首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this work, we performed for the first time a proteomic approach to the processes induced by long-term potassium starvation in the halotolerant yeast Debaryomyces hansenii. The proteomic profile under this ionic stress conditions shows that important changes in gene expression take place as an adaptive response. We found a significant protein expression repression as well as metabolic changes such as the inhibition of the upper part of the glycolysis, the amino acid synthesis, and the Krebs cycle. On the other hand, genes related to stress responses, protein degradation, and sterols synthesis were upregulated in response to potassium deprivation. The findings in this study provide important information about how this particular yeast copes with ionic stress at molecular levels, which might further enrich the global understanding of salt tolerance processes in eukaryal systems and moreover highlighting the importance of the 'omics' approaches as a complement to the classical physiological studies.  相似文献   

3.
Hu  Q.  Sommerfeld  M.  Wang  S.-B.  Chen  S. F.  Liu  G. X.  & Hu  Z. Y. 《Journal of phycology》2003,39(S1):24-25
The green alga, Haematococcus pluvialis, has become a model organism for commercial production of the high-value carotenoid astaxanthin. H. Pluvialis has also drawn significant scientific attention because fundamental biological questions relating to the massive cellular accumulation of astaxanthin have to be addressed in order to improve the yield and quality of the algal biomass. However, research has been impeded by the lack of molecular background information on this non-sequenced species. A combination of classical biochemistry with a state-of-the-art proteomic approach was used to address these questions. This was possible by taking advantage of information already available for homologous genes/gene-products in organisms whose genomes have been sequenced. The approach involved isolation of subsets of the proteome from subcellular compartments/organelles of an organism by one- or two-dimensional electrophoresis (1-DE or 2-DE) and their identification by N-terminal sequencing and peptide mass fingerprinting (PMF), involving matrix-assisted laser desorption/ionization and time-of-flight (MALDI-TOF) mass spectrometry coupled with bioinformatics. Based upon the information obtained from the combined methods, expression and physiological functions of specific genes/encoded proteins may be deduced. Examples include profiling of cell wall proteins, biogenesis and protein composition of lipid bodies, and expression patterns of soluble proteins under stress conditions. Advantages and limitations of the method for non-sequenced organisms and for cross-species protein identification will also be discussed.  相似文献   

4.
5.
6.
Cadmium (Cd) is a toxic heavy metal that causes the disruption of a variety of physiological processes. In this study, the effect of Cd on liver proteome of ayu, Plecoglossus altivelis, was investigated by two-dimensional gel electrophoresis (2-DE) and matrix assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF–MS/MS). Twenty-three altered protein spots were successfully identified. They were involved in oxidative stress response, metal metabolism, methylation, and so on. The mRNA expression of 60S acidic ribosomal protein P0, heat shock protein 70, apolipoprotein A-I, betaine-homocysteine S-methyltransferase, parahox cluster neighbor, and transferrin was subsequently determined by real-time PCR. The mRNA expression of these genes was consistent with proteomic results. These findings enrich our knowledge on the influence of Cd toxicity to teleost fish, and may be worthy of further investigation to develop biomarkers.  相似文献   

7.
8.
The circadian clock in the retina regulates a variety of physiological phenomena such as disc shedding and melatonin release. Although these events are critical for retinal functions, it is almost unknown how the circadian clock controls the physiological rhythmicity. To gain insight into the processes, we performed a proteomic analysis using 2-DE to find proteins whose levels show circadian changes. Among 415 retinal protein spots, 11 protein spots showed circadian rhythmicity in their intensities. We performed MALDI-TOF MS and NanoLC-MS/MS analyses and identified proteins contained in the 11 spots. The proteins were related to vesicular transport, calcium-binding, protein degradation, metabolism, RNA-binding, and protein foldings, suggesting the clock-regulation of neurotransmitter release, transportation of the membrane proteins, calcium-binding capability, and so on. We also found a rhythmic phosphorylation of N-ethylmaleimide-sensitive fusion protein and identified one of the amino acid residues modified by phosphorylation. These findings provide a new perspective on the relationship between the physiological functions of the retina and the circadian clock system.  相似文献   

9.
随着重金属镉(Cd)应用范围的扩大,由此引发的土壤镉污染问题日益严重。以具有植物恢复潜力的旱柳Salix matsudana作为研究对象,探究不同浓度的Cd (2.5 mg/L, 50 mg/L)胁迫后旱柳无性系1 d、7 d和30 d后基因表达与代谢通路的变化。转录组测序结果表明:共获得102 595个非冗余基因(Unigenes),相同浓度不同时间的差异基因总数为26 623个和32 154个;相同时间不同浓度的差异基因总数为8 550个、3 444个和11 428个。从中筛选得到与Cd胁迫响应密切相关的基因25个,其中金属硫蛋白、ABC转运蛋白、锌和锰转运蛋白等基因的表达不仅会随着Cd胁迫浓度变化而且同时受到胁迫时间的改变而发生改变;油菜素内酯合成通路的ROT3和黄酮类化合物合成通路的FLS、F3H均明显上调。此外Cd胁迫引起旱柳在代谢过程、细胞过程、膜、细胞器、细胞、细胞部分、催化活化和结合蛋白这8个方面发生改变,参与这些GO条目的差异表达基因数随着Cd浓度和胁迫时间的增加而增加。并对转录组信息的可靠性用RT-PCR和酶活性生理实验数据进行了验证。文中通过转录组测序分析旱柳Cd胁迫后的响应机制,从而为旱柳修复土壤Cd污染提供理论指导。  相似文献   

