首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate is removed mainly by astrocytes from the extracellular fluid via high-affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST), and glutamate transporter-1 (GLT-1). Mercuric chloride (HgCl2) is a highly toxic compound that inhibits glutamate uptake in astrocytes, resulting in excessive extracellular glutamate accumulation, leading to excitotoxicity and neuronal cell death. The mechanisms associated with the inhibitory effects of HgCl2 on glutamate uptake are unknown. This study examines the effects of HgCl2 on the transport of 3H-d-aspartate, a nonmetabolizable glutamate analog, using Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) and GLT-1 (EAAT2), as a model system. Additionally, studies were undertaken to determine the effects of HgCl2 on mRNA and protein levels of these transporters. The results indicate that (1) HgCl2 leads to significant (p<0.001) inhibition of glutamate uptake via both transporters, but is a more potent inhibitor of glutamate transport via GLAST and (2) the effect of HgCl2 on inhibition of glutamate uptake in transfected CHO cells is not associated with changes in transporter protein levels despite a significant decrease in mRNA expression; thus, (3) HgCl2 inhibition is most likely related to its direct binding to the functional thiol groups of the transporters and interference with their uptake function.  相似文献   

2.
Astrocytes have been proposed to regulate the extracellular space in the brain, even if rather little is known about their specific functions. One possibility for obtaining more knowledge on the functions of astroglial cells is to examine how they respond on exposure to pharmacological agents. Na+-valproate is an anticonvulsive drug which is used in the treatment of several types of epilepsy. The mechanisms of action of the drug are not fully understood, but the GABA-ergic system, both in neurons and astrocytes, has been shown to be affected. In the present study, the effects of valproate were investigated on astroglial cells in primary cultures from newborn rat cerebral cortex. The transport of the drug itself and its effects on the transport of the amino acid transmitters glutamate, aspartate and -aminobutyric acid (GABA) into astrocytes were examined. The [3H]valproate transport into the astrocytes was increased after exposure tol-glutamate but notl-aspartate. On the other hand, after acute exposure for the drug, the transport of [3H]l-glutamate and [3H]l-aspartate decreased, as also did the affinity but not the transport capacity for the [3H]GABA uptake. However, after 5 days chronic valproate exposure, no effects could be seen on the uptake kinetics ofl-glutamate orl-aspartate. For GABA, the affinity decreased, while the transport capacity remained unchanged compared with controls. The results showed that valproate, glutamate, aspartate and GABA were capable of interacting significantly with each others transport into the astrocytes.  相似文献   

3.
Summary Glucose uptake by whole cells of Bacteroides ruminicola B14 is constitutive. Potassium concentrations between 10 and 150 mm stimulated uptake over fourfold, while sodium had little effect on uptake. The involvement of potassium in glucose uptake by B. ruminicola was supported by strong inhibition of uptake by the ionophores valinomycin, lasalocid, and monensin. The electron transport inhibitor antimycin A had little effect on uptake, but menadione and acriflavine inhibited uptake by 30 and 48%, respectively. Potent inhibitors of uptake included oxygen, p-chloromercuribenzoate, HgCl2, and o-phenanthroline. Sodium arsenate decreased uptake by 40%, suggesting that a high-energy phosphate compound and possibly a binding protein may be involved in glucose uptake. The protonophores carbonyl cyanide m-chlorophenylhydrazone and 2,4-dinitrophenol inhibited glucose uptake by 37 and 22%, respectively. Little change in uptake activity was observed at extracellular pH values between 4.0 and 8.0. Excess (10 mm) cellobiose, maltose, and sucrose inhibited glucose uptake less than 15%. High levels (0.15% w/v) of p-coumaric acid and vanillin decreased uptake by 32 and 37%, respectively, while 0.15% ferulic acid decreased uptake by 15%.  相似文献   

