首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The growth constant and Y (sucrose) (grams of cells per mole of sucrose) for NH(3)-grown cultures of Clostridium pasteurianum were 1.7 times those of N(2)-grown cultures, whereas the rate of sucrose utilized per gram of cells per hour was similar for both conditions. The Y (sucrose) of chemostat cultures grown on limiting NH(3) under argon at generation times equal to those of N(2)-fixing cultures was less than that of cultures grown on excess NH(3), but cells of NH(3)-limited cultures contained the N(2)-fixing system in high concentration. The concentration of the N(2)-fixing system in whole cells, when measured with adenosine triphosphate (ATP) nonlimiting, was more than twofold greater than the amount needed for the N(2) actually fixed. Thus, energy production from sucrose, and not the concentration of the N(2)-fixing system nor the maximal rate at which N(2) could be fixed, was the limiting factor for growth of N(2)-fixing cells. Either NH(3) or some product of NH(3) metabolism partially regulated the rate of sucrose metabolism since, when cultures fixing N(2), growing on NH(3), or growing on limiting NH(3) in the absence of N(2) were deprived of their nitrogen source, the rate of sucrose catabplism decreased. Calculations showed that the rate of ATP production was the growth rate-limiting factor in cells grown on N(2), and that the increased sucrose requirement of N(2)-fixing cultures in part reflected the energy demand of N(2) fixation. Calculations indicated that whole cells require about 20 moles of ATP for the fixation of 1 mole of N(2) to 2 moles of NH(3).  相似文献   

2.
The effects of the intracellular energy balance and adenylate pool composition on N2 fixation were examined by determining changes in the energy charge (EC) and the ADP/ATP (D/T) ratio of cells in chemostat and batch cultures of Clostridium pasteurianum, Klebsiella pneumoniae, and Azotobacter vinelandii. When cells of C. pasteurianum, K. pneumoniae, and A. vinelandii in sucrose-limited chemostats were examined, in all cases the EC increased greater than or equal to 15% when the nitrogen source was switched from N2 to NH3 and decreased greater than or equal to 15% when the nitrogen source was switched from NH3 to N2. The D/T ratio of the same cultures decreased greater than or equal to 70% when they were switched from N2 to NH3. In such cultures the adenylate pools remained constant when the cells were grown on either NH3 or N2. In nitrogen (NH3)-limited cultures, the adenylate pool was two- to threefold higher than the adenylate pool in sucrose-limited cultures, and the nitrogenase content of such cells was two- to threefold greater than the nitrogenase content of sucrose-limited N2-fixing cells. The EC and D/T ratio of cells from batch cultures of C. pasteurianum growing on NH3 in the presence of N2 were 0.82 and 0.83, respectively, but when the NH3 was consumed and the cells were switched to a nitrogen-fixing metabolism, the EC and D/T ratio changed to 0.70 and 0.90, respectively. Conversely, when NH3 was added to N2-fixing cultures the EC and D/T ratio changed within 1.5 h the EC and D/T ratio of NH3-grown cells. The nitrogen content of N2-fixing cells to which NH3 was added decreased at a rate greater could be accounted for by cell growth in the absence of further synthesis. This decay of nitrogenase activity (with a half-life about 1.2 to 1.4 h) suggests that some type of inactivation of nitrogenase occurs during repression. The nitrogenase of whole cells was estimated to be operating at about 32% of its theoretical maximum activity during steady-state N2-fixing conditions. Similarities in the data from chemostat and batch cultures of both aerobic and anaerobic N2-fixing organisms suggest that low EC and high D/T ratio are normal manifestations of an N2-fixing physiology.  相似文献   

