness were observed in response to UV-B treatment in loblolly pine, and this accounted for over half of the variability in UV-B screening effectiveness. In spite of the low levels of UV-B penetration into the mesophyll, delays in leaf development (both species) and final needle size (loblolly pine) were observed. Seedling biomass was reduced by supplemental UV-B radiation in loblolly pine. We hypothesize that the UV-induced growth reductions were manifested by changes in either epidermal anatomy or epidermal secondary chemistry that might negatively impact cell elongation.  相似文献   

16.
The possible mechanism(s) by which supplemental UV-B radiation alleviates the adverse effects of summer drought in Mediterranean pines (Petropoulou et al. 1995) were investigated with seedlings of Pinus pinea. Plants received ambient or ambient plus supplemental UV-B radiation (biologically equivalent to a 15% ozone depletion over Patras, 38.3° N, 29.1° E) and natural precipitation or additional irrigation. Treatments started on 1 February, 1994 and lasted up to the end of the dry period (29 September). In well-watered plants, UV-B radiation had no influence on photosystem II photochemical efficiency and biomass accumulation. Water stressed plants suffered from needle loss and reduced photosystem II photochemical efficiency during the summer. These symptoms, however, were less pronounced in plants receiving supplemental UV-B radiation, resulting in higher total biomass at plant harvest. Laboratory tests showed that enhanced UV-B radiation did not improve the tolerance of photosystem II against drought, high light, high temperature and oxidative stress. Enhanced UV-B radiation, however, improved the water economy of water stressed plants, as judged by measurements of needle relative water content. In addition, it caused an almost two-fold increase of cuticle thickness. No such UV-B radiation effects were observed in well-watered pines. The results indicate that the combination of water stress and UV-B radiation may trigger specific responses, enabling the plants to avoid excessive water loss and, thereby, maintain a more efficient photosynthetic apparatus during the summer. The extent of this apparently positive UV-B radiation effect would depend on the amount of summer precipitation. Abbreviations: DW – dry weight, Fv/Fm – ratio of variable to maximum fluorescence, A 300 – absorbance at 300 nm, PAR – photosynthetically active radiation, PS II – photosystem II, RWC – relative water content, TCA – trichloroacetic acid, UV-BBE – biologically effective ultraviolet-B radiation  相似文献   

17.
Levizou  Efi  Manetas  Yiannis 《Plant Ecology》2001,154(1-2):211-218
The combined effects of additional UV-B radiation and artificial wounding on leaf phenolics were studied in a short term field experiment with the drought semi-deciduous Mediterranean shrub Phlomis fruticosa L. The seedlings were grown under ambient or ambient plus supplemental UV-B radiation (biologically equivalent to a 15% ozone depletion over Patras, 38.3° N, 29.1° E) for 7 months before wounding. Unexpectedly, supplemental UV-B radiation decreased leaf phenolics. Subsequently, wounding was effected by removing leaf discs from some of the plants, while the rest remained intact and served as controls. Wounding significantly increased phenolics of the wounded leaves and the increase was more pronounced under supplemental UV-B radiation. In addition, wounding had a significant positive effect on the phenolics of the opposite, intact leaf, but only under additional UV-B radiation. We conclude that UV-B radiation, wounding and their combination may affect the chemical defensive potential of Phlomis fruticosa. In addition, increased levels of phenolics after herbivore attack under field conditions may afford extra protection against enhanced UV-B radiation levels.  相似文献   

18.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

19.
Stephanou  M.  Manetas  Y. 《Plant Ecology》1998,134(1):91-96
Seedlings of the Mediterranean shrub Cistus creticus L. were grown in the field under ambient or ambient plus supplemental UV-B radiation (simulating a 15% ozone depletion over Patras, 38.3°W, 29.1°E) for 20 months. During this period, measurements of photosynthetic capacity, photochemical efficiency of PS II, chlorophylls and carotenoids were performed once per season. Supplemental UV-B radiation had no significant effect on these parameters nor on the total, above ground biomass accumulation, plant height and leaf specific mass measured at plant harvest. It was observed, however, that UV-B supplementation increased the number of seeds per fruit as well as mean individual seed mass. As a result, seed number and total seed mass per plant were considerably increased. Germination rates of produced seeds were not affected. We may conclude that C. creticus is a UV-B resistant plant whose competitive ability may be improved by enhanced UV-B radiation through an increase in its reproductive effort and a higher contribution to the seed bank.  相似文献   

20.
Sugar beet ( Beta vulgaris L.) plants injected with Cercospora beticota Sace. as well as non-infected plants were grown under visible light with or without ultraviolet-B (UV-B, 280–320 nm) radiation for 40 days. An interaction between UV-B radiation and Cercospora leaf spot disease was observed, resulting in a large reduction in leaf chlorophyll content, dry weight of leaf laminae, petioles and storage roots. Lipid peraxidation in leaves also increased the most under the combined treatments. This was also true for ultraweak luminescence from both adaxial and abaxial leaf surfaces. However, no correlation between lipid peroxidation and ultraweak luminescence was observed. Ultraviolet-B radiation given alone appeared to have either a stimulating effect, giving an increase in dry weight of laminae and reducing lipid peroxidation, or no effect. This lack of effect was seen in the absence of change in dry weight of storage roots and chlorophyll content relative to controls. The :study demonstrated a harmful interaction between UV-B radiation and Cercospom leaf spot disease on sugar beet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号