首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
REMISON  S. U. 《Annals of botany》1978,42(6):1439-1445
Two experiments were conducted in the glasshouse and in thefield to evaluate the effect of leaf loss on development, drymatter accumulation and yield of maize. In the glasshouse, defoliationtreatments were imposed on maize after 3 weeks of planting.Removing 2 or 3 leaves every 2 weeks affected plant height,days to tassel, root and shoot yield. The plant diameter androot:shoot ratio were not affected by defoliation. In the field experiment, six defoliation treatments were imposed7 days after 50 per cent silking. Defoliation of all leaveswas the most severe treatment on cob d. wt, dry matter accumulationin grains, weight of 100 test grains and yield. The effect ofremoving all leaves above the ear was not significantly differentfrom that of removing all leaves below the ear. The effect ofremoving half of the leaves above the ear was not differentfrom the control. Zea mays, vegetative growth, dry matter accumulation, yield, defoliation  相似文献   

2.
Speckled leaf blotch (Mycosphaerella graminicola) reduced yieldin a winter wheat trial by 18 per cent. Detailed analyses ofthe effects of disease on yield components showed that diseasereduced both grain number per ear and grain weight. The reductionin grain number per ear was due to a decrease in grain numberper spikelet, and this occurred for both main stem and tillers,and occurred equally at each spikelet position on the ear. The effect of disease on grain number was traced back to anearlier reduction in floret primordium number per ear, especiallyfloret number per spikelet. It was suggested that floret primordiumproduction was affected by the reduced assimilate supply tothe developing apex. The effects of disease on yield could therefore be attributedto effects on plant development both before and after anthesis.The disease effects on yield were not necessarily associatedwith the time of maximum disease severity. Plots with the early phase of disease epidemic only showed asignificant reduction in yield, but there was some evidenceof compensation for early reductions to yield potential in thelater-determined yield components. We suggest, therefore, thatan effective disease-control programme must take into accountthe possible early effects of disease on yield potential. Mycosphaerella graminicola, speckled leaf blotch, winter wheat, yield loss, apical development  相似文献   

3.
Effects of the environment on shoot survival were studied inwinter wheat cv. Avalon grown in microplots at a density of247 plants m–2. The incident radiation and mean temperaturewere altered during one of three periods of between 14 and 29d duration, the first (P1) starting at the end of tiller productionand the last (P3) finishing near the end of the tiller deathphase, about three weeks before anthesis. Plants were giventemperature and radiation treatments in growth rooms in twoexperiments and extra light outdoors in a third experiment:they were at other times grown outdoors. Increasing radiation by between 60 and 100 per cent during P1had negligible effects on shoot number; during P2 it alwaysdelayed tiller death but increased final ear number in onlyone experiment; during P3 it consistently increased ear numberby up to 100 m–2. Increased radiation always increasedcrop dry weight immediately after treatment but only sometimesdid this increase persist to maturity. Grain dry weight wasincreased by treatment during P3 of one experiment. Increasingthe temperature by 4 C decreased shoot number, usually onlytemporarily, by hastening death of some tillers. Warmer temperaturesdecreased crop growth after, but not during, treatment and decreasedgrain dry weight. Radiation and temperature rarely interacted. Variation in grain yield within and between experiments relatedwell to variation in number of grains m–2, which in turnrelated to variation in ear dry weight at anthesis. Triticum aestivum L., wheat, radiation, temperature, tillers, grain yield, grain number  相似文献   

4.
In glasshouse and field experiments the source-sink relations of the main shoot of plants of spring barley were modified by tiller removal and tiller defoliation. Decreasing competition by tiller removal promoted the growth of the residual main shoot and its component parts, and the earlier tillers were removed the greater was the effect. Stem dry weight was increased four-fold in the glasshouse by early tiller removal and was doubled in the field experiment. The grain yield of the main shoot ear was increased by 26 – 30% by tiller removal compared with tillering control plants and this was due to larger grains in all spikelet positions. On the other hand increasing competition by regular tiller defoliation had relatively little effect on the growth and development of the main shoot in the glasshouse study, but in the field the main shoot grain yield was reduced by 10% compared with the control. The main effect of tiller defoliation was on the development of tillers. In the glasshouse tillers survived repeated defoliation, continued to be produced, and the majority produced grain but with fewer and smaller grains per ear than in control plants. Tiller growth was supported by the import of assimilate from the main shoot and this was accompanied by an increase in the photosynthetic rate of the main shoot leaves. In the field all defoliated tillers died within 4 wk. These responses are discussed in terms of the physiological interrelations between the main shoot and tillers.  相似文献   

