首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
PUF proteins comprise a highly conserved family of sequence-specific RNA binding proteins that regulate target mRNAs via binding directly to their 3'UTRs. The Caenorhabditis elegans genome encodes several PUF proteins, which cluster into four groups based on sequence similarity; all share amino acids that interact with the RNA in the cocrystal of human Pumilio with RNA. Members of the FBF and the PUF-8/9 groups bind different but related RNA sequences. We focus here on the binding specificity of representatives of a third cluster, comprising PUF-5, -6, and -7. We performed in vivo selection experiments using the yeast three-hybrid system to identify RNA sequences that bind PUF-5 and PUF-6, and we confirmed binding to optimal sites in vitro. The consensus sequences derived from the screens are similar for PUF-5 and PUF-6 but differ from those of the FBF or PUF-8/-9 groups. Similarly, neither PUF-5 nor PUF-6 bind the recognition sites preferred by the other clusters. Mutagenesis studies confirmed the unique RNA specificity of PUF-5/-6. Using the PUF-5 consensus derived from our experiments, we searched a database of C. elegans 3'UTRs to identify potential targets of PUF-5, several of which indeed bind PUF-5. Therefore the consensus has predictive value and provides a route to finding genuine targets of these proteins.  相似文献   

2.
mRNA control networks depend on recognition of specific RNA sequences. Pumilio-fem-3 mRNA binding factor (PUF) RNA-binding proteins achieve that specificity through variations on a conserved scaffold. Saccharomyces cerevisiae Puf3p achieves specificity through an additional binding pocket for a cytosine base upstream of the core RNA recognition site. Here we demonstrate that this chemically simple adaptation is prevalent and contributes to the diversity of RNA specificities among PUF proteins. Bioinformatics analysis shows that mRNAs associated with Caenorhabditis elegans fem-3 mRNA binding factor (FBF)-2 in vivo contain an upstream cytosine required for biological regulation. Crystal structures of FBF-2 and C. elegans PUF-6 reveal binding pockets structurally similar to that of Puf3p, whereas sequence alignments predict a pocket in PUF-11. For Puf3p, FBF-2, PUF-6, and PUF-11, the upstream pockets and a cytosine are required for maximal binding to RNA, but the quantitative impact on binding affinity varies. Furthermore, the position of the upstream cytosine relative to the core PUF recognition site can differ, which in the case of FBF-2 originally masked the identification of this consensus sequence feature. Importantly, other PUF proteins lack the pocket and so do not discriminate upstream bases. A structure-based alignment reveals that these proteins lack key residues that would contact the cytosine, and in some instances, they also present amino acid side chains that interfere with binding. Loss of the pocket requires only substitution of one serine, as appears to have occurred during the evolution of certain fungal species.  相似文献   

3.
PUF proteins are a conserved family of RNA binding proteins that regulate RNA stability and translation by binding to specific sequences in 3'-untranslated regions. Drosophila PUMILIO and C. elegans FBF are essential for self-renewal of germline stem cells, suggesting that a common function of PUF proteins may be to sustain mitotic proliferation of stem cells. Here, we show that PUF-8, the C. elegans PUF most related to PUMILIO, performs a different function in germ cells that have begun meiosis: in primary spermatocytes, puf-8 is required to maintain meiosis and prevent the return to mitosis. Primary spermatocytes lacking PUF-8 complete meiotic prophase but do not undergo normal meiotic divisions. Instead, they dedifferentiate back into mitotically cycling germ cells and form rapidly growing tumors. These findings reveal an unexpected ability for germ cells that have completed meiotic prophase to return to the mitotic cycle, and they support the view that PUF proteins regulate multiple transitions during germline development.  相似文献   