4.
Microvessels were isolated from a bovine cortex and the transport of glucose was investigated by using 2-deoxy-d-[3H]glucose (2-DG). The apparentK m for 2-DG transport was 118 M and therefore indicates a significant high affinity for the substrate. The inhibition of 2-DG uptake byd-glucose showed an apparentK i of 222 M. Other sugars, e.g., 3-methyl-d-glucose andd-fructose, also inhibited the 2-DG uptake by 60.6 and 36.0%, respectively. Phloretin (1×10–3 M) inhibited the 2-DG transport more than phlorizin (83.7 vs. 53.8%). Ouabain (1 and 5×10–4 M) did not inhibit the uptake of 2-DG but 2,4-dinitrophenol (1×10–4 M) did (78.0%). The uptake of 2-DG could not be demonstrated in homogenized microvessels. Adenine nucleotides (conc. 2 mM) had various effects on the 2-DG uptake by microvessels. ATP inhibited the uptake by 20.7%, ADP was virtually without effect, and AMP stimulated the uptake of 2-DG by 8.5%. It was also found that the decrease of adenylate energy charge favors the uptake of 2-DG. All these findings suggest that in cerebral microvessels of a bovine cortex, 2-DG is apparently transported by a specific, carrier-mediated transport system.Dedicated to Prof. Dr. R. Sammet on the occasion of his 60th birthday.  相似文献   

5.
The effect of cystine starvation on the transport system of cystine and glutamate was examined in cultures of human diploid fibroblasts. The 2-min uptake of cystine and glutamate increased progressively after a lag of 6 h of cystine starvation. There was approx. 2–3-fold increase, and the increased rate of uptake was accompanied by an increase in the Vmax and unchanged Km. The cystine starvation-induced enhancement appeared specific for the uptake of cystine and glutamate. Actinomycin D or cycloheximide completely blocked the time-related increase in the uptake. Depletion of glutamate did not lead to the enhanced uptake, whereas depletion of glycine and serine caused as much increase in the uptake as depletion of cystine did. The intracellular pool of glutathione was extremely reduced by depletion of cystine, or of glycine and serine, but to a far less extent by depletion of glutamate. The results indicate that the transport system for cystine and glutamate appears to undergo adaptive regulation. It is suggested that glutathione may function as a regulatory signal to this transport system.  相似文献   

6.
We report the application of multiple time regression analysis with the in situ brain perfusion technique to measure the rates of passage between blood and brain for [14C]l-proline, [14C]l-alanine, and [14C] α-aminoisobutyric acid (AIB) and their rapidly reversible volumes following perfusion of these amino acids from 10 to 60 seconds. We also report on their mechanism of transport. Proline diffused through the blood-brain barrier with a transfer coefficient (Kin) of 0.55 ± 0.15 × 10−4 ml/s/g and had no reversible compartment. AIB had a low Kin of 0.68±0.14×10−4 ml/s/g and a significant reversible volume of 4.34±0.51×10−3 ml/g in parietal cortex.l-alanine had the highest transfer coefficient, 3.11±0.26 × 10−4 ml/s/g, and a reversible volume of 10.03±0.93×10−3 ml/g in the same cerebral region. Postwash procedures which remove any radiotracer in the vasculature and capillary depletion were performed for alanine and AIB, as they had significant reversible compartments, to test the possibility of rapid efflux from the endothelial cells. Results obtained from wash and capillary depletion procedures suggest that a rapid efflux could occur from endothelial cells after entry of alanine and AIB. Mechanisms of transport forl-alanine and AIB were investigated using amino acids (5 mM) as substrates and inhibitors of different amino acid transport systems. AIB transport was reduced by plasma andl-leucine and unchanged by sodium-free buffer, confirming its passage by the L1 system.l-alanine uptake was sodium-independent and not reduced by plasma.l-serine,l-cysteine,l-leucine andl-phenylalanine produced similar inhibition (66%) whilel-alanine produced a lower inhibition (41%).l-arginine increased alanine uptake in cortex and thalamus. Addingl-serine tol-phenylalanine reduced the uptake only in cortex and hippocampus. These data suggest thatl-alanine is transported by another L transport system different from the L1 system at the luminal membrane.  相似文献   

