首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jack pine budworm (Choristoneura pinus pinus Free.) (Lepidoptera: Tortricidae) is a native insect that periodically defoliates areas of jack pine (Pinus banksiana Lamb.) in the subboreal forests of North America east of the Rocky Mountains. Outbreaks of jack pine budworm generally occur at 6- to 12-year intervals and collapse after 2–4 years. Periodicity of outbreaks varies and is associated with site-related factors. Survival of early-instar larvae during spring dispersal is tied to the abundance of pollen cones (microsporangiate strobili), which provide a refuge for larvae until current-year needles expand. Jack pine trees that have been heavily defoliated produce few pollen cones in the following year, often resulting in high mortality of early-stage larvae. A diverse guild of generalist parasitoids attack jack pine budworm, but only a few species account for most mortality in any area. Collapsing jack pine budworm populations are characterized by sharp declines in early instar survival, coupled with an increased rate of parasitism in the late larval and pupal stages. The reciprocal interaction between heavy defoliation and low pollen cone production, and increased parasitism of late-stage larvae or pupae, are consistent with second-order density dependence factors identified in analysis of a long-term population data set. Since the 1950s, several jack pine budworm outbreaks have been roughly synchronous over a large geographic area, suggesting that Moran effect processes, as well as moth dispersal or other factors, may be involved in jack pine budworm dynamics. Although the short duration of outbreaks enables most trees to recover, over time dead trees and top-killed trees accumulate in jack pine stands. Jack pine is well adapted to fire and when fires ignite, the accumulation of dead trees and woody debris often leads to intense wildfires followed by prolific regeneration. The three-way interaction of jack pine, jack pine budworm, and fire ultimately serves to maintain vigorous stands and ensures continued hosts for jack pine budworm. Received: October 1, 1999 / Accepted: September 22, 2000  相似文献   

2.
Abstract.
  • 1 Newly-emerged, second-instar jack pine budworm (Choristoneura pinus Freeman) establish spring feeding sites preferentially in the pollen cones of their host tree, Pinus banksiana Lamb.
  • 2 Laboratory studies showed that the rate of establishment and survival of jack pine budworm on pollen cones was high throughout the entire spring emergence period of the insect.
  • 3 In contrast, the rate of establishment and survival of jack pine budworm on vegetative buds was very poor early in the spring. Vegetative buds were only acceptable as feeding sites to the jack pine budworm for a relatively brief period in late spring.
  • 4 Field studies showed that the change in population density of jack pine budworm during the spring emergence stage, as expressed by k-values, was a function of the abundance of pollen cones in the stand. Population reduction was greatest in those stands with the fewest pollen cones.
  • 5 Direct measurement of spring dispersal by jack pine budworm showed that dispersal and consequent losses to the budworm population were greatest in stands with the fewest pollen cones.
  • 6 We conclude that changes in the density of jack pine budworm are strongly influenced by production of pollen cones in the host stand. Because pollen cone production is related to previous years of defoliation by the jack pine budworm, we propose that pollen cones act as a density-dependent factor governing the density of early-stage jack pine budworm.
  • 7 The resulting dynamics are compared to those of other budworm species and used to explain observed regional and temporal patterns of jack pine budworm outbreaks.
  相似文献   

3.
We report data collected over the entire course of an outbreak of jack pine budworm, Choristoneura pinus pinus Freeman (Lepidoptera: Tortricidae), between 1984 and 1988 at 12 plots in Manitoba. The positive relationship between the level of defoliation, used as a proxy for population density, and the abundance of eggs suggests local reproduction by females. The density of pollen cones apparently reduced larval fitness in 1986, when flowers were least abundant, but had limited impact in other years when pollen cones were abundant; this suggests that the relative abundance of pollen cones is more likely to influence the termination of an outbreak than its onset. Considering the conditions that prevail at the onset of the outbreak (low defoliation combined with a high abundance of eggs), a predictive tool may be developed to anticipate outbreaks of jack pine budworm based on environmental conditions that are conducive to high survival and/or fecundity of females.  相似文献   