3.
Regulation of molybdate transport by Clostridium pasteurianum.   总被引:6,自引:6,他引:0       下载免费PDF全文
The regulation of the molybdate (MoO42-) transport activity of Clostridium pasteurianum has been studied by observing the effects of NH3, carbamyl phosphate, MoO42-, and chloramphenicol on the ability of cells to take up MoO42-. Compared with cells fixing N2, cells grown in the presence of 1 mM NH3 are greater than 95% repressed for MoO42- transport. Uptake activity begins to increase just before NH exhaustion (under Ar or N2) and continues to increase throughout the lag period as cells shift from NH3-growing to N2-fixing conditions. When cells are shifted from N2-fixing to NH3-growing conditions the transport activity per fixed number of cells decreases by increase of bells in absence of transport synthesis. Carbamyl phosphate (greater than or equal to 15 mM) but not NH3 inhibits 58% of the in vitro uptake activity. When 1 mM carbamyl phosphate is added just before the exhaustion of NH3, the transport activity, measured 2 h later, is 100% repressed. Cells grown in the presence of high MoO42- (1mM) are 80% repressed for MoO42- transport. Synthesis of the MoO42- transport system is also completely stopped when chloramphenicol (300 mug/ml) is added just before the exhaustion oNH 3 from the medium. These findings demonstrate that the ability of cells to transport MoO42- is dependent upon new protein synthesis and can be repressed by high levels of substrate. The regulation of MoO42- uptake by NH3 or carbamyl phosphate closely parallels the regulation of nitrogenase activity. Activity of neither nitrogenase component (Fe protein or MoFe protein) was detected even 3 h after the exhaustion of the NH3 if either MoO42- was absent or if WO42- was present in place of MoO42-. The duration of the diauxic lag increases with decreasing concentration of MoO42- in the medium. If no MoO42- is present the lag continues indefinitely. If MoO42- is added late in the lag period, growth under N2-fixing conditions resumes but only after a normal induction period.  相似文献   

4.
Photoproduction of H2 and activation of H2 for CO2 reduction (photoreduction) by Rhodopseudomonas capsulata are catalyzed by different enzyme systems. Formation of H2 from organic compounds is mediated by nitrogenase and is nto inhibited by an atmosphere of 99% H2. Cells grown photoheterotrophically on C4 dicarboxylic acids (with glutamate as N source) evolve H2 from the C4 acids and also from lactate and pyruvate; cells grown on C3 carbon sources, however, are inactive with the C4 acids, presumably because they lack inducible transport systems. Ammonia is known to inhibit N2 fixation by photosynthetic bacteria, and it also effectively prevents photoproduction of H2; these effects are due to inhibition and, in part, inactivation of nitrogenase. Biosynthesis of the latter, as measured by both H2 production and acetylene reduction assays, is markedly increased when cells are grown at high light intensity; synthesis of the photoreduction system, on the other hand, is not appreciably influenced by light intensity during photoheterotrophic growth. The photoreduction activity of cells grown on lactate + glutamate (which contain active nitrogenase) is greatly activated by NH4+, but this effect is not observed in cells grown with NH4+ as N source (nitrogenase repressed) or in a Nif- mutant that is unable to produce H2. Lactate, malate, and succinate, which are readily used as growth substrates by R. capsulata and are excellent H donors for photoproduction of H2, abolish photoreduction activity. The physiological significances of this phenomenon and of the reciprocal regulatory effects of NH4+ on H2 production and photoreduction are discussed.  相似文献   

5.
The control of nitrogenase recovery from inactivation by oxygen was studied in Anabaena sp. strain CA (ATCC 33047). Nitrogenase activity (acetylene reduction) in cultures grown in 1% CO2 in air was inhibited by exposure to 1% CO2-99% O2 and allowed to recover in the presence of high oxygen tensions. Cultures exposed to hyperbaric levels of oxygen in the presence of 10 mM NH4NO3 were incapable of regaining nitrogenase activity, whereas control cultures returned to 65 to 80% of their original activity within about 3 h after exposure to high oxygen tension. In contrast to the regulation of heterocyst differentiation and nitrogenase synthesis, recovery from oxygen inactivation in this organism was shown to be under the control of NH4+ rather than NO3-.  相似文献   

6.
Carbamyl phosphate caused a maximal inhibition of 50% of the in vitro nitrogenase activity measured by acetylene reduction and dinitrogen reduction. The addition of 1 mM carbamyl phosphate to a N(2)-fixing culture caused a rapid decrease of 30% of the acetylene reduction activity and also repression of nitrogenase biosynthesis. However, carbamyl phosphate had no effect on the reductant-dependent adenosine triphosphate hydrolysis and H(2) evolution reactions catalyzed by nitrogenase. Studies on the binding of carbamyl phosphate to nitrogenase and each of its two components (azoferredoxin and molybdoferredoxin) indicated that optimal binding was obtained only in the presence of an operating nitrogenase system. Moreover, the binding seemed to be on the molybdoferredoxin component rather than azoferredoxin. From a Scatchard plot and a reciprocal plot of the data, the values of n = 2 and dissociation constant (K) of approximately 5 x 10(-5) M were obtained. The value for the dissociation constant was of the same order of magnitude as the endogenous level of carbamyl phosphate in a N(2)-fixing cell. The carbamyl phosphate pool in NH(3)-grown cells was twice that of N(2)-fixing cells.  相似文献   