5.
Carbon dioxide exchange in relation to sink demand in wheat   总被引:8,自引:1,他引:7  
Summary In this paper, experiments are described which examine the effect of requirement for assimilates by the ear on the rate of net photosynthesis in leaves of wheat (Triticum aestivum L.). Different levels of requirement were achieved by various levels of sterilization of florets just before anthesis, which resulted in a range of grain numbers per ear, and by inhibiting photosynthesis of the intact ear by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Only the ear and two uppermost leaves of the main shoot were considered, all the lower leaves and tiller leaves being excised when the experimental treatments were imposed. In two experiments, tiller regrowth was permitted during the experimental period, while in a third, new tillers were defoliated regularly.The response of leaf photosynthesis to the level of assimilate requirement by the ear was influenced by the treatment of the vegetative tillers. Thus, the net photosynthesis rate of the flag leaf was decreased by a reduction in grain number, or increased by inhibition of photosynthesis in the ear, only when the vegetative tillers were kept defoliated; when these tillers were allowed to re-grow normally, there was no influence of ear treatment on leaf photosynthesis. Temporal changes in leaf photosynthesis were consistent with this response pattern, i.e., when tillers were defoliated, the initial high rates of photosynthesis persisted for much longer.In the experiment where photosynthesis was influenced by the requirement for assimilate in the ear, the variation occurred through change in stomatal conductance on the abaxial surface of the leaf. This surface has a lesser conductance to CO2 exchange than the adaxial surface. The implication of this finding to rapid methods of plant screening is discussed.  相似文献   

6.
Varietal Differences in Photosynthesis of Ears and Leaves of Barley   总被引:1,自引:0,他引:1  
TORNE  GILLIAN N. 《Annals of botany》1963,27(1):155-174
Rates of apparent photosynthesis of ears and of the combinedflag leaf and sheath and peduncle of Proctor barley grown inpots or in the field were similar to those of Plumage Archer,or slightly smaller when the dimensions of the ear and leafarea of Proctor were less than those of Plumage Archer. Thephotosynthesis rate of the ear—about 1.0 mg. CO2 per earper hour—was similar or slightly less than the rate ofthe flag leaf and sheath and peduncle. These rates of photosynthesisindicated that 40-50 per cent, of the carbohydrate in the grainwas provided by photosynthesis in the shoot and about 40 percent, by photosynthesis in the ear. The total CO2 fixed by theear was equivalent to about 60 per cent, of the grain weight,20 per cent, being lost by respiration. Shading the ear underestimatedthe total amount of CO2 fixed by the ear and decreased dry weightof grain per ear of both Proctor and Plumage Archer by 26 percent., as in pots. The contribution of ear photosynthesis toyield of grain per acre was greater for Proctor than for PlumageArcher because Proctor had more ears. The rate of apparent photosynthesis per dm.2 of leaves of Proctorwas similar to that of Plumage Archer both before and afterear emergence. Before ear emergence, the photosynthesis rateof a particular leaf decreased linearly with time and was slowerfor lower than for higher leaves on the shoot. Respiration ratesper g. dry weight of ears of Proctor and Plumage Archer weresimilar; in one experiment the leaves of Proctor respired slightlyfaster than those of Plumage Archer.  相似文献   