10.
11.
Physical exercise induces various stress responses and metabolic adaptations that have not yet been completely elucidated. Novel biomarkers are needed in sport veterinary medicine to monitor training levels and to detect subclinical conditions that can develop into exercise-related diseases. In this study, protein modifications in horse plasma induced by prolonged, aerobic physical exercise were investigated by using a proteomic approach based on 2-DE and combined mass spectrometry procedures. Thirty-eight protein spots, associated with expression products of 13 genes, showed significant quantitative changes; spots identified as membrane Cu amine oxidase, α-1 antitrypsin, α-1 antitrypsin-related protein, caeruloplasmin, α-2 macroglobulin and complement factor C4 were augmented in relative abundance after the race, while haptoglobin β chain, apolipoprotein A-I, transthyretin, retinol binding protein 4, fibrinogen γ chain, complement factor B and albumin fragments were reduced. These results indicate that prolonged physical exercise affects plasma proteins involved in pathways related to inflammation, coagulation, immune modulation, oxidant/antioxidant activity and cellular and vascular damage, with consequent effects on whole horse metabolism.  相似文献   

12.
13.
14.
Oxygenic photosynthetic organisms often suffer from excessive irradiance, which cause harmful effects to the chloroplast proteins and lipids. Photoprotection and the photosystem II repair processes are the mechanisms that plants deploy to counteract the drastic effects from irradiance stress. Although the protective and repair mechanisms seemed to be similar in most plants, many species do confer different level of tolerance toward high light. Such diversity may originate from differences at the molecular level, i.e., perception of the light stress, signal transduction and expression of stress responsive genes. Comprehensive analysis of overall changes in the total pool of proteins in an organism can be performed using a proteomic approach. In this study, we employed 2-DE/LC–MS/MS-based comparative proteomic approach to analyze total proteins of the light sensitive model unicellular green alga Chlamydomonas reinhardtii in response to excessive irradiance. Results showed that among all the differentially expressed proteins, several heat-shock proteins and molecular chaperones were surprisingly down-regulated after 3–6 h of high light exposure. Discussions were made on the possible involvement of such down regulation and the light sensitive nature of this model alga.  相似文献   

15.
It has been confirmed that stress plays an important role in the induction and development of cardiovascular diseases, but its mechanism and molecular basis remain unknown. In the present study, a myocardial injury model induced by restraint stress was established in rat. To screen for the related proteins involved in stress-induced myocardial injury, proteomic techniques based on 2-DE and mass spectrometry were used. In our results, ten proteins were found to be altered. The expression of eight of these proteins was increased after restraint stress, including cardiac myosin heavy chain, dihydrolipoamide succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial aldehyde dehydrogenase, H+-transporting ATP synthase, albumin, and apolipoprotein A-I precursor. The expression of uncoupling protein 3 (UCP3) and mitochondrial aconitase was decreased. Most of the proteins were related to energy metabolism. Further research indicated that UCP3 may mediate the myocardial cell response induced by restraint stress.  相似文献   

16.
Hereditary inclusion body myopathy (HIBM) is an adult onset, slowly progressive distal and proximal myopathy. Although the causing gene, GNE, encodes for a key enzyme in the biosynthesis of sialic acid, its primary function in HIBM remains unknown. The goal of this study was to unravel new clues on the biological pathways leading to HIBM by proteomic comparison. Muscle cultures and biopsies were analyzed by two dimensional gel electrophoresis (2-DE) and the same biopsy extracts by isobaric tag for relative and absolute quantitation (iTRAQ). Proteins that were differentially expressed in all HIBM specimens versus all controls in each analysis were identified by mass spectrometry. The muscle cultures 2-DE analysis yielded 41 such proteins, while the biopsies 2-DE analysis showed 26 differentially expressed proteins. Out of the 400 proteins identified in biopsies by iTRAQ, 41 showed altered expression. In spite of the different nature of specimens (muscle primary cultures versus muscle biopsies) and of the different methods applied (2D gels versus iTRAQ) the differentially expressed proteins identified in each of the three analyses where related mainly to the same pathways, ubiquitination, stress response and mitochondrial processes, but the most robust cluster (30%) was assigned to cytoskeleton and sarcomere organization. Taken together, these findings indicate a possible novel function of GNE in the muscle filamentous apparatus that could be involved in the pathogenesis of HIBM.  相似文献   