7.
Active transport of glutamate by Escherichia coli K-12 requires both Na(+) and K(+) ions. Increasing the concentration of Na(+) in the medium results in a decrease in the K(m) of the uptake system for glutamate; the capacity is not affected. Glutamate uptake by untreated cells is not stimulated by K(+). K(+)-depleted cells show a greatly reduced capacity for glutamate uptake. Preincubation of such cells in the presence of K(+) fully restores their capacity for glutamate uptake when Na(+) ions are also present in the uptake medium. Addition of either K(+) or Na(+) alone restores glutamate uptake to only about 20% of its maximum capacity in the presence of both cations. Changes in K(+) concentration affect the capacity for glutamate uptake but have no effect on the K(m) of the glutamate transport system. Ouabain does not inhibit the (Na(+)-K(+))-stimulated glutamate uptake by intact cells or spheroplasts of E. coli K-12.  相似文献   

8.
To evaluate the hypothesis that glutamic acid may be the neurotransmitter of descending, excitatory supraspinal pathways, the uptake and release ofl-[3H] glutamate and the levels of endogenous glutamate were measured in preparations from rat lumbar spinal cord following complete mid-thoracic transection. Following transection, the activity of the synaptosomal high-affinty glutamate uptake process was increased in both dorsal and ventral halves of lumbar cord between 1 and 14 days after transection and returned to control levels by 21 days posttransection. At 7 days, the increased activity of the uptake process forl-[3H] glutamate resulted in elevation ofV max with no significant alteration inK t as compared to age-matched controls. Depolarization-induced release ofl-[3H]glutamate from prelabeled slices did not differ significantly from control in the lesioned rat except at 21 days after lesion when the amount of tritium release was significantly greater in the transected preparations than in control. Amino acid analysis of the lumbar cord from control and transected rats indicated only a 10% decrease in the level of endogenous glutamate and no alterations in the concentration of GABA and glycine 7 days after lesion. These findings do not support the hypothesis that glutamate serves as a major excitatory neurotransmitter in supraspinal pathways innervating the lumbar cord of the rat.  相似文献   

9.
Astrocytes possess a concentrativel-ascorbate (vitamin C) uptake mechanism involving a Na+-dependentl-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellularl-ascorbate on the activity of this transport system. Initial rates ofl-ascorbate uptake were measured by incubating primary cultures of rat astrocytes withl-[14C]ascorbate for 1 min at 37°C. We observed that the apparent maximal rate of uptake (V max) increased rapidly (<1 h) when cultured cells were deprived ofl-ascorbate. In contrast, there was no change in the apparent affinity of the transport system forl-[14C]ascorbate. The increase inV max was reversed by addition ofl-ascorbate, but notD-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures withl-ascorbate did not affect uptake of 2-deoxy-D-[3H(G)]glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels.  相似文献   

10.
The effect of ammonia onl-glutamate (L-GLU) uptake was examined in cultured astrocytes. Acute ammonia treatment (5–10 mM) enhanced L-[3H]GLU uptake by 20–42% by increasing the Vmax; this persisted for 2 days and then started to decline. Ammonia, however, did not affect the uptake ofd-[3H]aspartate (D-ASP), a non-metabolizable analog of L-GLU, that uses the same transport carrier as L-GLU. Also, L-GLU uptake was not affected during the first 2 min of the assay. Thus, ammonia did not have an acute effect on L-GLU transport (translocation); rather, ammonia enhanced the accumulation or “trapping” of L-GLU or its by-products. Chronic ammonia treatment, on the other hand, inhibited L-GLU transport in astrocytes by ∼30–45% and this was due to a decrease in Vmax, suggesting that the number of L-GLU transporters was decreased. This inhibitory effect was observed after 1 day of treatment and persisted for at least 7 days. The inhibition of L-GLU transport was partially reversible following removal of ammonia. The effects of ammonia on L-GLU transport and uptake may explain the abnormal L-GLU neurotransmission observed in hyperammonemia/hepatic encephalopathy, and the brain swelling associated with fulminant hepatic failure.  相似文献   