7.
In a field experiment on barley at Rothamsted with the highmean yield of 49 cwt. of grain per acre, the varieties Proctorand Herta produced 10—15 per cent, more grain than Plumage-Archeron plots that received no nitrogenous fertilizer. When nitrogenwas applied the difference was increased to about 30 per cent.,because the higher nitrogen supply caused the Plumage-Archercrop to lodge and did not increase its yield, while Proctorand Herta remained standing. The three varieties did not differ in leaf-area index nor innet assimilation rate before ear emergence, so that all hadthe same total dry weight. After ear emergence, the leaf-areaindices of Proctor and Plumage-Archer were nearly equal, butthat of Herta was smaller. Assuming that the photosyntheticefficiency of the leaves continued to be the same in all varieties,the higher grain yields of Proctor and Herta cannot be attributedto greater production of dry matter by the leaves, either beforeor after ear emergence. A pot experiment on plants with shadedears confirmed that the dry matter contributed to grain yieldby unit leaf area was nearly equal in all the varieties. The higher grain yield of Proctor and Herta than of Plumage-Archermust therefore have come from additional photosynthesis in partsof the plant other than the leaves, i.e. in the ears themselves.An attempt to demonstrate this directly in a pot experiment,by comparing the grain yields of plants with shaded or withunshaded ears, was unsuccessful because the varieties behaveddifferently in pots; Proctor and Herta produced only about 6per cent, more grain yield than Plumage-Archer, and though thedecrease in grain yield by shading the ears was slightly greaterfor Proctor and Herta, the differences were not significant. The sum of ear sizes (estimated from length and breadth measurements)per m.1 in the field experiment was greater for Proctor andHerta than for Plumage-Archer. Also the distribution of drymatter between developing ears and shoots apparently differedwith variety, so that at ear emergence the dry weight of earsper m.2 was greater in the two higher yielding varieties. Theincreased amount of photosynthetic tissue in the ears of Proctorand Herta, as measured by size or weight, may not wholly explaintheir greater dry-matter production; ears of Herta may alsohave a higher photosynthetic efficiency. No differences in nutrient uptake that could account for thevarietal differences in grain yield were found. Plumage-Archerabsorbed more potassium, and Herta less phosphorus than theother varieties. About a quarter of the final content of nitrogen,and a third of the phosphorus, was absorbed after ear emergence,but the potassium content was nearly maximal at ear emergenceand later decreased. The pot experiment showed that, on the average of all varieties,26 per cent. of the dry matter in the grain at harvest originatedfrom photosynthesis in the ears, including 10 per cent, fromthe awns; 59 per cent, came from photosynthesis in the flag-leaflamina and sheath and peduncle, and 15 per cent, from partsof the shoot below the flag leaf.  相似文献   

8.
Spring wheat was grown to maturity in three growth rooms providing:(a) 18 h of light at 20° C and 6 h of darkness at 15°C (hot long days, HL); (b) 18 h of light at 15° C and 6h of darkness at 15° C (cold long days, CL); (c) 14 h lightat 20° C and 10 h of darkness at 15° C (hot short days,HS). Plants were moved between environments at spikelet initiationand anthesis, so dividing the growth period into three. Meanlengths in days of these periods in the different environmentswere: Period 1: HL 16, CL 18, HS 25; Period 2: HL 42, CL andHS 61; Period3: HL 53, CL 83, HS 63. The length of periods 2and 3 also depended on previous treatments. Grain dry weight was affected by environmental differences inall periods and effects in successive periods were additive.Compared with HL, CL or HS in period I before initiation increasedgrain yield by 6 per cent by increasing grain number per ear,HS in period 2 between initiation and anthesis decreased itby 24 per cent by decreasing the number of grains per spikeletand the proportion of spikelets that contained grain; CL inperiod 2 increased it by 21 per cent by increasing the numberof ears; CL in period 3 after anthesis increased it by 16 percent because leaves died later; HS in period 3 decreased itby 14 per cent because there was less radiation and hence lessphotosynthesis. Dry weight of shoot and root at maturity wasincreased by CL or HS in periods 1 or 2, and increased by CLand decreased by HS in period 3. The effects on final yieldof treatment during periods 1 and 2 were the consequence ofsimilar effects already produced at anthesis, and shoot androot dry weight changed little during period 3. The effects of environmental differences on grain dry weightcould not be explained by differences in leaf-area durationafter anthesis (D3), except that CL in period 3 increased bothyield and D3 but not proportionately, so that, as with HS inthe same period, grain: leaf ratio was decreased. Environmentaldifferences in periods 1 and 2 appeared to affect grain weightby altering the capacity of the ear to accumulate carbohydrates,determined by the number of grains per ear, rather than by alteringthe supply of carbohydrates, determined by D3. There were some interactions between environments in differentperiods which were usually small compared with the main effects.  相似文献   