4.
5.
Microsporidia are believed to play little or no role in outbreaks of the jack pine budworm, Choristoneura pinuspinus Freeman (Lepidoptrera: Tortricidae), because the short duration (2–4 years) of those outbreaks may not permit significant build-up of the pathogen. We conducted the first survey of Nosema sp. (Microsporidia: Nosematidae) over the course of a recent jack pine budworm outbreak in Ontario. Between 2004 and 2010 the outbreak defoliated a cumulative total of 1.78 million ha. Microscopic examination of ∼15,000 overwintering larvae collected over 6 years in sites with densities of 3 larvae per branch or more revealed widespread occurrence of Nosema at generally high infection intensities. The pathogen was present in 69.5% of the 518 plots that were monitored. Prevalence of infection was generally low (below 40% in 84% of plots with infected larvae) but reached high levels (80–95%) locally and increased rapidly in most infestations within 1–2 years of onset. We hypothesize that the habit of early-instar larvae to feed on developing male flowers (pollen cones) after spring emergence is critical in allowing rapid build-up of Nosema by increasing efficiency of horizontal transmission (higher density of both infected larvae and egested spores). Nosema infection may contribute to the complexity of jack pine budworm outbreak patterns by affecting egg recruitment and early-instar survival at the stand level in concert with known effects of budworm-induced reductions in pollen cone production on those processes.  相似文献   

6.
Summary Suitability of young jack pine as a host for jack pine budworm was examined on similarly-aged trees growing on two areas previously burned in wildfires and on two previously clearcut areas in northwest Wisconsin. Nitrogen, monoterpenes, and moisture levels of foliage, and xylem water potential were measured and related to larval survival and pupal weight of caged jack pine budworm larvae. Nitrogen, monoterpenes, needle weight, and needle moisture were higher in trees growing on clearcut sites than on burned area trees. Surival of budworms to early and late instar, pupation, and adult eclosion was greater for larvae caged on clearcut-area trees than on burned-area trees. Female pupal weight differed between older (ca 10 years old) and younger (ca 8 years old) trees, but not between clearcut and burned areas. Mean female pupal weight was greatest on lownitrogen trees, where larval survival was lowest. Foliar nitrogen was consistently included as a significant predictor in budworm survival regressions. Regressions indicated larval survival and pupal weight may be associated with different tree- and foliage-related traits. Results suggest long-lasting effects of previous forest disturbance may subsequently affect herbivorous insects such as jack pine budworm.  相似文献   

7.
1 In 1996, 7000 ha of pine forests were defoliated by the pine looper Bupalus piniaria in south‐western Sweden. 2 The susceptibility of trees of different defoliation classes (0, 30, 60, 90 and 100% defoliation) to beetle‐vectored blue‐stain fungi was tested in inoculation experiments. Forty and 120‐year‐old Scots pine trees were inoculated with ‘single’, i.e. a few inoculations of Leptographium wingfieldii and Ophiostoma minus, two blue‐stain fungi associated with the pine shoot beetle Tomicus piniperda. The young trees were also ‘mass’ inoculated with L. wingfieldii at a density of 400 inoculation points per m2 over a 60 cm stem belt. 3 Host tree symptoms indicated that only trees with 90–100% defoliation were susceptible to the mass inoculation. 4 Single inoculations did not result in any consistent differences in fungal performance between trees of different defoliation classes, regardless of inoculated species or tree age class. 5 Leptographium wingfieldii produced larger reaction zones than O. minus, and both species produced larger lesions in old than in young trees. 6 As beetle‐induced tree mortality in the study area occurred only in totally defoliated stands, mass inoculations seem to mimic beetle‐attacks fairly well, and thus seem to be a useful tool for assessing host resistance. 7 As even severely defoliated pine trees were quite resistant, host defence reactions in Scots pine seem to be less dependent on carbon allocation than predicted by carbon‐based defence hypotheses.  相似文献   