11.
Summary Catabolic effects which exert control over the inducible synthesis of three enzymes in Arthrobacter crystallopoietes involve at least three different mechanisms: interference with inducer transport, severe catabolite repression, and transient repression. The rate of histidase induction by histidine is reduced by incubation of the cells with succinate or glucose. The maximum effect of succinate, 67% reduction in histidase production, occurs only after 100 min of incubation with succinate. At least 3h of incubation are required for the maximum effect of glucose (31% reduction in enzyme induction). Both succinate and glucose inhibit histidine transport. Cyclic adenosine 3,5-monophosphate (cyclic AMP), at 10-7 M, slightly stimulates the induction of histidase in cultures both with or without succinate. No conditions were found in which cyclic AMP abolishes the effect of succinate. Induction of l-serine dehydratase by glycine is severely and permanently repressed by glucose and to a lesser extent by citrate. Glucose does not affect glycine uptake. Succinate, fumarate, and aspartate, which are all better substrates than glucose or citrate for growth of A. crystallopoietes, have no effect on l-serine dehydratase induction. Induction and repression of l-serine dehydratase are not affected by cyclic AMP. Synthesis of isocitrate lyase after addition of acetate is unaffected by glucose but is severely repressed by succinate or fumarate. Aspartate and glutamate cause a transient repression of enzyme synthesis after which synthesis proceeds at the control rate. The ability to transport acetate is inducible. Development of this capacity in the presence of acetate is not affected by succinate or glutamate. Cyclic AMP has no effect on enzyme production or repression. A. crystallopoietes takes up radioactive cyclic AMP and has at least one of the enzymes of cyclic AMP metabolism, adenyl cyclase.  相似文献   

12.
We investigated effects of Ebselen, diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 on [3H]glutamate uptake and release by brain synaptosomes. Ebselen after acute exposure inhibited K+-stimulated [3H]glutamate release by brain synaptosomes. (PhSe)2 and (PhTe)2 did not change [3H]glutamate release by brain synaptosomes. Ebselen, (PhSe)2 and (PhTe)2 had no significantly effects on [3H]glutamate uptake after acute exposure. In vitro, Ebselen (100 M) inhibited [3H]glutamate release and uptake. (PhSe)2 had no significant effect, while (PhTe)2 (100 M) inhibited [3H]glutamate uptake by brain synaptosomes. In vitro, (PhSe)2, (PhTe)2 and Ebselen caused a significant inhibition of [3H]glutamate uptake by brain synaptic vesicles in vitro. The results demonstrated that organochalcogenides have a rather complex effect on glutamate homeostasis depending on the compound and the schedule of exposition. We propose that the neuroprotective action of Ebselen can be related, in addition to its glutathione peroxidase-like and antilipoperoxidative activity, to a direct interaction with the glutamatergic system by reducing Kï-evoked glutamate release.  相似文献   

13.
This study utilised an in vitro technique to characterise absorption of two amino acids across the intestinal epithelium of Pacific hagfish, Eptatretus stoutii. Uptake of l-alanine and glycine conformed to Michaelis–Menten kinetics. An uptake affinity (K m; substrate concentration required to attain a 50% uptake saturation) of 7.0 mM and an uptake capacity (J max) of 83 nmol cm−2 h−1 were described for l-alanine. The K m and J max for glycine were 2.2 mM and 11.9 nmol cm−2 h−1, respectively. Evidence suggested that the pathways of l-alanine and glycine absorption were shared, and sodium dependent. Further analysis indicated that glycine uptake was independent of luminal pH and proline, but a component of uptake was significantly impaired by 100-fold excesses of threonine or asparagine. The presence of a short-term (24 h) exposure to waterborne glycine, similar in nature to that which may be expected to occur when feeding inside an animal carcass, had no significant impact on gastrointestinal glycine uptake. This may indicate a lack of cross talk between absorptive epithelia. These results are the first published data to describe gastrointestinal uptake of an organic nutrient in the oldest extant vertebrate and may provide potential insight into the evolution of nutrient transport systems.  相似文献   

