首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural genes for nitrogenase, nifK, nifD, and nifH, are crucial for nitrogen fixation. Previous phylogenetic analysis of the amino acid sequence of nifH suggested that this gene had been horizontally transferred from a proteobacterium to the gram-positive/cyanobacterial clade, although the confounding effects of paralogous comparisons made interpretation of the data difficult. An additional test of nif gene horizontal transfer using nifD was made, but the NifD phylogeny lacked resolution. Here nif gene phylogeny is addressed with a phylogenetic analysis of a third and longer nif gene, nifK. As part of the study, the nifK gene of the key taxon Frankia was sequenced. Parsimony and some distance analyses of the nifK amino acid sequences provide support for vertical descent of nifK, but other distance trees provide support for the lateral transfer of the gene. Bootstrap support was found for both hypotheses in all trees; the nifK data do not definitively favor one or the other hypothesis. A parsimony analysis of NifH provides support for horizontal transfer in accord with previous reports, although bootstrap analysis also shows some support for vertical descent of the orthologous nifH genes. A wider sampling of taxa and more sophisticated methods of phylogenetic inference are needed to understand the evolution of nif genes. The nif genes may also be powerful phylogenetic tools. If nifK evolved by vertical descent, it provides strong evidence that the cyanobacteria and proteobacteria are sister groups to the exclusion of the firmicutes, whereas 16S rRNA sequences are unable to resolve the relationships of these three major eubacterial lineages.   相似文献   

2.
The polymerase chain reaction (PCR) is an in vitro procedure for primer-directed enzymatic amplification of specific template nucleic acid sequences. In order to determine whether a given actinomycete isolated from an actinorhiza (nodule) belongs to the genus Frankia or is a contaminant, we have developed a test based on the PCR. Primers complementary to sequences of two DNA regions corresponding to the nif genes (nifH and nifD) and the rRNA genes (16S and 23S) were specifically chosen to differentially amplify DNAs from Frankia strains but not those from other microorganisms. A series of positive and negative controls were set up by using universal or selective primers resulting in a discriminant amplification, which could be detected after agarose gel electrophoresis. In the nif region, degenerate oligonucleotide primers were used to amplify a target common to all the nitrogen-fixing microorganisms tested, while another set of primers amplified a target with a high specificity for Frankia strains. In the rRNA gene region, universal and specific primers were characterized and tested with DNAs from a wide range of microorganisms. The efficiency of this rapid and sensitive PCR assay was tested with an isolate obtained from Alnus nepalensis nodules, confirming results obtained by nodulation tests.  相似文献   

3.
Frankia genus-specific characterization by polymerase chain reaction.   总被引:4,自引:0,他引:4  
The polymerase chain reaction (PCR) is an in vitro procedure for primer-directed enzymatic amplification of specific template nucleic acid sequences. In order to determine whether a given actinomycete isolated from an actinorhiza (nodule) belongs to the genus Frankia or is a contaminant, we have developed a test based on the PCR. Primers complementary to sequences of two DNA regions corresponding to the nif genes (nifH and nifD) and the rRNA genes (16S and 23S) were specifically chosen to differentially amplify DNAs from Frankia strains but not those from other microorganisms. A series of positive and negative controls were set up by using universal or selective primers resulting in a discriminant amplification, which could be detected after agarose gel electrophoresis. In the nif region, degenerate oligonucleotide primers were used to amplify a target common to all the nitrogen-fixing microorganisms tested, while another set of primers amplified a target with a high specificity for Frankia strains. In the rRNA gene region, universal and specific primers were characterized and tested with DNAs from a wide range of microorganisms. The efficiency of this rapid and sensitive PCR assay was tested with an isolate obtained from Alnus nepalensis nodules, confirming results obtained by nodulation tests.  相似文献   

4.
A nif gene probe from Rhizobium meliloti was used to isolate a recombinant bacteriophage from a Frankia sp. ArI3 gene bank. There is a large homology between nif D and nif H genes of R. meliloti or Klebsiella pneumoniae and Frankia DNA sequences. Approximately 4.5 kb to the right of nif K, we have localized a DNA region hybridizing to a R. meliloti probe containing nif A and nif B genes. The extent of the homology was greater for nif B than for nif A.  相似文献   

5.
DNA sequences of an intergenic spacer (IGS) and parts of genes in the nif cluster were amplified by the polymerase chain reaction (PCR) using two primers derived from nifD -and nifK -conserved sequences. The PCR products were cleaved by ten 4–base cutting restriction enzymes and the restriction patterns were used as fingerprints to type Frankia strains. The feasability of this PCR-RFLP method for typing Frankia strains was investigated on Frankia reference strains belonging mainly to the Elaeagnaceae infectivity group but also on new Frankia isolates and on other N2-fixing microorganisms. By modulating the stringency of the amplifications, we showed the method allowed to target either Frankia strains or the whole N2-fixing microbial community. DNA digestion patterns were used to estimate the sequence divergence between the Frankia nifD-K fragment. The estimated relationships deduced from these genotypic data correlated well with established Frankia taxonomic schemes.  相似文献   

