首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Heme regulation before the appearance of hyperplastic nodules was investigated in mice models of hepatocarcinogenesis. 2. With this aim 5-aminolaevulinate synthetase (ALA-S), microsomal heme-oxygenase (MHO), mitochondrial and cytoplasmic rhodanese activities were examined throughout a period of 35 days in animals exposed to dietary p-dimethylaminoazobenzene (DAB). 3. ALA-S activity was significantly diminished (50%) on day 14, then showing a sharply rising profile from day 28 onwards, and reaching 350% on day 35. 4. A similar profile was observed for mitochondrial rhodanese activity. 5. Changes in MHO and cytoplasmic rhodanese activities were almost the opposite to those observed for ALA-S. 6. The distinctive alteration in mitochondrial and cytoplasmic rhodanese would suggest that it plays a subtle role in ALA-S regulation during carcinogenesis initiation through a mechanism that appears to involve subcellular localization controls perhaps by means of the breakage of cystine trisulphide postulated to act as an ALA-S activator. 7. Taking into account the present results, we suggest a probable mechanism for the onset of hepatocarcinogenesis that includes a primary activating liver status, provoking biochemical aberration leading to the stage of initiation of hepatocarcinogenesis involving the whole organ.  相似文献   

2.
1. Basal levels and allyl-isopropylacetamide (AIA) or veronal induced levels of delta-amino-levulinate synthetase (ALA-S), cytoplasmic and mitochondrial rhodanese were determined in tumor (T) and liver of both normal mice (NM) and T-bearing mice (TBM). 2. Rhodanese tumoral mitochondrial levels were higher than the hepatic normal mitochondrial fraction, while the cytoplasmic activity was nearly equal in all sources. 3. In neither case was the activity of tumoral ALA-S and rhodanese altered by any of the porphyrinogenic drugs. 4. Mitochondrial and cytoplasmic rhodanese activity was also measured in tumor and liver of TBM at different intervals after transplantation. We concluded that the behaviour of rhodanese is a property inherent to the tissue and not one attained with time.  相似文献   

3.
Summary Changes of the specific activity of 3-mercaptopyruvate sulfurtransferase (MPST), rhodanese and cystathionase in Ehrlich ascites tumor cells (EATC) and tumor-bearing mouse liver after intraperitoneal administration of thiazolidine derivatives, L-cysteine, D,L-methionine, thiocystine or thiosulfate were estimated. Thiazolidine derivatives used were: thiazolidine-4-carboxylic acid (CF), 2-methyl-thiazolidine-2,4-dicarboxylic acid (CP) and 2-methyl-thiazolidine-4-carboxylic acid (CA). In the liver, the activity of MPST was significantly increased by all the studied compounds, whereas the activity of rhodanese was by CF and thiocystine and that of cystathionase was by the administration of cysteine and CP. Un the other hand, cysteine lowered the rhodanese activity and the activity of cystathionase was decreased by the administration of methionine and thiocystine. Activities of MPST and rhodanese were even lower in EATC than those in the liver of tumor-bearing mouse and the activity of cystathionase in EATC was not be detected. The thiazolidine derivatives significantly increased the level of MPST activity in EATC, but decreased the rhodanese activity. Thiosulfate also increased the activity of MPST to a lesser degree, but cysteine, methionine and thiocystine gave little change in the activity. The rhodanese activity in EATC was slightly increased only by thiocystine. These findings suggest that the sulfur metabolism in the tumor-bearing mouse liver is different from that in the normal mouse liver, and that sulfur compounds are minimally metabolized to sulfane sulfur, a labile sulfur, in EATC.  相似文献   

4.
The optimum conditions for measuring rhodanese activity in human erythrocytes were established. The mean control values for males (112 nmol SCN/30 min/mg protein) and females (127 nmol SCN/30 min/mg protein) were determined. Rhodanese activity was measured in different porphyric patients. The activity was diminished in porphyria cutanea tarda (PCT), acute intermittent porphyria (AIP), variegate porphyria (VP) and lead intoxication (Pb), remaining normal in erythropoietic protoporphyria (EPP). delta-Aminolaevulinate synthetase (ALA-S) activity was increased in PCT, AIP, VP and Pb showing no changes in EPP. It is suggested that a similar scheme, to that proposed for the control of ALA-S in Rhodopseudomonas spheroides and soybean callus, is also operating in animals.  相似文献   