8.
Radial increment cores from Douglas-fir (Pseudotsuga menziesii) and blue spruce (Picea pungens), defoliated by western spruce budworm (Choristoneura occidentalis), were analyzed by means of dendrochronological methods and compared with cores from undefoliated ponderosa pine (Pinus ponderosa) and lodgepole pine (Pinus contorta) growing on the same sites in the Front Range, Colorado. Extensive deforestation during the gold and silver booms in the second part of the nineteenth century led to dense and almost pure stands of shadetolerant budworm host species. By using the skeleton plot method, the number of trees with clear growth reductions is obtained, thus representing an exact record of forest insect attacks. The analysis of abrupt growth reductions revealed at least nine outbreaks of western spruce budworm between 1720 and 1986, the majority occurring in the nineteenth century. The outbreaks were graphically compared with periods of attack in New Mexico and Colorado which were detected by other scientists employing tree-ring measurement techniques. No increase in the frequency of severe outbreaks during the twentieth century was observed, yet there is some evidence that the most recent outbreak might be the most severe ever recorded. Open Douglas-fir stands on higher sites were more susceptible to heavy budworm attack than dense stands on lower sites. Blue spruce was less frequently and less severely attacked than Douglas-fir. The spatial pattern of historical outbreaks generally was very patchy.  相似文献   

9.
Abstract 1 After a 1‐year, extensive pine looper (Bupalus piniaria) outbreak, plots were laid out to study tree susceptibility to attack, and performance of Tomicus piniperda in pine trees suffering from varying levels of defoliation. 2 Tomicus piniperda was the dominating stem‐attacking species among the primary stem colonizers, and 82% of all trees that died had been colonized by T. piniperda. 3 Beetle attacks primarily struck severely defoliated trees, i.e. trees that suffered from 90% to 100% defoliation. 4 Beetle attacks peaked in the second year after cessation of the outbreak, and suppressed trees were both more frequently attacked and more susceptible to beetle attack than intermediate and dominant trees. 5 Trees surviving beetle attacks carried more foliage than trees that did not survive the attacks. 6 A single year of severe defoliation is enough to render pine trees susceptible to secondary pests, such as T. piniperda.  相似文献   

10.
The influence of landscape patterns on ecological processes is generally acknowledged, but often difficult to quantify. The objective of our study was to quantify the relation of jack pine budworm ( Choristoneura pinus pinus ) population levels to both the abundance of jack pine ( Pinus banksiana ) and of jack pine stand edges in the landscape. The 450 000 ha Pine Barrens region, located in northwestern Wisconsin, USA, experienced a severe jack pine budworm outbreak from 1990 to 1995. We calculated landscape indices on a landcover map derived from Landsat TM satellite imagery. Landscape indices were calculated on circular buffers (0.5, 0.75, 1, 1.5, and 2.5 km radius) centered on 143 budworm population sampling points for which annual budworm counts were available. Edge density was normalized for the proportion of jack pine in the landscape using random maps as a standard. Correlations between landscape patterns and budworm populations varied over time: proportion of jack pine showed strongest positive correlation with budworm population levels up to the peak of the outbreak (1993). Edge density exhibited positive correlation up to the peak of the outbreak, but negative correlation in the subsequent years as the outbreak declined. This may suggest that pollen-bearing male cones, which are more abundant along edges, support higher budworm populations in the initial phase of the outbreak, but stronger predation on budworm along edges subsequently reduces populations. We provide insight into previously inconclusive results on the relation of jack pine budworm population density to jack pine stand edges. The effects of landscape patterns, such as edge density, may vary not only in magnitude, but also in direction, being positive and negative during different phases of an insect outbreak. Therefore, caution should be taken in relating landscape patterns to process at either a single scale or point in time.  相似文献   

11.
1. Coniferous trees deploy a combination of constitutive (pre‐existing) and induced (post‐invasion), structural and biochemical defences against invaders. Induced responses can also alter host suitability for other organisms sharing the same host, which may result in indirect, plant‐mediated interactions between different species of attacking organisms. 2. Current range and host expansion of the mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) from lodgepole pine‐dominated forests to the jack pine‐dominated boreal forests provides a unique opportunity to investigate whether the colonisation of jack pine (Pinus banksiana Lamb.) by MPB will be affected by induced responses of jack pine to a native herbaceous insect species: the jack pine budworm (Choristoneura pinus pinus Freeman; JPBW). 3. We simulated MPB attacks with one of its fungal associates, Grosmannia clavigera Robinson‐Jeffrey & Davidson, and tested induction of either herbivory by JPBW or inoculation with the fungus followed by a challenge treatment with the other organism on jack pine seedlings and measured and compared monoterpene responses in needles. 4. There was clear evidence of an increase in jack pine resistance to G. clavigera with previous herbivory, indicated by smaller lesions in response to fungal inoculations. In contrast, although needle monoterpenes greatly increased after G. clavigera inoculation and continued to increase during the herbivory challenge, JPBW growth was not affected, but JPBW increased the feeding rate to possibly compensate for altered host quality. 5. Jack pine responses varied greatly and depended on whether seedlings were treated with single or multiple organisms, and their order of damage.  相似文献   