14.
Abstract: The Na+-glutamate cotransporters are believed to countertransport OH? and K+. Previous evidence that the velocity of glutamate uptake can exceed the acid extrusion capacity of astrocytes raised the question of whether intracellular pH can become rate limiting for glutamate uptake. Cytoplasmic buffering capacity and acid extrusion in astrocytes are partially HCO3? dependent. Also, it was reported recently that raising extracellular [K+] alkalinizes astrocyte cytoplasm by an HCO3?-dependent mechanism. Here, we have compared glutamate uptake in HCO3?-buffered and HCO3?-depleted solutions at varying [K+]. We observed a pronounced stimulation of glutamate uptake by extracellular K+ (3–24 mM) that was substantially HCO3? dependent and affected preferentially the uptake of high concentrations (>25 µM) of glutamate. Stimulation of uptake by low extracellular [K+] (1.5–3 mM) was less dependent on HCO3?. Potassium-induced stimulation of uptake was weaker in rat astrocyte cultures than in mouse. The effects of Ba2+ and amiloride on glutamate uptake, as well as the HCO3?-dependent stimulatory effects of K+ and the species difference, all related consistently to effects on intracellular pH. The effects on uptake, however, were much larger than predicted by the associated changes in electrochemical gradient of OH?. A “bimodal” scheme for glutamate transport can account qualitatively for the observed correlation between intracellular pH and velocity of glutamate uptake.  相似文献   

15.
Summary In the urinary bladder of the toadBufo marinus triiodothyronine selectively inhibits the late effect of aldosterone on Na+ transport. We have investigated whether T3 might mediate its antimineralocorticoid action by controlling: i) the level of aldosterone binding sites in the soluble (cytosolic) pool isolated from tissues treated with T3 (60nm) for up to 20 hr of incubation; ii) the kinetics of uptake of3H-aldosterone into cytoplasmic and nuclear fractions after 2 or 20 hr of exposure to T3. The number and the affinity of Type I (high affinity, low capacity) and Type II (low affinity, high capacity) cytosolic binding sites (measured at 0°C) did not vary significantly after 18 hr of exposure to T3, while aldosterone-dependent Na+ transport was significantly inhibited. In addition, T3 did not modify the kinetics of uptake (90 min) of3H-aldosterone into cytoplasmic and nuclear fractions of toad bladder incubatedin vitro at 25°C. By contrast, aldosterone itself was able to down-regulate its cytosolic and nuclear binding sites after an 18-hr exposure to the steroid hormone (10 or 80nm). T3 slightly (20%) but significantly potentiated the down regulation of nuclear binding sites. In conclusion, T3 does not appear to have major effects on the regulation of the aldosterone receptor, which could explain in a simple manner its antimineralocorticoid action.  相似文献   

16.
Summary Transport of alanine was studied in isolated plasma membrane vesicles from cat pancreas using a rapid filtration technique. The uptake is osmotically sensitive and the kinetics ofl-alanine transport are biphasic showing a saturable and a nonsaturable component. The saturable component is seen only when a sodium gradient directed from the medium to the vesicular space is present. Under this condition an overshooting uptake ofl-but not ofd-alanine occurs. The Na+ gradient stimulated uptake ofl-alanine is inhibited byl-serine andl-leucine and stimulated when the membrane vesicles had been preloaded withl-alanine,l-serine orl-leucine.The ionophore monensin inhibits stimulation of uptake caused by a sodium gradient. In the presence of valinomycin or carbonyl cyanidep-trifluoromethoxyphenylhydrazone (CFCCP), the sodium-dependent transport is augmented in vesicles preloaded with K2SO4 or H+ ions (intravesicular pH 5.5), respectively. In the presence of different anions, the Na+-dependent transport is stimulated according to increasing anionic penetration through membranes (lipid solubility). We conclude that a sodium dependent electrogenic amino acid transport system is present in pancreatic plasma membranes.  相似文献   

17.
A detailed kinetic study of the inhibitory effects ofl- andd-enantiomers of cysteate, cysteine sulphinate, homocysteine sulphinate, homocysteate, and S-sulpho-cysteine on the neuronal, astroglial and synaptosomal high-affinity glutamate transport system was undertaken.d-[3H] Aspartate was used as the transport substrate. Kinetic characterisation of uptake in the absence of sulphur compounds confirmed the high-affinity nature of the transport systems, the Michaelis constant (K m) ford-aspartate uptake being 6 M, 21 M and 84 M, respectively, in rat brain cortical synaptosomes and primary cultures of mouse cerebellar granule cells and cortical astrocytes. In those cases where significant effects could be demonstrated, the nature of the inhibition was competitive irrespective of the neuronal versus glial systems. The rank order of inhibition was essentially similar in synaptosomes, neurons and astrocytes. Potent inhibition (K iK m) of transport in each system was exhibited byl-cysteate, andl- andd-cysteine sulphinate whereas substantially weaker inhibitory effects (K i>10–1000 times the appropriateK m value) were exhibited by the remaining sulphur amino acids. In general, inhibition: (i) was markedly stereospecific in favor of thel-enantiomers (except for cysteine sulphinate) and (ii) was found to decrease with increasing chain length. Computer-assisted molecular modelling studies, in which volume contour maps of the sulphur compounds were superimposed on those ofd-aspartate andl-glutamate, demonstrated an order of inhibitory potency which was, qualitatively, in agreement with that obtained quantitatively by in vitro kinetic studies.Special issue dedicated to Dr. Elling Kvamme  相似文献   