5.
The enzyme rhodanese is greatly stabilized in the range pH 4-6, and samples at pH 5 are fully active after several days at 23 degrees C. This is very different from results at pH greater than 7, where there is significant loss of activity within 1 h. A pH-dependent conformational change occurs below pH 4 in a transition centered around pH 3.25 that leads slowly to inactive rhodanese at pH 3 (t 1/2 = 22 min at pH3). The inactive rhodanese can be reactivated by incubation under conditions required for detergent-assisted refolding of denatured rhodanese. The inactive enzyme at pH 3 has the maximum of its intrinsic fluorescence spectrum shifted to 345 nm from 335 nm, which is characteristic of native rhodanese at pH greater than 4. At pH 3, rhodanese shows increased exposure of organized hydrophobic surfaces as measured by 1,1'-bis(4-anilino)naphthalene-5,5'-disulfonic acid binding. The secondary structure is maintained over the entire pH range studied (pH 2-7). Fluorescence anisotropy measurements of the intrinsic fluorescence provide evidence suggesting that the pH transition produces a state that does not display greatly increased average flexibility at tryptophan residues. Pepsin digestibility of rhodanese follows the pH dependence of conformational changes reported by activity and physical methods. Rhodanese is resistant to proteolysis above pH 4 but becomes increasingly susceptible as the pH is lowered. The form of the enzyme at pH 3 is cleaved at discrete sites to produce a few large fragments. It appears that pepsin initially cleaves close to one end of the protein and then clips at additional sites to produce species of a size expected for the individual domains into which rhodanese is folded. Overall, it appears that in the pH range between pH 3 and 4, titration of groups on rhodanese leads to opening of the structure to produce a conformation resembling, but more rigid than, the molten globule state that is observed as an intermediate during reversible unfolding of rhodanese.  相似文献   

6.
1. Activities of delta-aminolevulinic acid synthetase (ALA-S) and delta-aminolevulinic acid dehydratase (ALA-D) in trout liver and kidney were compared with those in the mouse. 2. ALA-S activity (per unit tissue fresh weight) exceeded ALA-D activity in trout liver and kidney. 3. In trout kidney, ALA-S activity slightly exceeded, and ALA-D activity far exceeded, their activities in trout liver. 4. In trout, heme synthesis differs from that in mammals in that appreciable synthesis occurs in the kidney, and in that ALA-S activity is not rate limiting.  相似文献   

7.
The activity of the following enzymes involved in the biosynthesis of porphyrins was determined in endosymbiote-free and endosymbiote-containing Crithidia deanei grown in a chemically defined medium: succinyl Coenzyme A synthetase (Suc.CoA-S), 5-aminolevulinate synthetase (ALA-S), 4,5-dioxovaleric acid transaminase (DOVA-T), 5-aminolevulinate dehydratase (ALA-D), porphobilinogenase (PBGase), deaminase and heme synthetase (Heme-S). The amount of 5-aminolevulinic acid (ALA) and porphobilinogen, porphyrins and heme was also determined. ALA and PBG were detected in C. deanei. The levels of free porphyrins was low. Heme concentration was nil. The activity of ALA-D, deaminase and PBGase was not detected in C. deanei. The activity of Suc.CoA-S and ALA-S were twice higher in symbiote-containing than in aposymbiotic C. deanei. Aposymbiotic cells had a higher activity of DOVA-T than symbiote-containing cells. The level of Heme-S, measured using protoporphyrin as substrate, was twice as high in symbiote-containing than in symbiote-free cells.  相似文献   