9.
The pattern of distribution of dry matter and phosphorus wasfollowed in individual plants harvested from a field crop ofspring wheat throughout its development. There was a continueduptake of phosphorus with time and almost half of the totalphosphorus was accumulated in the post-anthesis period of growth.The various component parts of the main shoot were followedin detail and both individual leaves and the stem showed substantialnet losses of phosphorus with time well before they reachedtheir dry weight maxima. The ear was the major sink for phosphorusand it was estimated that approximately one third of its phosphoruscontent was supplied by retranslocation. The main shoot stemand leaves also showed a significant decline in d. wt duringthe final stages of grain development. Half-ear removal at anthesisincreased both grain set and the growth of the grain of theupper florets of the remaining spikelets. Defoliation had littleeffect on grain yield but resulted in a reduction in the phosphoruscontent of the grain. Triticum aestivum L, spring wheat, phosphorus distribution, dry matter distribution  相似文献   

10.
M. Aslam  L. A. Hunt 《Planta》1978,141(1):23-28
Co2 exchange and transpiration rates of the flag leaves of four spring wheat (Triticum aestivum L.) cultivars, namely Glenlea, Neepawa, Opal and Kolibri, were compared using infra-red gas-analysis technique. The plants were grown in a controlled environment under an 18-h photoperiod, with day and night temperatures of 20 and 15° C, respectively. The time course of the CO2-exchange rate (CER) of the flag leaf differed among cultivars. CER began to decrease rapidly some 2 weeks after ear emergence in Glenlea, Neepawa and Kolibri, but only after 4 weeks in Opal. The decline in CER of Glenlea, Neepawa and Opal was continuous throughout the period of grain development whereas in Kolibri CER was maintained at a constant level between the 4th and 6th weeks after ear emergence. The transpiration rates of the flag leaves of the 4 cultivars did not change markedly until 6–7 weeks after ear emergence, indicating that the reduction in CER was not primarily a response to increased stomatal resistance to the diffusion of CO2. Removing the ear of the main shoot of intact plants failed to depress CER of the subtending flag leaf until 5 weeks after ear removal. Removing the ears of all the tillers of plants in which all but 3 tillers had been removed at ear emergence did not depress CER until 4 weeks after ear emergence, but removal of the ear of the main shoot of plants where all the tillers had been removed at ear emergence reduced the CER of the flag leaf 2 weeks after ear removal. Removal of tillers at ear emergence had a marked effect on the time course of CER and transpiration rates of the flag leaf. Both CER and transpiration rates of a 4-tiller plant were maintained at a higher level throughout ear development as compared to those of a one-tiller plant. The transpiration rate of the flag leaf of Glenlea increased during the later part of the life of the leaf even for one-tiller plants with no ear, indicating that such a stomatal response may be part of the normal course of leaf aging and not a response to a feedback stimulus from the ear.  相似文献   

11.
Doses of the growth retardant, Terpal, were applied to seeds of spring barley. Germination was delayed as the concentration and duration of exposure to Terpal increased. Tiller bud outgrowth was promoted in treated seedlings and at maturity the total tiller production and number of ear-bearing tillers per plant was increased by the Terpal treatment. The yield of the main shoot was similar in both control and treated plants but the mean ear weight of the tillers was reduced in the latter, and thus there was no overall effect of the treatment on yield. Observations on vegetative plants showed that Terpal also reduced the growth of successive main shoot leaves and the elongation and dry weight of the seminal root system. The results are discussed in terms of an early modification in the distribution of resources during establishment that favour the outgrowth of tiller buds at the expense of the initial development of the main shoot and root system. It is proposed that seed treatment is a viable alternative to foliar spraying particularly in arid regions.  相似文献   