6.
The organization of genes with the capacity to code for four proteins involved in nitrogen fixation in Frankia strain FaC1 was determined by restriction fragment mapping and nucleotide sequence analysis. Analysis of the 44-kb genomic cosmid clone pFAH 1. isolated from a cosmid library made from Frankia strain FaCl, resulted in the identification of a 7.2-kb Pst I fragment to which Klebsiella nif H, nif D and nif K probes hybridized. This nif -hybridizing fragment was subcloned and analyzed by restriction fragment mapping. Further subcloning of the 7.2-kb fragment and subsequent sequence analysis of approximately 6.8 kb revealed the presence of six open reading frames (ORFs). Four of these ORFs have the potential to code for nif V-, nif H-, nif D- and nif K-like gene products and the two others are unidentified ORFs. The organization of the structural genes for nitrogenase is the same in this Frankia strain as it is in most other nitrogen-fixing prokaryotes, but the positioning of the nif V-like gene relative to the nif HDK cluster differs, A consensus nif -promoter-like sequence, found 5'to nif H. was not detected upstream of the nif V-like gene. Nine copies of a 7-bp direct repeat were found 5'to ORFA.  相似文献   

7.
Methanosarcina barkeri 227 possesses two clusters of genes potentially encoding nitrogenases. We have previously demonstrated that one cluster, called nif2, is expressed under molybdenum (Mo)-sufficient conditions, and the deduced amino acid sequences for nitrogenase structural genes in that cluster most closely resemble those for the Mo nitrogenase of the gram-positive eubacterium Clostridium pasteurianum. The previously cloned nifH1 from M. barkeri shows phylogenetic relationships with genes encoding components of eubacterial Mo-independent eubacterial alternative nitrogenases and other methanogen nitrogenases. In this study, we cloned and sequenced nifD1 and part of nifK1 from M. barkeri 227. The deduced amino acid sequence encoded by nifD1 from M. barkeri showed great similarity with vnfD gene products from vanadium (V) nitrogenases, with an 80% identity at the amino acid level with the vnfD gene product from Anabaena variabilis. Moreover, there was a small open reading frame located between nifD1 and nifK1 with clear homology to vnfG, a hallmark of eubacterial alternative nitrogenases. Stimulation of diazotrophic growth of M. barkeri 227 by V in the absence of Mo was demonstrated. The unusual complement of nif genes in M. barkeri 227, with one cluster resembling that from a gram-positive eubacterium and the other resembling a eubacterial V nitrogenase gene cluster, suggests horizontal genetic transfer of those genes.  相似文献   

8.
9.
10.
The genes encoding the structural components of nitrogenase, nifH, nifD and nifK, from the fast-growing, broad-host-range Rhizobium strain ANU240 have been identified and characterized. They are duplicated and linked in an operon nifHDK in both copies. Sequence analysis of the nifH gene from each copy, together with partial sequence analysis of the nifD and nifK genes, and restriction endonuclease analysis suggested that the duplication is precise. Comparison of the Fe-protein sequence from strain ANU240 with that from other nitrogen-fixing organisms revealed that, despite its broad host range and certain physiological properties characteristic of Bradyrhizobium strains, ANU240 is more closely related to the narrow-host-range Rhizobium strains than to the broad-host-range Bradyrhizobium strains. The promoter regions of both copies of the nif genes contain the consensus sequence characteristic of nif promoters, and functional analysis of the two promoters suggested that both nif operons are transcribed in nodules.  相似文献   

11.
We have sequenced the Rhodobacter capsulatus nifH and nifD genes. The nifH gene, which codes for the dinitrogenase reductase protein, is 894 bp long and codes for a polypeptide of predicted Mr 32,412. The nifD gene, which codes for the alpha subunit of dinitrogenase, is 1,500 bp long and codes for a protein of predicted Mr 56,113. A 776-bp BglII-XhoI fragment containing only nif sequences was used as a hybridization probe against R. capsulatus genomic DNA. Two HindIII fragments, 11.8 kb and 4.7 kb in length, hybridize to this probe. Both fragments have been cloned from a cosmid library. The 11.8-kb fragment contains the nifH, D and K genes, as previously demonstrated (Scolnik and Haselkorn, 1984). In this paper we present evidence that suggests that the 4.7-kb HindIII fragment contains a gene coding for 16S rRNA, and that although homology between nif and this fragment can be observed in filter hybridization experiments, a second copy of the nif structural genes seems not to be present in this region.  相似文献   