8.
Chemically induced and spontaneous liver tumors share some metabolic alterations. The decline in hemoprotein levels during hepatocarcinogenesis may result from a diminution of the intracellular heme pool. To elucidate if the onset of the pre-initiation stage alters the natural regulation mechanism of heme pathway, animals were fed with p-dimethylaminoazobenzene (DAB) and treated or not with 2-allylisopropylacetamide (AIA). The induction of 6-Aminolevulinic acid synthase (ALA-S) activity and the diminution in microsomal heme oxygenase (MHO) did not change when DAB fed animals were treated with AIA. Cytochrome P-450 (P-450) levels and glutathione S-transferase activity were increased in all the groups tested. Tryptophan pyrrolase, sulphatase and beta-glucuronidase activities were altered in DAB fed animals but AIA treatment did not produce any effect. Changes in drug metabolizing enzymes in livers of DAB fed animals could be the result of a primary deregulation of heme metabolism. These results give additional support to our hypothesis about a mechanism for the onset of hepatocarcinogenesis.  相似文献   

9.
The δ-aminolevulinic acid synthase (ALA-S) is an enzyme which catalyzes the synthesis of δ-aminolevulinic acid (ALA). The Bradyrhizobium japonicum ALA-S coding sequence lacking plastidal transit sequence was introduced into the rice genome (C line). The transgenic lines, C4 and C5, were compared with the transgenic lines expressing TALA-S gene with plastidal transit sequence (P line) to investigate whether the plastidal sequence affects the targeting capacity of B. japonicum ALA-S gene and the ALA-synthesizing capacity in rice plants. The B. japonicum ALA-S mRNA was expressed efficiently in C lines and the protein was localized in the stroma of chloroplasts regardless of the transit sequence as in P lines. The resulting transgenic plants, C line, had similar levels of ALA-S activity, ALA, protoporphyrin IX and chlorophylls, compared to those of P lines. In response to irradiance of 350 μmol m−2 s−1, transgenic lines C4 and C5 displayed the characteristic phenotypes of photodynamic damage, i.e., decreases in photosynthetic parameter Fv/Fm, as in P5 and P14 lines, whereas wild type did not. These results indicate that the lack of the plastidal transit sequence influences neither chloroplast translocation of B. japonicum ALA-S nor ALA-synthesizing capacity in the transgenic rice.  相似文献   

10.
A hepatic green pigment, inhibitory toward ferrochelatase, has been isolated from the liver of mice treated with griseofulvin, isogriseofulvin, or 3,5-diethoxycarbonyl-1,4-dihydrocollidine and has been shown to exhibit identical chromatographic characteristics to authentic N-methyl protoporphyrin. All four possible structural isomers have been demonstrated, and each drug produced primarily the same isomer. N-Methyl protoporphyrin has also been found in very small amounts in the liver of untreated mice, but the isomeric composition appeared to differ from that of the drug-induced N-methyl protoporphyrin. Intraperitoneal administration of 3,5-diethoxy-carbonyl-1,4-dihydrocollidine to female C3H/He/Ola and NIH/Ola inbred mice produced a marked dose-related loss of hepatic ferrochelatase activity, which was identical in magnitude in the two strains. Induction of hepatic 5-aminolevulinate synthase (ALA-S), and accumulation of liver protoporphyrin, however, were greater in C3H/He/Ola mice. The strain difference in ALA-S response was most marked when inhibition of ferrochelatase (the "specific" effect of the drug) was maximal, and this suggests that a genetic variation exists in the sensitivity of ALA-S to a second drug action, the so-called nonspecific action, which is shared by many lipid-soluble compounds. Male mice of three strains accumulated greater amounts of hepatic protoporphyrin than females after treatment with griseofulvin, yet no significant difference was found between the two sexes in the extent of ferrochelatase inhibition. Stimulation of ALA-S activity was slightly greater in males, but when porphyria was very marked, ALA-S activities were significantly lower in this sex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The enzyme rhodanese was investigated for the conformational transition associated with its urea unfolding. When rhodanese was treated with 0 or 3 M urea, the activity was not significantly affected. 4.25 M urea treatment led to a time-dependent loss of activity in 60 min. Rhodanese was completely inactivated within 2 min in 6 M urea. The 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid fluorescence intensity was not significantly increased during 0, 3, and 6 M urea equilibrations, and the fluorescence was dramatically increased with 4.25 M urea, indicating that hydrophobic surfaces are exposed. After 0 and 3 M urea equilibration, rhodanese was not significantly proteolyzed with trypsin. Treatment with 4.25 M urea led to simultaneous formation of major 12-, 15.9-, 17-, and 21.2-kDa fragments, followed by progressive emergence of smaller peptides. The N termini of the 17- and 21.2-kDa bands were those of intact rhodanese. The N terminus of the 15.9-kDa band starts at the end of the interdomain tether. The 12-kDa band begins with either residue 183 or residue 187. The size and sequence information suggest that the 17- and 15.9-kDa bands correspond to the two domains. The 21.2- and 12-kDa bands appear to be generated through one-site tryptic cleavage. It is concluded that urea disrupts interaction between the two domains, increasing the accessibility of the interdomain tether that can be digested by trypsin. The released domains have increased proteolytic susceptibility and produce smaller peptides, which may represent subdomains of rhodanese.  相似文献   