7.
柱孢鱼腥藻固氮酶防氧的呼吸保护   总被引:1,自引:0,他引:1  
柱孢鱼腥藻生长在缺氮情况下,发现其固氮活性增加的同时也减少了对氧的敏感性。缺氮生长细胞的乙炔还原活性给氧抑制一半时的氧分压(pO_2)是0.5atm.,而有氮生长细胞的半抑制浓度为0.35atm.。这表明蓝藻有可能通过增加呼吸耗氧而提高了它的固氮酶活性。呼吸作用与固氮酶活性之间存在着密切的关系。无论在有氮、缺氮还是光诱导固氮酶形成的情况下,其固氮活性均随着呼吸速率的变化而变化。本研究结果,支持了柱孢鱼腥藻固氮酶的主要防氧手段是呼吸保护的观点。  相似文献   

8.
Spirillum lipoferum, an N2-fixing organism, was grown at constant concentrations of dissolved O2. When supplied with NH4+ aerobically, its doubling time was 1 h; when it fixed N2 microaerophilically, its doubling time was 5-5 to 7 h and the optimal PO2 for growth was 0-005 to 0-007 atm. At its optimal PO2 for growth on N2, S. lipoferum assimilated 8 to 10 mg nitrogen/g carbon substrate used; its efficiency was less at higher PO2 levels. Nitrogenase in cell-free extracts required Mg2+ and Mn2+, and the Fe-protein was activated by Rhodospirillum rubrum activating factor. The nitrogenase had an optimal pH of 7-1 to 7-4 and an apparent Km for acetylene of 0-0036 atm. Extracts of S. lipoferum lost their nitrogenase activity on storage at -18 degrees C, and activity was restored by adding purified Fe-protein from other N2-fixing bacteria.  相似文献   

9.
Frankia spp. are filamentous actinomycetes that fix N2 in culture and in actinorhizal root nodules. In combined nitrogen-depleted aerobic environments, nitrogenase is restricted to thick-walled spherical structures, Frankia vesicles, that are formed on short stalks along the vegetative hyphae. The activities of the NH4(+)-assimilating enzymes (glutamine synthetase [GS], glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase) were determined in cells grown on NH4+ and N2 and in vesicles and hyphae from N2-fixing cultures separated on sucrose gradients. The two frankial GSs, GSI and GSII, were present in vesicles at levels similar to those detected in vegetative hyphae from N2-fixing cultures as shown by enzyme assay and two-dimensional polyacrylamide gel electrophoresis. Glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase activities were restricted to the vegetative hyphae. Vesicles apparently lack a complete pathway for assimilating ammonia beyond the glutamine stage.  相似文献   

10.
The thermophilic green sulfur bacterium Chlorobium tepidum grew with N2, NH4+, or glutamine as the sole nitrogen source under phototrophic (anaerobic-light) conditions. Growth on N2 required increased buffering capacity to stabilize uncharacterized pH changes that occurred during diazotrophic growth. Increased sulfide levels were stimulatory for growth on N2. Levels of nitrogenase activity (acetylene reduction) in N2-grown C. tepidum cells were very high, among the highest ever reported for anoxygenic phototrophic bacteria. Maximal acetylene reduction rates in C. tepidum cells were observed at 48 to 50 degrees C, which is about 15 degrees C higher than the optimum temperature for nitrogenase activity in mesophilic chlorobia, and nitrogenase activity in C. tepidum responded to addition of ammonia by a "switch-off/switch-on" mechanism like that in phototrophic purple bacteria. C. tepidum cells assimilated ammonia mainly via the glutamine synthetase-glutamate synthase pathway, elevated levels of both of these enzymes being present in cells grown on N2. These results show that N2 fixation can occur in green sulfur bacteria up to at least 60 degrees C and that regulatory mechanisms important in control of nitrogenase activity in mesophilic anoxygenic phototrophs also appear to regulate thermally active forms of the enzyme.  相似文献   

11.
12.
Clostridium pasteurianum exhibits diauxic growth when grown in the presence of both NH(3) and N(2); no nitrogenase activity or formation was detected either serologically or by activity during growth on NH(3). During the 60-min lag that ensued after NH(3) was consumed and before growth resumed, molybdoferredoxin and azoferredoxin were first detected by activity measurements and serologically at 25 and 40 min, respectively. With the use of rifampin and dactinomycin, it was found that azoferredoxin messenger ribonucleic acid was initiated between 25 and 30 min after the inception of the lag and was completed by 38 min. An explanation of these results and their relation to possible models for the regulation of nitrogenase is given.  相似文献   