4.
The molecular mechanisms of aging are unsolved fundamental biological questions. Caenorhabditis elegans is an ideal model organism for investigating aging. PUF-8, a PUF (Pumilio and FBF) protein in C. elegans, is crucial for germline development through binding with the 3′ untranslated regions (3′ UTR) in the target mRNAs. Recently, PUF-8 was reported to alter mitochondrial dynamics and mitophagy by regulating MFF-1, a mitochondrial fission factor, and subsequently regulated longevity. Here, we determined the crystal structure of the PUF domain of PUF-8 with an RNA substrate. Mutagenesis experiments were performed to alter PUF-8 recognition of its target mRNAs. Those mutations reduced the fertility and extended the lifespan of C. elegans. Deep sequencing of total mRNAs from wild-type and puf-8 mutant worms as well as in vivo RNA Crosslinking and Immunoprecipitation (CLIP) experiments identified six PUF-8 regulated genes, which contain at least one PUF-binding element (PBE) at the 3′ UTR. One of the six genes, pqm-1, is crucial for lipid storage and aging process. Knockdown of pqm-1 could revert the lifespan extension of puf-8 mutant animals. We conclude that PUF-8 regulate the lifespan of C. elegans may not only via MFF but also via modulating pqm-1-related pathways.  相似文献   

5.
PUF proteins specifically bind mRNAs to regulate their stability and translation. Here we focus on the RNA-binding specificity of a C. elegans PUF protein, PUF-11. Our findings reveal that PUF-11 binds RNA in multiple modes, in which the protein can accommodate variable spacings between two distinct recognition elements. We propose a structural model in which flexibility in the central region of the protein enables the protein to adopt at least two distinct structures, one of which results in base flipping.  相似文献   

6.
Maintenance of mitotically cycling germline stem cells (GSCs) is vital for continuous production of gametes. In worms and insects, signaling from surrounding somatic cells play an essential role in the maintenance of GSCs by preventing premature differentiation. In addition, germ cell proteins such as the Drosophila Pumilio and Caenorhabditis elegans FBF, both members of the PUF family translational regulators, contribute to GSC maintenance. FBF functions by suppressing GLD-1, which promotes meiotic entry. However, factors that directly promote GSC proliferation, rather than prevent differentiation, are not known. Here we show that PUF-8, another C. elegans member of the PUF family and MEX-3, a KH domain translational regulator, function redundantly to promote GSC mitosis. We find that PUF-8 protein is highly enriched in mitotic germ cells, which is similar to the expression pattern of MEX-3 described earlier. The puf-8(−) mex-3(−) double mutant gonads contain far fewer germ cells than both single mutants and wild-type. While these cells lack mitotic, meiotic and sperm markers, they retain the germ cell-specific P granules, and are capable of gametogenesis if GLP-1, which normally blocks meiotic entry, is removed. Significantly, we find that at least one of these two proteins is essential for germ cell proliferation even in meiotic entry-defective mutants, which otherwise produce germ cell tumors. We conclude PUF-8 and MEX-3 contribute to GSC maintenance by promoting mitotic proliferation rather than by blocking meiotic entry.  相似文献   

7.
Stacking interactions between amino acids and bases are common in RNA-protein interactions. Many proteins that regulate mRNAs interact with single-stranded RNA elements in the 3' UTR (3'-untranslated region) of their targets. PUF proteins are exemplary. Here we focus on complexes formed between a Caenorhabditis elegans PUF protein, FBF, and its cognate RNAs. Stacking interactions are particularly prominent and involve every RNA base in the recognition element. To assess the contribution of stacking interactions to formation of the RNA-protein complex, we combine in vivo selection experiments with site-directed mutagenesis, biochemistry, and structural analysis. Our results reveal that the identities of stacking amino acids in FBF affect both the affinity and specificity of the RNA-protein interaction. Substitutions in amino acid side chains can restrict or broaden RNA specificity. We conclude that the identities of stacking residues are important in achieving the natural specificities of PUF proteins. Similarly, in PUF proteins engineered to bind new RNA sequences, the identity of stacking residues may contribute to "target" versus "off-target" interactions, and thus be an important consideration in the design of proteins with new specificities.  相似文献   