18.
The effect of the cholesterol-depleting agent methyl-β-cyclodextrin (MβCD) on exocytotic, transporter-mediated, tonic release, the ambient level and uptake of l-[14C]glutamate was assessed in rat brain synaptosomes using different methodological approaches of MβCD application. The addition of 15 mM MβCD to synaptosomes (the acute treatment, AT) immediately resulted in the extraction of cholesterol and in a two times increase in the extracellular l-[14C]glutamate level. When 15 mM MβCD was applied to synaptosomes for 35 min followed by washing of the acceptor (the long-term pretreatment, LP), this level was only one-third higher than in the control. The opposite effects of MβCD on tonic l-[14C]glutamate release and glutamate transporter reversal were found in AT and LP. Tonic release was dramatically enlarged in AT, but decreased after LP. Transporter-mediated release was increased several times in AT, but attenuated in LP. Depolarization-evoked exocytotic release of l-[14C]glutamate was completely lost in AT, whereas after LP, it was decreased by half in comparison with the control. Na+-dependent l-[14C]glutamate uptake was decreased by ~60% in AT, whereas in LP, it was lowered by ~40% only. The presence of MβCD in the incubation media during AT caused dramatic dissipation of the proton gradient of synaptic vesicles that was shown with the pH-sensitive dye acridine orange, whereas after LP, no statistically significant changes were registered in synaptic vesicle acidification. It was concluded that the diverse changes in glutamate transport in AT and LP were associated with the difference in the functional state of synaptic vesicles.  相似文献   

19.
Summary Calcium markedly stimulates the respiration of the isolated chick chorioallantoic membrane. This stimulation of oxygen uptake appears to be closely associated with the membrane's active transcellular calcium transport mechanism. In the presence of 1mm Ca++ the rate of uptake increases from 9.3±0.15 to 13.0±0.2 liters O2/cm2/hr, an increase of about 40%. The calcium-stimulated respiration is specific for the ectodermal layer of cells, the known location of the calcium transport mechanism, and only occurs when the calcium transport mechanism is operative. Sr++ and Mn++ are transported by the tissue at a lower rate than Ca++ and cause a smaller stimulation of oxygen consumption. Mg++ and La3+ have no effect on tissue respiration. In the presence of Ca++, the organic mercurialp-chloromercuribenzene sulfonate (PCMBS) inhibits calcium transport and specifically decreases the oxygen uptake of the ectoderm to a rate identical to that obtained in a calcium-free medium. Stripping the inner shell membrane away from the chorioallantoic membrane mimics these effects. The specificity and locus of action of these two inhibitors suggest that a vital component of the active transcellular calcium transport mechanism resides on or near the outer surface of the plasma membrane of the ectodermal cells and that sulfhydryl groups are important to the normal function of this component.  相似文献   

20.
We report the first evidence of a mitochondrial NO synthase (mtNOS) in bird skeletal muscle. In vitro, mtNOS activity stimulated by l-arginine reduced intermyofibrillar mitochondrial oxygen uptake and ATP synthesis rates, stimulated endogenous H2O2 generation, but had no effect on oxidative phosphorylation efficiency. Arginine-induced effects were fully reversed by l-NAME, a known NOS inhibitor. When ducklings were cold exposed for 4 weeks, muscle mitochondria displayed an increased state 3 respiration, a reduced H2O2 generation but no significant alteration in mtNOS activity. We conclude that mtNOS is expressed in avian skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号