12.
The influence of timing of N application and PGRs on wheat morphogenesisand yield formation was studied under non-lodging condition. N treatmentsconsisted of three different proportions applied at sowing, 3-leaf stage, stemelongation stage and booting stage, respectively. PGR treatments were 30ppm uniconazole (S3307), 30 ppmgibberellicacid (GA3) and a mixture of S3307 and GA3.S3307 increased tillering, but had no obvious effect on the finalnumber of ears per plant. The combined application of S3307 andGA3increased ears per plant. S3307 significantly reducedplant height and the length of two basal internodes, the area of two topmostleaves, number of florets per spike, shoot and grain weight per plant in all Ntreatments, particularly in N treatment 6040 (see below), but increased dryweight per unit length of two basal internodes. It is suggested thatapplicationof plant growth retardant such as S3307 may reduce grain yield byinhibiting formation and development of both source (leaf area) and sink(floret) under little or no lodging condition. When applied together,GA3 modified some inhibition of growth by S3307. Thetiming of N application had significant influence on most of the charactersstudied. The N treatment 6040, in which 60% of total N fertiliser wasapplied at sowing and 40% at stem elongation, produced the greatest earnumber per plant, florets and grains per ear, the largest area of the twotopmost leaves, and the highest grain yield, indicating that more N applicationat stem elongation was favourable to high yield formation.  相似文献   

13.
RYLE  G. J. A. 《Annals of botany》1972,36(3):497-512
A quantitative analysis of the 14C-labelled assimilate suppliedby leaves on the main shoot to terminal meristem, stem, tillers,and roots was conducted during parallel periods of reproductiveand vegetative development in Lolium temulentum. The initial rate of entry of carbon into the shoot varied withthe area and photosynthetic efficiency of the assimilating leaf.Subsequently, respiratory losses of carbon during translocationand incorporation of assimilate at the site of utilization alsovaried. The combined effect of these differences resulted inthe supply of recently assimilated carbon being twofold greaterin reproductive shoots than in vegetative shoots, while withinshoots the carbon supply of the youngest fully expanded leafranged from four-or five-fold greater than the oldest leaf inyoung shoots, to two-or three-fold greater in older shoots.In both reproductive and vegetative shoots, the two or threeyoungest leaves thus dominated the supply of carbon for meristematicgrowth. Meristematic tissue in expanding leaves and leaf primordia atthe terminal meristem of the vegetative shoot received 18–27per cent of the total shoot carbon. This meristem utilized aboutthe same proportion of shoot carbon when it developed into aninflorescence, indicating no major change in the level of meristematicactivity. The proportion of shoot carbon utilized in stem growthincreased as both reproductive and vegetative shoots aged; thisincreased meristematic activity in stem internodes was accompaniedby reduced export of carbon to roots, which received less than10 per cent of the shoot carbon when the experiments ended.The main shoot translocated 20–30 per cent of its recentlyassimilated carbon to developing and rooted tillers, which assinks for carbon were thus as important as the terminal meristemand stem. This outward flow of carbon continued relatively uncheckedwhen donor and receptor shoots developed inflorescences.  相似文献   

14.
The experiments were conducted to examine the effects of seed priming in solutions (100, 150 and 200 mg L?1) of different synthetic auxins, i.e., 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), α-naphthaleneacetic acid (NAA) on growth, grain yield, gaseous exchange characteristics, ionic and hormonal concentrations in two spring wheat (Triticum aestivum L.) cultivars MH-97 (salt intolerant) and Inqlab-91 (salt tolerant). The primed (soaked for 12 h) and non-primed seeds were sown in Petri plates in a growth room as well as in a field treated with 150 mM NaCl. Generally, all synthetic auxins did not increase germination percentage and rate in both cultivars when compared with hydropriming (control), and even decreased these attributes when applied at higher concentrations (200 mg L?1). Nonetheless, under salt stress, NAA (150 mg L?1) was most effective in increasing seedling shoot dry weight, fertile tillers per plant, number of grains per ear and grain yield in both cultivars. The plants raised from seed treated with NAA (150 mg L?1) had lower shoot [Na+] in the salt intolerant cultivar. Moreover, NAA treatment improved root [Ca2+] in both cultivars. Priming agents affected leaf free indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) concentrations differently in both cultivars. Treatment with NAA (150 mg L?1) lowered leaf free abscisic acid (ABA) and putrescine (Put) concentrations and raised salicylic acid (SA) and spermidine (Spd) concentrations in the salt intolerant cultivar. In conclusion, pre-treatment with NAA (150 mg L?1) showed consistent promotive effects on growth and grain yield in the two cultivars, which were partially attributed to the beneficial effects of NAA-priming on ionic and hormonal homeostasis under salt stress.  相似文献   