13.
Sandh G  Ran L  Xu L  Sundqvist G  Bulone V  Bergman B 《Proteomics》2011,11(3):406-419
Trichodesmium is a marine filamentous diazotrophic cyanobacterium and an important contributor of "new" nitrogen in the oligotrophic surface waters of the tropical and sub-tropical oceans. It is unique in that it exclusively fixes N(2) at daytime, although it belongs to the non-heterocystous filamentous segment of the cyanobacterial radiation. Here we present the first quantitative proteomic analysis of Trichodesmium erythraeum IMS101 when grown under different nitrogen regimes using 2-DE/MALDI-TOF-MS. Addition of combined nitrogen (NO3-) prevented development of the morphological characteristics of the N(2)-fixing cell type (diazocytes), inhibited expression of the nitrogenase enzyme subunits and consequently N(2) fixation activity. The diazotrophic regime (N(2) versus NO3- cultures) elicited the differential expression of more than 100 proteins, which represented 13.5% of the separated proteins. Besides proteins directly related to N(2) fixation, proteins involved in the synthesis of reducing equivalents and the generation of a micro-oxic environment were strongly up-regulated, as was in particular Dps, a protein related to iron acquisition and potentially other vital cellular processes. In contrast, proteins involved in the S-adenosylmethionine (SAM) cycle, synthesis of amino acids and production of carbon skeletons for storage and synthesis of amino acids were suppressed. The data are discussed in the context of Trichodesmium's unusual N(2)-fixing physiology.  相似文献   

14.
Regulation of nitrogen fixation in Rhizobium sp.   总被引:3,自引:2,他引:1       下载免费PDF全文
Regulation of nitrogen fixation by ammonium and glutamate was examined in Rhizobium sp. 32H1 growing in defined liquid media. Whereas nitrogenase synthesis in Klebsiella pneunoniae is normally completely repressed during growth on NH4+, nitrogenase activity was detected in cultures of Rhizobium sp. grown with excess NH4+. However, an "ammonium effect" on activity was invariably observed in cultures grown on NH4+ as sole nitrogen source; the nitrogenase activity was, depending on conditions, 14 to 36% of that of comparable glutamate-grown cultures. Glutamate inhibited utilization of exogenous NH4+ and, in one of two procedures described, glutamate partially alleviated the ammonium effect on nitrogenase activity. NH4+, apparently produced from N2, was excreted into the culture medium when growth was initiated on glutamate, but not when NH4+ was thesole source of fixed nitrogen for growth. These findings are discussed in relation to nitrogen fixation by Rhizobium bacteroids.  相似文献   

15.
A mutant has been isolated from Anabaena sp. strain CA by treatment with N-methyl-N'-nitro-N-nitrosoguanidine, which has the unusual phenotypic characteristic of growth only under N2-fixing conditions. Growth of the mutant was completely inhibited by NO3- or NH4+ at concentrations routinely used for growth of the wild type, and sensitivity to NH4+ was especially pronounced. The inhibitory effect of NH4+ could not be overcome by glutamine, glutamate, or casein hydrolysate. Ammonia had no immediate inhibitory effect on protein synthesis, CO2 fixation, or O2 evolution, and the gradual inhibition of C2H2 reduction activity by NH4+ resembled a repression phenomenon. The glutamine synthetase activity of N2-fixing cultures appeared normal, yet the mutant was incapable of utilizing exogenous NH4+ for growth. Preliminary evidence suggests a possible alteration of glutamine synthetase, which could result in sensitivity to exogenous NH4+ by progressive inactivation of the enzyme or repression of its synthesis.  相似文献   

16.
H2 uptake and H2-supported O2 uptake were measured in N2-fixing cultures of Frankia strain ArI3 isolated from root nodules of Alnus rubra. H2 uptake by intact cells was O2 dependent and maximum rates were observed at ambient O2 concentrations. No hydrogenase activity could be detected in NH4+-grown, undifferentiated filaments cultured aerobically indicating that uptake hydrogenase activity was associated with the vesicles, the cellular site of nitrogen fixation in Frankia. Hydrogenase activity was inhibited by acetylene but inhibition could be alleviated by pretreatment with H2. H2 stimulated acetylene reduction at supraoptimal but not suboptimal O2 concentrations. These results suggest that uptake hydrogenase activity in ArI3 may play a role in O2 protection of nitrogenase, especially under conditions of carbon limitation.  相似文献   