17.
This paper presents an analysis of Holm oak pollen proteome, together with an evaluation of the potentiality that a proteomic approach may have in the provenance variability assessment. Proteins were extracted from pollen of four Holm oak provenances, and they were analyzed by gel-based (1- and 2-DE in combination with MALDI-TOF/TOF) and gel-free (nLC-LTQ Orbitrap MS) approaches. A comparison of 1- and 2-DE protein profiles of the four provenances revealed significant differences, both qualitative and quantitative, in abundance (18 bands and 16 spots, respectively). Multivariate statistical analysis carried out on bands and spots clearly showed distinct associations between provenances, which highlight their geographical origins. A total of 100 spots selected from the 402 spots observed on 2-DE gels were identified by MALDI-TOF/TOF. Moreover, a complementary gel-free shotgun approach was performed by nLC-LTQ Orbitrap MS. The identified proteins were classified according to biological processes, and most proteins in both approaches were related to metabolism and defense/stress processes. The nLC-LTQ Orbitrap MS analysis allowed us the identification of proteins belonging to the cell wall and division, transport and translation categories. Besides providing the first reference map of Holm oak pollen, our results confirm previous studies based on morphological observations and acorn proteomic analysis. Moreover, our data support the valuable use of proteomic techniques as phylogenetic tool in plant studies.  相似文献   

18.
Seed germination is a complex physiological process in plants that can be affected severely by heavy metals. The interference of germination by cadmium stress has not been well documented at the proteomic level. In the present study, in order to investigate the protein profile alternations during the germination stage following exposure to cadmium, a proteomic approach has been adopted in combination with morphological and physiological parameters. Seeds were exposed with a wide range of cadmium between 0.2 and 1.0 mM. Increases of cadmium concentration in the medium resulted in increased cadmium accumulation in seeds and TBARS content, whereas germination rate, shoot elongation, biomass, and water content were decreased significantly. Temporal changes of the total proteins were investigated by two-dimensional electrophoresis (2-DE). Twenty-one proteins were identified using MALDI-TOF mass spectrometry, which were upregulated at least 1.5-fold in response to cadmium stress. The identified proteins are involved in several processes, including defense and detoxification, antioxidant, protein biosynthesis, and germination processes. The identification of these proteins in the cadmium stress response provides new insight that can lead to a better understanding of the molecular basis of heavy metal responses of seeds at the germination stage.  相似文献   

19.
A Gram-positive bacterium was isolated from the saline soils of Jangpura (U.P.), India, and showed high-level of radiation-resistant property and survived upto 12.5 kGy dose of gamma radiation. The 16S rDNA sequence of this strain was examined, identified as Bacillus sp. strain HKG 112, and was submitted to the NCBI GenBank (Accession No. GQ925432). The mechanism of radiation resistance and gene level expression were examined by proteomic analysis of whole-cell extract. Two proteins, 38 kDa and 86.5 kDa excised from SDS-PAGE, which showed more significant changes after radiation exposure, were identified by MALDI-TOF as being flagellin and S-layer protein, respectively. Twenty selected 2-DE protein spots from the crude extracts of Bacillus sp. HKG 112, excised from 2- DE, were identified by liquid chromatography mass spectrometry (LC-MS) out of which 16 spots showed significant changes after radiation exposure and might be responsible for the radiation resistance property. Our results suggest that the different responses of some genes under radiation for the expression of radiation-dependent proteins could contribute to a physiological advantage and would be a significant initial step towards a full-system understanding of the radiation stress protection mechanisms of bacteria in different environments.  相似文献   

20.
The proteomic profiles of primary needles from Cr2-resistant and cr2-susceptible Pinus monticola seedlings were analysed post Cronartium ribicola inoculation by 2-DE. One hundred-and-five protein spots exhibiting significant differential expression were identified using LC–MS/MS. Functional classification showed that the most numerous proteins are involved in defence signalling, oxidative burst, metabolic pathways, and other physiological processes. Our results revealed that differential expression of proteins in response to C. ribicola inoculation was genotype- and infection-stage dependent. Responsive proteins in resistant seedlings with incompatible white pine blister rust (WPBR) interaction included such well-characterized proteins as heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, and intermediate factors functioning in the signal transduction pathways triggered by well-known plant R genes, as well as new candidates in plant defence like sugar epimerase, GTP-binding proteins, and chloroplastic ribonucleoproteins. Fewer proteins were regulated in susceptible seedlings; most of them were in common with resistant seedlings and related to photosynthesis among others. Quantitative RT-PCR analysis confirmed HSP- and ROS-related genes played an important role in host defence in response to C. ribicola infection. To the best of our knowledge, this is the first comparative proteomics study on WPBR interactions at the early stages of host defence, which provides a reference proteomic profile for other five-needle pines as well as resistance candidates for further understanding of host resistance in the WPBR pathosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号