15.
Plants of barley were grown under controlled conditions andthe first or second leaves covered with tubular shades thusreducing the light intensity at the leaf surface to low levels.Expansion of the shaded leaves was not prevented, but appearanceof the next leaf but one and all subsequent leaves on the mainstemwas delayed by up to 3 days. Primordia of the first four leaveswere present in the dry grain. Shade treatment delayed slightlythe initiation of the eighth and subsequent leaves and transitionto the double ridge stage at the mainstem apex. Shading the first leaf caused a temporary reduction in the rateof dry-matter increase of plants, but after 14 days the ratewas similar to that of control plants. Smaller effects werefound when the second leaf was shaded. Dry-matter productionfollowed two logarithmic phases in the period prior to awn emergence,and rates for the whole plant and for plant parts were similarfor control and shaded plants. Thus, apart from the initialperturbation, shading had no effect on growth in terms of rateof dry-weight gain. Shade treatment did not affect weight per grain or numbers ofgrain per ear, but over-all yield of grain was significantlyreduced since shading delayed the appearance of tillers andalso reduced the number of tillers bearing grain. The effectof shade was especially marked on tillers originating on primarytillers. Similar qualitative effects on tiller development werefound in an experiment on wheat.  相似文献   

16.
Spring wheat cv. Minaret was grown to maturity under three carbon dioxide (CO2) and two ozone (O3) concentrations in open-top chambers (OTC). Green leaf area index (LAI) was increased by elevated CO2 under ambient O3 conditions as a direct result of increases in tillering, rather than individual leaf areas. Yellow LAI was also greater in the 550 and 680 μmol mol–1 CO2 treatments than in the chambered ambient control; individual leaves on the main shoot senesced more rapidly under 550 μmol mol–1 CO2, but senescence was delayed at 680 μmol mol–1 CO2. Fractional light interception (f) during the vegetative period was up to 26% greater under 680 μmol mol–1 CO2 than in the control treatment, but seasonal accumulated intercepted radiation was only increased by 8%. As a result of greater carbon assimilation during canopy development, plants grown under elevated CO2 were taller at anthesis and stem and ear biomass were 27 and 16% greater than in control plants. At maturity, yield was 30% greater in the 680 μmol mol–1 CO2 treatment, due to a combination of increases in the number of ears per m–2, grain number per ear and individual grain weight (IGW). Exposure to a seasonal mean (7 h d–1) of 84 nmol mol–1 O3 under ambient CO2 decreased green LAI and increased yellow LAI, thereby reducing both f and accumulated intercepted radiation by ≈ 16%. Individual leaves senesced completely 7–28 days earlier than in control plants. At anthesis, the plants were shorter than controls and exhibited reductions in stem and ear biomass of 15 and 23%. Grain yield at maturity was decreased by 30% due to a combination of reductions in ear number m–2, the numbers of grains per spikelet and per ear and IGW. The presence of elevated CO2 reduced the rate of O3-induced leaf senescence and resulted in the maintenance of a higher green LAI during vegetative growth under ambient CO2 conditions. Grain yields at maturity were nevertheless lower than those obtained in the corresponding elevated CO2 treatments in the absence of elevated O3. Thus, although the presence of elevated CO2 reduced the damaging impact of ozone on radiation interception and vegetative growth, substantial yield losses were nevertheless induced. These data suggest that spring wheat may be susceptible to O3-induced injury during anthesis irrespective of the atmospheric CO2 concentration. Possible deleterious mechanisms operating through effects on pollen viability, seed set and the duration of grain filling are discussed.  相似文献   

17.
Tiller number can contribute significantly to yield potential of rice, but little knowledge is available on hormonal regulation of tillering and tiller dynamics. In the present study, Indole-3-acetic acid (IAA), kinetin (6-furfuryl amino purine) and Gibberellic acid (GA3) treatments have been applied at the early tillering stage to two rice cultivars that contrast for tiller number. The responses of the hormones were studied on growth, development, grain yield, senescence patterns, assimilate concentration of the panicle and ethylene production in different classes of tillers. The leaf area, panicle grain number, fertility percentage and grain yield of tillers were higher in the low-tillering cultivar than that of high-tillering cultivar; the treatment of kinetin was more effective in the latter than in the former. High ethylene production was responsible for reduction of growth duration and grain yield of the tillers. Kinetin application reduced ethylene production of the late-tillers significantly for the benefit of grain yield.  相似文献   