8.
9.
10.
In metazoans, many mRNAs needed for embryogenesis are produced during oogenesis and must be tightly regulated during the complex events of oocyte development. In C. elegans, translation of the Notch receptor GLP-1 is repressed during oogenesis and is then activated specifically in anterior cells of the early embryo. The KH domain protein GLD-1 represses glp-1 translation during early stages of meiosis, but the factors that repress glp-1 during late oogenesis are not known. Here, we provide evidence that the PUF domain protein PUF-5 and two nearly identical PUF proteins PUF-6 and PUF-7 function during a specific period of oocyte differentiation to repress glp-1 and other maternal mRNAs. Depletion of PUF-5 and PUF-6/7 together caused defects in oocyte formation and early embryonic cell divisions. Loss of PUF-5 and PUF-6/7 also caused inappropriate expression of GLP-1 protein in oocytes, but GLP-1 remained repressed in meiotic germ cells. PUF-5 and PUF-6/7 function was required directly or indirectly for translational repression through elements of the glp-1 3' untranslated region. Oogenesis and embryonic defects could not be rescued by loss of GLP-1 activity, suggesting that PUF-5 and PUF-6/7 regulate other mRNAs in addition to glp-1. PUF-5 and PUF-6/7 depletion, however, did not perturb repression of the maternal factors GLD-1 and POS-1, suggesting that subsets of maternal gene products may be regulated by distinct pathways. Interestingly, PUF-5 protein was detected exclusively during mid to late oogenesis but became undetectable prior to completion of oocyte differentiation. These results reveal a previously unknown maternal mRNA control system that is specific to late stages of oogenesis and suggest new functions for PUF family proteins in post-mitotic differentiation. Multiple sets of RNA-binding complexes function in different domains of the C. elegans germ line to maintain silencing of Notch/glp-1 and other mRNAs.  相似文献   

11.
The C. elegans PUF and FBF proteins regulate various aspects of germline development by selectively binding to the 3' untranslated region of their target mRNAs and repressing translation. Here, we show that puf-8, fbf-1 and fbf-2 also act in the soma where they negatively regulate vulvaI development. Loss-of-function mutations in puf-8 cause ectopic vulval differentiation when combined with mutations in negative regulators of the EGFR/RAS/MAPK pathway and suppress the vulvaless phenotype caused by mutations that reduce EGFR/RAS/MAPK signalling. PUF-8 acts cell-autonomously in the vulval cells to limit their temporal competence to respond to the extrinsic patterning signals. fbf-1 and fbf-2, however, redundantly inhibit primary vulval cell fate specification in two distinct pathways acting in the soma and in the germline. The FBFs thereby ensure that the inductive signal selects only one vulval precursor cell for the primary cell fate. Thus, translational repressors regulate various aspects of vulval cell fate specification, and they may play a conserved role in modulating signal transduction during animal development.  相似文献   

12.
13.
Identification of a conserved interface between PUF and CPEB proteins   总被引:1,自引:0,他引:1  
Members of the PUF (Pumilio and FBF) and CPEB (cytoplasmic polyadenylation element-binding) protein families collaborate to regulate mRNA expression throughout eukaryotes. Here, we focus on the physical interactions between members of these two families, concentrating on Caenorhabditis elegans FBF-2 and CPB-1. To localize the site of interaction on FBF-2, we identified conserved amino acids within C. elegans PUF proteins. Deletion of an extended loop containing several conserved residues abolished binding to CPB-1. We analyzed alanine substitutions at 13 individual amino acids in FBF-2, each identified via its conservation. Multiple single point mutations disrupted binding to CPB-1 but not to RNA. Position Tyr-479 was particularly critical as multiple substitutions to other amino acids at this position did not restore binding. The complex of FBF-2 and CPB-1 repressed translation of an mRNA containing an FBF binding element. Repression required both proteins and was disrupted by FBF-2 alleles that failed to bind CPB-1 or RNA. The equivalent loop in human PUM2 is required for binding to human CPEB3 in vitro, although the primary sequences of the human and C. elegans PUF proteins have diverged in that region. Our findings define a key region in PUF/CPEB interactions and imply a conserved platform through which PUF proteins interact with their protein partners.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans, FBF/PUF binds regulatory elements in the mpk-1 3′ untranslated region (3′ UTR) and coprecipitates with mpk-1 mRNA; moreover, mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells, PUM2/PUF binds 3′UTR elements in both Erk2 and p38α mRNAs, and PUM2 represses reporter constructs carrying either Erk2 or p38α 3′ UTRs. Therefore, the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes, where FBF promotes the self-renewal of germline stem cells, and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1, the C. elegans homolog of MAPK phosphatase (MKP), to restrict MAPK activity and prevent apoptosis. In mammals, activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal, and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression.  相似文献   