12.
The jack pine tip beetle, Conophthorus banksianae McPherson (Coleoptera: Scolytidae) and the red pine cone beetle, C. resinosae Hopkins, are doubtful sibling species. However, it is possible that these two taxa are valid species that maintain reproductive isolation because they accept different hosts. In a series of laboratory and field cage experiments, the host acceptance behaviours of these two species under choice and no choice conditions were compared. The field experiments demonstrated that the two species have a similar propensity to accept jack pine cones and shoots for feeding, but differ consistently in their acceptance of red pine cones, and variably in their acceptance of red pine shoots. However, the laboratory experiments did not indicate a difference between the two species in their propensity to accept red pine cones for feeding. In field cages, C. resinosae accepted significantly more red pine cones for oviposition than C. banksianae; the situation was reversed for jack pine shoots. In comparison to C. banksianae, C. resinosae is a more generalist feeder. The results from this study suggest that host acceptance behaviour is a permeable barrier unable to ensure reproductive isolation between the two species. Although there are differences in the host acceptance behaviours between C. banksianae and C. resinosae, we conclude that these differences do not necessarily support their designation as distinct species.  相似文献   

13.
Summary A study of the effects of defoliation by insects on the chemistry of lodgepole pine (Pinus contorta), and on the performance of Panolis flammea (Lepidoptera; Noctuidae) larvae, was carried out in a forest in northwest Scotland I year after a severe outbreak of P. flammea had caused extensive defoliation. Larval weight and survival were not significantly different on trees that had experienced different levels of defoliation in 1986. The nitrogen and tannin content of current and previous years' pine needles was not significantly affected by defoliation (although both were slightly greater in the foliage of defoliated trees). Phosphorus content of young pine foliage was lower (but not significantly lower except on one occasion) on heavily defoliated trees. On all sampling occasions, however, the nitrogen: phosphorus ratio was significantly higher on heavily defoliated trees. There were large differences in monoterpene composition of the previous year's shoots associated with defoliation intensity, but these differences had largely disappeared in the new growth. The results are discussed in relation to other studies on the effects of insect damage on plant chemistry and insect performance and in relation to the abundance of P. flammea in Scotland.  相似文献   

14.
To simulate the effects of forest tent caterpillar (FTC) defoliation on trembling aspen growth and mortality, an artificial defoliation experiment was performed over three years in young aspen stands of northwestern Quebec. Defoliation plots of 15 × 15 m were established on three sites, together with associated control stands of pure trembling aspen. In 2007, root collar diameters were measured and positions of all trees were mapped prior defoliation. Severe FTC defoliation was simulated for three successive years (2007–2009) by manually removing all leaves from all but 7–10% of the trees present in the defoliation plots. Yearly surveys of growth and mortality were conducted until 2010 to evaluate defoliation effects on defoliated as well as surrounding undefoliated trees. In absence of other factors, growth and mortality of trembling aspen decreased and increased, respectively, after defoliation. Our study further revealed that small diameter trees died after one year of artificial defoliation, while larger-diameter trees died after repeated defoliations. Distributions of tree mortality tended to be aggregated at small scales (<5 m), corroborating gap patterns observed in mature stands following FTC outbreaks. This experiment revealed that trembling aspen mortality can be directly attributed solely to defoliation. Repeated defoliations during FTC outbreaks have the potential to profoundly modify stand productivity and structure by reducing tree growth and increasing tree mortality in the absence of predisposing factors.  相似文献   