18.
Three primitive varieties of six-row barley from Nepal withdifferent degrees of awn development were compared with a bredEuropean cultivar, Senta, under glasshouse conditions, fromanthesis onwards. Apart from the flag leaf the last three mainshoot leaves of the Nepalese varieties were smaller than thoseof Senta, and the lower leaves did not become senescent duringthe first 3 weeks of grain filling. In all varieties the penultimateleaf was the major assimilatory organ but in Senta the relativecontribution of the awns increased with time as the leaves senescedand fixed almost half of the total 14C assimilated by the shoot.Whereas the supply of assimilate to the ear increased with timein Senta, the reverse was found for the Nepalese varieties andoverall a smaller proportion of assimilate was supplied to theear in these varieties. The grain yield of the main shoot earof the two Nepalese varieties studied in detail was one-thirdof that of Senta; there were only approximately half the numberof grains in each median and lateral row of the ear and thegrains were smaller. There was no correlation between the degreeof awn development or the pattern of awn arrangement withinthe ear and the size of individual grains. The total biomassof the Nepalese varieties was much lower than that of Sentabut there were no differences in the harvest index or in tillerproduction. However, the Nepalese varieties, in contrast toSenta, had a mean grain yield per tiller comparable to thatof their main shoot and thus it appears that selection by plantbreeding may have increased the dominance of the main shoot. Hordeum vulgare L., barley, primitive barley varieties, carbon dioxide assimilation, assimilate translocation, grain filling  相似文献   

19.
Plants of Triticum aestivum cvs Norkin Pan 70, La Paz Inta, Buck Cencerro and Buck Cimarron were grown outdoors in individual pots with two sowing dates and irradiated at the end of the day either with red or far-red light. In red-treated plants the number of tillers was close to the potential calculated from the number of leaves on the main shoot but far-red treated plants produced less tillers. The magnitude of the effect was larger for secondary and tertiary than primary tillers. Thus, the proportion of primary to secondary and tertiary tillers was larger in FR-treated plants. Leaf sheath and lamina were longer under FR in the second sowing date, possibly due to warmer nights. These responses were greatly affected by the genotype. Significant differences in ear number were not found but in one of the sowing dates red-light-treated plants showed a lower grain number and yield than those treated with far-red.  相似文献   

20.
The fate of 100 seedling plants of Lolium perenne L. was studied over a period of 2 years in a field plot. The birth and death of tillers and the production of inflorescences was followed, and the components of seed yield were recorded in detail in the first year. The pattern of distribution of 14CO2 assimilated by the main shoot was examined at monthly intervals and during the first flowering season the distribution of 14C-assimilate from individual leaves and from the inflorescence was also studied. The capacity of individual tillers to assimilate 14CO2 prior to flowering and the re-distribution of previously accumulated assimilate during seed growth were also assessed. Plants died at a more or less constant rate with time and only 54 survived to the end of the 2–yr period. First year mortality was associated with severe grazing or cutting but in the second year the death of ungrazed plants was observed. There was great variability in the production of tillers by surviving plants. In both years the number of live tillers per plant increased from July to the end of April with particularly rapid tillering in March and April establishing the maximum value for each year. There was a similar phase of rapid tillering after flowering in July. The number of live tillers per plant declined by 50% during stem elongation and inflorescence emergence and the majority of dead tillers were young secondary (in the first year) and tertiary (in the second year) tillers with a mean age of 40 days. Such tillers had poor assimilatory capacity prior to the onset of death and were not supplied with assimilate from the main shoot. Most of the plants surviving at the end of the experiment flowered in both years and one quarter of the maximum number of live tillers per plant recorded in April of each year produced inflorescences. The earlier a tiller was produced the greater was its chance of flowering and the greater its production of seed. The greater weight of seed produced was associated with the development of more seed-bearing florets per spikelet. There was relatively little export of “C-assimilate from the flowering main shoot, and the lower internodes formed the major sink for post-anthesis assimilate. The growth of seeds appeared to be relatively independent of the leaves for current assimilate. There was some evidence that assimilate accumulated in lower internodes was remobilised and utilised in the growth of seeds and new tillers. Overall, the results confirm the view that the grass plant is a dynamic population of short-lived tillers and indicate that increasing competition for assimilate at flowering exerts a major influence on the production and survival of tillers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号