15.
16.
17.
The control and function of RNA are governed by the specificity of RNA binding proteins. Here, we describe a method for global unbiased analysis of RNA-protein interactions that uses in vitro selection, high-throughput sequencing, and sequence-specificity landscapes. The method yields affinities for a vast array of RNAs in a single experiment, including both low- and high-affinity sites. It is reproducible and accurate. Using this approach,we analyzed members of the PUF (Pumilio and FBF) family of eukaryotic mRNA regulators. Our data identify effects of a specific protein partner on PUF-RNA interactions, reveal subsets of target sites not previously detected, and demonstrate that designer PUF proteins can precisely alter specificity. The approach described here is, in principle, broadly applicable for analysis of any molecule that binds RNA, including proteins, nucleic acids, and small molecules.  相似文献   

18.
19.
PUF proteins are a conserved group of sequence specific RNA-binding proteins that bind to RNA in a modular fashion. The RNA-binding domain of PUF proteins typically consists of eight clustered Puf repeats. Plant genomes code for large families of PUF proteins that show significant variability in their predicted Puf repeat number, organization, and amino acid sequence. Here we sought to determine whether the observed variability in the RNA-binding domains of four plant PUFs results in a preference for nonclassical PUF RNA target sequences. We report the identification of a novel RNA binding sequence for a nucleolar Arabidopsis PUF protein that contains an atypical RNA-binding domain. The Arabidopsis PUM23 (APUM23) binding sequence was 10 nucleotides in length, contained a centrally located UUGA core element, and had a preferred cytosine at nucleotide position 8. These RNA sequence characteristics differ from those of other PUF proteins, because all natural PUFs studied to date bind to RNAs that contain a conserved UGU sequence at their 5′ end and lack specificity for cytosine. Gel mobility shift assays validated the identity of the APUM23 binding sequence and supported the location of 3 of the 10 predicted Puf repeats in APUM23, including the cytosine-binding repeat. The preferred 10-nucleotide sequence bound by APUM23 is present within the 18S rRNA sequence, supporting the known role of APUM23 in 18S rRNA maturation. This work also reveals that APUM23, an ortholog of yeast Nop9, could provide an advanced structural backbone for Puf repeat engineering and target-specific regulation of cellular RNAs.  相似文献   

20.
RNA-binding proteins control germline development in metazoans. This work focuses on control of the C. elegans germline by two RNA-binding proteins: FOG-1, a CPEB homolog; and FBF, a PUF family member. Previous studies have shown that FOG-1 specifies the sperm fate and that FBF promotes proliferation. Here, we report that FOG-1 also promotes proliferation. Whereas fbf-1 fbf-2 double mutants make approximately 120 germ cells, fog-1; fbf-1 fbf-2 triple mutants make only approximately 10 germ cells. The triple mutant germline divides normally until early L2, when germ cells prematurely enter meiosis and begin oogenesis. Importantly, fog-1/+; fbf-1 fbf-2 animals make more germ cells than fbf-1 fbf-2 double mutants, demonstrating that one dose of wild-type fog-1 promotes proliferation more effectively than two doses - at least in the absence of FBF. FOG-1 protein is barely detectable in proliferating germ cells, but abundant in germ cells destined for spermatogenesis. Based on fog-1 dose effects, together with the gradient of FOG-1 protein abundance, we suggest that low FOG-1 promotes proliferation and high FOG-1 specifies spermatogenesis. FBF binds specifically to regulatory elements in the fog-1 3'UTR, and FOG-1 increases in animals lacking FBF. Therefore, FBF represses fog-1 expression. We suggest that FBF promotes continued proliferation, at least in part, by maintaining FOG-1 at a low level appropriate for proliferation. The dose-dependent control of proliferation and cell fate by FOG-1 has striking parallels with Xenopus CPEB, suggesting a conserved mechanism in animal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号