15.
1. Competitive and synergistic interactions directly or indirectly drive community dynamics of herbivorous insects. Novel interactions between non-native and native insects are unpredictable and not fully understood. 2. We used manipulative experiments on mature red spruce trees to test interactions between a non-native phloem feeding insect, the brown spruce longhorn beetle (BSLB), and an outbreaking native defoliator, the spruce budworm. We subjected treatment trees to defoliation by three densities of spruce budworm larvae. Treatment trees were: stressed by (i) girdling (to mimic beetle feeding) or (ii) girdling + BSLB before spruce budworm larvae were introduced on branches in sleeve cages. Budworm larvae then fed on foliage and developed to pupation. We assessed all branches for budworm performance, defoliation, shoot production and shoot growth. 3. Shoot length did not differ in response to stress from girdling or BSLB infestation. Neither stress from girdling, nor interactions with BSLB feeding affected spruce budworm performance or defoliation. Intraspecific impacts on performance and defoliation in relation to budworm density were stronger than the effects of tree stress. 4. Prior infestation of red spruce by BSLB in our experimental set-up did not influence spruce budworm performance. BSLB is a successful invader that has blended into its novel ecological niche because of ecological and phylogenetic similarities with a native congener, Tetropium cinnamopterum. 5. Outbreaks by BSLB will not likely impede or facilitate spruce budworm outbreaks if they co-occur. It would be useful to evaluate the reverse scenario of BSLB success after defoliation stress by spruce budworm.  相似文献   

16.
Climate change is altering phenology; however, the magnitude of this change varies among taxa. Compared with phenological mismatch between plants and herbivores, synchronization due to climate has been less explored, despite its potential implications for trophic interactions. The earlier budburst induced by defoliation is a phenological strategy for plants against herbivores. Here, we tested whether warming can counteract defoliation‐induced mismatch by increasing herbivore‐plant phenological synchrony. We compared the larval phenology of spruce budworm and budburst in balsam fir, black spruce, and white spruce saplings subjected to defoliation in a controlled environment at temperatures of 12, 17, and 22°C. Budburst in defoliated saplings occurred 6–24 days earlier than in the controls, thus mismatching needle development from larval feeding. This mismatch decreased to only 3–7 days, however, when temperatures warmed by 5 and 10°C, leading to a resynchronization of the host with spruce budworm larvae. The increasing synchrony under warming counteracts the defoliation‐induced mismatch, disrupting trophic interactions and energy flow between forest ecosystem and insect populations. Our results suggest that the predicted warming may improve food quality and provide better growth conditions for larval development, thus promoting longer or more intense insect outbreaks in the future.  相似文献   

17.
We used tree-ring reconstruction data to study changes in the spatial pattern of live and dead trees at an annual resolution over a 50-year period at four unmanaged, even-aged fire origin jack pine (Pinus banksiana Lamb.) stands in Saskatchewan and Manitoba, Canada. Previous studies of the spatial pattern in P. banksiana have either looked at only a snapshot from a survey done at a single point in time, or repeated measurements of permanent plots taken at 10-year intervals. With annual data, we could examine detailed changes in spatial patterns and relate these to events during stand development and external disturbances. Trees were initially clustered at all sites, but at different distances at each site, most likely because of variability in seedbed distribution at stand initiation. Clustering disappeared over time at all sites, and at a similar mean tree spacing at each site. However, significant regularity only appeared sporadically at one site, indicating that competition with neighbours was not the only factor influencing changes in spatial pattern. At two of the four sites, clustering disappeared suddenly at the same time that mortality rate reached a peak, in one case also coinciding with a jack pine budworm (Choristoneura pinus pinus Freeman) defoliation event. Dead trees were also initially more clustered than the distribution of all trees, but at different distances than the clustering of live trees. This also disappeared over time so that dead trees were eventually a random sample from the distribution of all trees. After the peak of mortality had passed, factors other than competition were determining the dynamics of these forests.  相似文献   