12.
The aim of the experiments was to evaluate the effect of administration of cysteine, methionine, thiocystine, and thiosulphate upon the activity of mercaptopyruvate sulphurtransferase (MPST) and rhodanese in mouse liver. It was found that rhodanese activity increased following thiocystine and methionine administration and showed a smaller increase after cysteine and thiosulphate. The MPST activity significantly increased after cysteine and to a lesser extent after thiocystine and thiosulphate. On the other hand, methionine seemed to exert no effect upon the enzymatic activity. The results suggested that methionine metabolic cycle in mouse liver proceeded from cysteine to sulphane sulphur as thiocystine and, therefore, these three compounds increased rhodanese activity. Thiosulphate seemed rather to be involved in metabolic changes related to maintaining the stability of the physiological thiosulphate level and activated both the enzymes.  相似文献   

13.
1. Basal levels and allyl-isopropylacetamide (AIA) or veronal induced levels of delta-aminolevulinate synthetase (ALA-S), cytochrome P-450 (cyt P-450) and cytochrome oxidase were determined in tumor (T) and liver of both normal mice (NM) and T bearing mice (TBM). 2. Basal levels of ALA-S were nearly the same in either source. The amount of cyt P-450 was lower in TBM liver than in NM liver, and no detectable in T. While the basal activity of cytochrome oxidase in TBM liver and T were higher than those of NM liver. 3. In AIA intoxicated animals there was a lower induction of ALA-S in liver of TBM than in NM liver. There was no induction in T ALA-S. The loss of cyt P-450 was less in TBM liver when compared with NM liver. 4. The induction level of cyt P-450 after veronal administration was nearly the same in liver of both TBM and NM. 5. We conclude that lower induction of liver ALA-S activity in TBM liver is due to correspondingly lower drug metabolism ability of TBM liver. Otherwise our results suggest that the control mechanism operating in T and probably in its original tissue are different from those described for normal liver.  相似文献   

14.

1. 1.|We developed a turbidimetric assay system for quantitation of heat-induced protein aggregation which is presumably caused by protein denaturation.

2. 2.|Rhodanese in 6 M guanidinium chloride was employed in the assay system, because this protein recognizes hydrophobic sites on denatured proteins and aggregates.

3. 3.|Turbidity caused by protein-rhodanase aggregation was recorded at 320 nm by using a u.v./VIS spectrophotometer.

4. 4.|When heated, alcohol dehydrogenase (ADH) aggregates with rhodanese. The increase of ADH-rhodanese aggregation was correlated with the loss of enzymatic activity.

5. 5.|These results indicated that the aggregation was proportional to the extent of ADH denaturation which assumingly caused the loss of ADH activity during heating at 45.5°C.

6. 6.|Similar results were observed when cytosolic proteins from CHO cells were heated at 45.5°C. Heated cytosolic proteins promoted aggregation by complex formation with rhodanese. The aggregation increased with increasing heat dose.

7. 7.|Therefore, the rhodanese assay system can be employed usefully to quantitate the protein aggregation after heat stress.

Author Keywords: Turbidimetric assay; rhodanese; protein aggregation; hyperthermia  相似文献   


15.

Background

Acute Intermittent Porphyria (AIP) is an inherited disease produced by a deficiency of Porphobilinogen deaminase (PBG-D). The aim of this work was to evaluate the effects of Isoflurane and Sevoflurane on heme metabolism in a mouse genetic model of AIP to further support our previous proposal for avoiding their use in porphyric patients. A comparative study was performed administering the porphyrinogenic drugs allylisopropylacetamide (AIA), barbital and ethanol, and also between sex and mutation using AIP (PBG-D activity 70% reduced) and T1 (PBG-D activity 50% diminished) mice.