17.
The non-heterocystous cyanobacterium Oscillatoria sp. strain 23 fixes nitrogen under aerobic conditions. If nitrate-grown cultures were transferred to a medium free of combined nitrogen, nitrogenase was induced within about 1 day. The acetylene reduction showed a diurnal variation under conditions of continuous light. Maximum rates of acetylene reduction steadily increased during 8 successive days. When grown under alternating light-dark cycles, Oscillatoria sp. fixes nitrogen preferably in the dark period. For dark periods longer than 8 h, nitrogenase activity is only present during the dark period. For dark periods of 8 h and less, however, nitrogenase activity appears before the beginning of the dark period. This is most pronounced in cultures grown in a 20 h light – 4 h dark cycle. In that case, nitrogenase activity appears 3–4 h before the beginning of the dark period. According to the light-dark regime applied, nitrogenase activity was observed during 8–11 h. Oscillatoria sp. grown under 16 h light and 8 h dark cycle, also induced nitrogenase at the usual point of time, when suddenly transferred to conditions of continuous light. The activity appeared exactly at the point of time where the dark period used to begin. No nitrogenase activity was observed when chloramphenicol was added to the cultures 3 h before the onset of the dark period. This observation indicated that for each cycle, de novo nitrogenase synthesis is necessary.  相似文献   

18.
Spontaneous ethylenediamine-resistant mutants of Azospirillum brasilense were selected on the basis of their excretion of NH(4). Two mutants exhibited no repression of their nitrogenase enzyme systems in the presence of high (20 mM) concentrations of NH(4). The nitrogenase activities of these mutants on nitrogen-free minimal medium were two to three times higher than the nitrogenase activity of the wild type. The mutants excreted substantial amounts of ammonia when they were grown either under oxygen-limiting conditions (1 kPa of O(2)) or aerobically on nitrate or glutamate. The mutants grew well on glutamate as a sole nitrogen source but only poorly on NH(4)Cl. Both mutants failed to incorporate [C]methylamine. We demonstrated that nitrite ammonification occurs in the mutants. Wild-type A. brasilense, as well as the mutants, became established in the rhizospheres of axenically grown wheat plants at levels of > 10 cells per g of root. The rhizosphere acetylene reduction activity was highest in the preparations containing the mutants. When plants were grown on a nitrogen-free nutritional medium, both mutants were responsible for significant increases in root and shoot dry matter compared with wild-type-treated plants or with noninoculated controls. Total plant nitrogen accumulation increased as well. When they were exposed to a N(2)-enriched atmosphere, both A. brasilense mutants incorporated significantly higher amounts of N inside root and shoot material than the wild type did. The results of our nitrogen balance and N enrichment studies indicated that NH(4)-excreting A. brasilense strains potentially support the nitrogen supply of the host plants.  相似文献   

19.
The role of Mo in the activity and synthesis of the nitrogenase components of Clostridium pasteurianum has been studied by observing the competition of Mo with its structural analogue W. Clostridial cells when fixing N2 appeared strictly dependent upon the available Mo, showing maximal N2-fixing activity at molybdate concentrations in the media of 10 muM. Cells grown in media with 3 times 10(-6) muM Mo, although showing good growth, had only 15% as much N2-fixing activity. In the presence of W the synthesis of both nitrogenase components, molybdoferredoxin and azoferredoxin, was affected. Attempts to produce nitrogenase in W-grown cells by addition of high molybdenum to the media in the presence of inhibitors of protein synthesis showed that Mo incorporation into a possible inactive preformed apoenzyme did not occur. Unlike other molybdoenzyme-containing cells, in which W either is incorporated in place of Mo to yield inactive protein or initiates the production of apoprotein, C. pasteurianum forms neither a tungsten substituted molybdoferredoxin nor an apoprotein. It is concluded that in C. pasteurianum molybdenum is an essential requirement for both the biosynthesis and activity of its nitrogenase.  相似文献   

20.
Hydrogen-supported nitrogenase activity was demonstrated in Anabaena cylindrica cultures limited for reductant. Nitrogen-fixing Anabaena cylindrica cultures sparged in the light with anaerobic gases in the presence of the photosynthesis inhibitor DCMU slowly lost their ability to reduce acetylene in the light under argon but exhibited near normal activities in the presence of 11% H2 (balance argon). The hydrogen-supported nitrogenase activity was half-saturated between 2 and 3% H2 and was strongly inhibited by oxygen (50% inhibition at about 5–6% O2). Batch cultures of Anabaena cylindrica approaching stationary growth phase (“old” cultures) lost nitrogenase-dependent hydrogen evolution almost completely. In these old cultures hydrogen relieved the inhibitory effects of DCMU and O2 on acetylene reduction. Our results suggest that heterocysts contain an uptake hydrogenase which supplies an electron transport chain to nitrogenase but which couples only poorly with the respiratory chain in heterocysts and does not function in CO2 fixation by vegetative cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号