18.
The pine processionary moth, Thaumetopoea pityocampa, causes serious defoliation to Cedrus, Pinus and Pseudotsuga trees, as well as health problems in humans, pets and farm animals due to their urticating hairs. Environmentally friendly strategies for the management of T. pityocampa include: removal of egg batches, removal of nests, trapping of migrant larvae, spraying microbial or Insect Growth Regulator (IGR) insecticides and biocontrol, as well as pheromone‐based adult trapping and mating‐disruption. In the present paper, results on innovative technology for the control of T. pityocampa infestation using pheromone mass‐trapping are reported. Two 1‐ha plots were identified in the study area (central‐south Italy), a pine woodland recreational site growing Pinus halepensis. In the experimental plot (MT‐plot), 10 G‐traps (funnel trap type) baited with (Z)‐13‐hexadecen‐11‐ynyl acetate sex pheromone component were placed for mass‐trapping of adults; the other plot was used as a control‐plot (C‐plot). The T. pityocampa population was monitored using the two central traps in the MT‐plot and two traps positioned in the C‐plot. In addition, the winter nests made by T. pityocampa larvae overwintering on pine trees were counted. After 2 years of mass‐trapping, the number of adults trapped by the monitoring pheromone traps decreased in the MT‐plot, but not in the C‐plot, whereas the number of nests decreased in both plots. Statistical results highlighted significant differences in trap catches between the two plots but not between years. In the case of nests, differences among plots were not significant before the mass‐trapping, but significant after 1‐year treatment. According to our results, the mass‐trapping technique is able to reduce T. pityocampa infestations. This pheromone method can be applied in combination with other control systems in the context of integrated pest management in recreational areas.  相似文献   

19.
Abstract 1 The green spruce aphid, Elatobium abietinum, is an important defoliator of Sitka spruce in the U.K. However, it is usual for years in which high E. abietinum populations occur to be followed by a year with low aphid densities. The possibility that the performance of E. abietinum is reduced on previously infested Sitka spruce, and that this is the cause of year‐to‐year fluctuations in population density, was investigated by comparing population development and the growth rate of individual aphids on experimentally defoliated trees. 2 Separate experiments were performed to determine whether aphid performance was reduced either in the autumn immediately after defoliation in the spring, or was reduced in the spring of the next year. Different rates of initial defoliation on trees used to test aphid performance were created by artificially infesting the trees with aphids in the spring before the experiments, and varying the time of infestation. 3 Population development and the mean relative growth rate (MRGR) of individual aphids on previously defoliated and undefoliated Sitka spruce did not differ significantly in the spring of the next year. No differences were observed in the nutrient content of the 1‐year‐old needles of previously defoliated or undefoliated trees at this time. 4 In the autumn and winter immediately after spring defoliation, aphid MRGR was significantly higher on trees that had been heavily defoliated earlier in the season compared with trees that had been lightly defoliated. However, the difference in MRGR decreased over the winter period. Nitrogen, phosphorous and potassium concentrations were 9.4–12.2% higher, at the beginning of the autumn, in the current year needles of heavily defoliated trees than in the current year needles of lightly defoliated trees. 5 The experiments indicate that high populations of E. abietinum in the spring do not induce any defensive mechanisms in Sitka spruce that adversely affect subsequent generations of the aphid. By contrast, the results suggest that high spring densities of the aphid improve the nutritional quality of the current year's foliage for autumn generations.  相似文献   

20.
Nitrogen cycling in poplar stands defoliated by insects   总被引:3,自引:0,他引:3  
Large-scale outbreaks of defoliating insects are common in temperate forests. These outbreaks are thought to be responsible for substantial cycling of nitrogen (N), and its loss from the system. Gypsy moth (Lymantria dispar) populations within poplar plots were manipulated over 2 years so that the ecosystem-wide consequences of catastrophic defoliation on N cycling could be examined. The quantities of N in leaf litter-fall, ammonia volatilization and soil N pools were estimated across the two seasons. Defoliated leaf biomass was estimated from experimentally derived approximate digestibility factors and added to the mass of senesced leaf to determine total annual leaf production. Throughout the growing season the defoliation treatment peaked at about 40% in year 1 and 100% in year 2. Rapid regrowth after defoliation meant that only 45% of the annual leaf biomass was consumed in the defoliation treatment in year 2, while control plots suffered about 20% consumption each year. In each year, defoliated plots produced 20% more leaf biomass and N than the controls, a phenomenon attributed to compensatory photosynthesis. No substantial losses of N via ammonia volatilization, nitrous oxide emission or nitrate leaching were observed. Neither was there any sustained or substantial gain in the soils microbial biomass or inorganic N pools. These observations suggest that the defoliated poplars were able to compete with soil microbes and N loss mechanisms for soil N as it became available, thereby ameliorating the effects of defoliation on soil nitrogen cycling. We conclude from this study that the N mineralized from defoliation residues was conserved in this plantation ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号