Methods

The activities of 5-Aminolevulinic synthetase (ALA-S), PBG-D, Heme oxygenase (HO) and CYP2E1; the expression of ALA-S and the levels of 5-aminolevulinic acid (ALA) were measured in different tissues of mice treated with the drugs mentioned.

Results

Isoflurane increased liver, kidney and brain ALA-S activity of AIP females but only affected kidney AIP males. Sevoflurane induced ALA-S activity in kidney and brain of female AIP group. PBG-D activity was further reduced by Isoflurane in liver male T1; in AIP male mice activity remained in its low basal levels. Ethanol and barbital also caused biochemical alterations. Only AIA triggered neurological signs similar to those observed during human acute attacks in male AIP being the symptoms less pronounced in females although ALA-S induction was greater. Heme degradation was affected.

Discussion

Biochemical alterations caused by the porphyrinogenic drugs assayed were different in male and female mice and also between T1 and AIP being more affected the females of AIP group.

General significance

This is the first study using volatile anaesthetics in an AIP genetic model confirming Isoflurane and Sevoflurane porphyrinogenicity.  相似文献   

16.
1. The porphyrinogenic ability of several antineoplastics used in the therapy of the different cancers was evaluated. The action of cyclophosphamide, busulfan and 5-fluorouracil on the amount and nature of the accumulated hepatic porphyrins and on the activity of delta-aminolaevulinate synthase (ALA-S), were estimated at different doses and times of drug treatment in 17-day-old chick embryos. 2. It was observed that cyclophosphamide produces a significant increase in the accumulation of hepatic porphyrins at different doses as well as in the activity of the ALA-S, at all the incubation times. Cyclophosphamide alters the pattern of porphyrins accumulated in the liver, where a coproporphyrin: protoporphyrin ratio higher than in the controls can be observed. 3. Busulfan increased the hepatic porphyrins accumulated in the liver but to a lesser degree than cyclophosphamide. 4. 5-Fluorouracil did not modify the hepatic porphyrin content when it was administered at doses up to 40 mg/embryo. 5. When the embryos were injected with busulfan or 5-fluorouracil no significant differences were observed in the activity of ALA-S up to 11 hr of incubation. 6. These results indicate that cyclophosphamide has a remarkable porphyrinogenic capacity in chick embryo while busulfan, notwithstanding the fact that it alters the haem pathway, it does so to a degree that does not impair the regulation of ALA-S activity. Fluorouracil seems to be non porphyrinogenic in this system, up to 40 mg/embryo.  相似文献   

17.
The role of rhodanese as an intermediate catalyst in the oxidation of elemental S (S°) is not well understood. This study investigated the effect of 26 soil properties and steam sterilization in relation to S° oxidation and rhodanese activity in 33 soils (27 Oregon soils and six Chinese soils). S° oxidation potential was determined by incubating (7 d at 23 °C) soil amended with 500 mg S° kg-1 soil and measuring the SO4 released. Both total S° oxidation (TSO) and rhodanese activity varied widely among the 33 soils, ranging from 0 to 143 mg SO4-S kg-1 soil 7 d-1 and 22 to 2109 nmoles SCN- g-1 soil h-1 respectively. S° oxidation but not rhodanese activity had a significant positive correlation with soil pH. In sterile soils, chemical S° oxidation (CSO) averaged 3% of the total S° oxidation and apparent rhodanese activity averaged 11% of the total rhodanese activity. S° oxidation was not significantly correlated with rhodanese activity. However, development of stepwise regression models predicting S° oxidation revealed that rhodanese activity was an important explanatory variable in predicting biological S° oxidation (TSO minus CSO). Also, microbial biomass C was found to be an important parameter in models for both S° oxidation and rhodanese activity. Investigations of the effect of acidification during S° oxidation showed that biological S° oxidation was negatively correlated with S° oxidation-induced-pH-change for soils with pH > 6 but no such significant relationship was found on soils with pH> 6. This suggested that extreme acidity may inhibit S° oxidation but not rhodanese activity.  相似文献   

18.
This study aimed to investigate and compare variation of renal rhodanese activity at 2nd, 4th and 8th weeks of post-natal development (PND) in mice. The enzyme activity increased with age and was higher in females compared to males in all studied groups. Cosinor analysis revealed significant circadian rhythms (with period τ = 24 h) of enzyme activity in both genders with peak time shift during the PND. At the 2nd week of PND (pre-weaning time), the circadian rhythm peaked at the beginning of light span, more precisely ≅1 HALO (Hours After Light Onset). A week after weaning (4th week of PND), the peak time was located at the second half of photophase (≅9 HALO) in both genders. Four to six weeks later, about the 8th week of PND, the circadian peak time was then recorded at ≅13 HALO. These findings suggest that rhodanese level and rhythm stabilization were age-dependent. Moreover, gender-related differences may stimulate discussions on the relationship between renal rhodanese and cyanide sensitivity.  相似文献   

19.
When hepatocytes are cultured on matrigel, a reconstituted basement membrane matrix, mRNAs for cytochrome P450 class IIB1/2 and class III genes can be induced by treatment with phenobarbital. We took advantage of this new system to critically evaluate the role of heme as a regulator of these cytochromes P450 and of 5-aminolevulinate synthase (ALA-S), the rate-limiting enzyme in heme biosynthesis. Phenobarbital treatment of rat cultures increased the total amount of cytochrome P450, activities catalyzed by IIB1/2 (benzyloxy- and pentoxyresorufin O-dealkylases) and ALA-S activity, and ALA-S mRNA. Treatments with phenobarbital combined with succinyl acetone, an inhibitor of heme biosynthesis at the step of 5-aminolevulinate dehydrase, blocked the induction of the proteins for cytochrome P450IIB1/2 and cytochrome P450IIIAI, as indicated by spectral, immunological, and enzymatic assays. However, at the same time, succinyl acetone cotreatment failed to inhibit the induction of the mRNAs for cytochrome P450IIB1/2 and cytochrome P450IIIA. Lack of effect on the cytochrome P450 mRNAs was selective inasmuch as treatment with phenobarbital combined with succinyl acetone synergistically increased both ALA-S activity and ALA-S mRNA, presumably by blocking formation of heme, the feedback repressor of ALA-S. Indeed, the increase in ALA-S mRNA caused by the combined treatment was abolished by adding heme itself to the cultures. In contrast to earlier concepts, we conclude that in the intact hepatocyte, phenobarbital-induced cytochrome P450 induction is independent of changes in heme synthesis.  相似文献   

20.
The present study was undertaken to assess the influence of acute metabolic acidosis on the activity of renin-angiotensin-aldosterone system and renal function in a group of seven one-week-old neonates with mean birth weight of 2164 g (range: 1300-3750 g) and mean gestational age of 34 weeks (range: 28-40 weeks) undergoing oral NH4Cl load. NH4Cl was given in a dose of 2.8 mEq/kg to evaluate renal acidification. Prior to and following NH4Cl administration blood acid-base parameters, plasma urinary electrolytes, creatinine and aldosterone concentration as well as plasma renin activity, glomerular filtration rate, urine flow rate and net acid secretion were measured. NH4Cl administration significantly depressed blood pH (P < 0.05), total CO2 content (P < 0.01) and base excess (P < 0.01) and resulted in a significant elevation of plasma potassium concentration (P < 0.05). Furthermore, NH4Cl ingestion significantly increased urine flow rate, sodium, chloride and net acid excretion. In response to NH4Cl acidosis no consistent change in plasma renin activity and plasma aldosterone concentration could be detected. There was, however, an about 50% increase in urinary aldosterone excretion from the control value of 4.1 +/- 1.2 micrograms/day to 6.8 +/- 2.3 micrograms/day (P < 0.05) after NH4Cl administration. These data suggest that the responsiveness of neonatal adrenals to stimulation by metabolic acidosis is blunted, acidosis therefore, may play a minor role in the neonatal hyperfunction of renin-angiotensin-aldosterone system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号