12.
DNA fragments containing either the nifD or nifH promoter and 5' structural gene sequences from Bradyrhizobium japonicum I110 were fused in frame to the lacZ gene. Stable integration of these nif promoter-lacZ fusions by homologous double reciprocal crossover into a symbiotically nonessential region of the B. japonicum chromosome provided an easy assay for the effects of potential nif regulatory mutants. The level of beta-galactosidase activity expressed from these two nif promoter-lacZ fusions was assayed in bacteroids of B. japonicum I110 wild type and Fix mutants generated by transposon Tn5 mutagenesis and identified in the accompanying paper. No nif-positive regulatory mutants were identified from among an array of Fix- mutants in which Tn5 was inserted 9 kilobase pairs upstream of the nifDK operon and within the 18-kilobase-pair region separating the nifDK and nifH operons. This result indicates that there are no genes in these regions involved in the regulation of nitrogenase structural gene expression. Interestingly, the level of beta-galactosidase activity expressed from the nifH promoter was twice that expressed from the nifD promoter, suggesting that the normal cellular level of the nifH gene product in bacteroids is in a 2:1 ratio with the nifD gene product instead of in the 1:1 stoichiometry of the nitrogenase enzyme complex.  相似文献   

13.
14.
Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include nifH, nifD, nifK, nifT, nifY, nifE, nifN, nifX, nifU, nifS, nifV, nifW, nifZ, nifM, and nifF. Although there are significant spatial differences, the identified A. vinelandii nif-specific genes have the same sequential arrangement as the corresponding nif-specific genes from K. pneumoniae. Twelve other potential genes whose expression could be subject to nif-specific regulation were also found interspersed among the identified nif-specific genes. These potential genes do not encode products that are structurally related to the identified nif-specific gene products. Eleven potential nif-specific promoters were identified within the major nif cluster, and nine of these are preceded by an appropriate upstream activator sequence. A + T-rich regions were identified between 8 of the 11 proposed nif promoter sequences and their upstream activator sequences. Site-directed deletion-and-insertion mutagenesis was used to establish a genetic map of the major nif cluster.  相似文献   

15.
Molecular cloning of nif DNA from Azotobacter vinelandii.   总被引:6,自引:5,他引:1  
Two clones which contained nif DNA were isolated from a clone bank of total EcoRI-digested Azotobacter vinelandii DNA. The clones carrying the recombinant plasmids were identified by use of the 32P-labeled 6.2-kilobase (kb) nif insert from pSA30 (which contains the Klebsiella pneumoniae nifK, nifD, and nifH genes) as a hybridization probe. Hybridization analysis with fragments derived from the nif insert of pSA30 showed that the 2.6-kb insert from one of the plasmids (pLB1) contains nifK whereas the 1.4-kb insert from the other plasmid (pLB3) contains nifD. Marker rescue tests using genetic transformation indicated that the 2.6-kb A. vinelandii nif fragment contains the wild-type alleles for the nif-6 and nif-38 mutations carried by Nif- strains UW6 and UW38. The 1.4-kb insert contains the wild-type allele for the nif-10 mutation carried by Nif- strain UW10.  相似文献   

16.
DNA isolated from two diazotrophic methylotrophs, the obligate methanotroph Methylosinus sp. strain 6 and the methanol autotroph Xanthobacter sp. H4-14, hybridized to DNA fragments encoding nitrogen fixation (nif) genes from Klebsiella pneumoniae. This interspecific nif homology was limited to DNA fragments encoding the nitrogenase structural proteins (nifH, nifD, and nifK) and specific methylotroph DNA sequences. The hybridization patterns obtained with the two methylotrophs were dissimilar, indicating that the nif region of methylotrophs is not physically conserved. By using the K. pneumoniae nif structural genes as a probe, a fragment of nif DNA from each methylotroph was cloned and characterized. The DNA fragment from Methylosinus sp. 6 encoded two polypeptides of 57,000 and 34,000 molecular weight.  相似文献   

17.
18.
Abstract The nonheterocystous, filamentous cyanobacterium, Plectonema boryanum fixes nitrogen only under microaerophilic conditions. The organization of nitrogen fixation genes ( nifH, D, K ) in Plectonema was determined by using cloned fragments from the Anabaena nif genes as probes in Southern hybridizations. Regions of Plectonema DNA were homologous to Anabaena nifH, nifD , and nifK genes, and the resulting pattern of hybridization was used to construct a map of nifH, D, K DNA isolated from Plectonema cells grown under non-nitrogen fixing conditions (combined nitrogen and O2 present). The nifH and nifD genes are on the same 3 kbp Hin dIII fragment, and nifK is on a 1 kbp Hin dIII fragment. All three nif fragments are adjacent to one another on a 12 kbp Cla I fragment.  相似文献   

19.
20.
As a first step toward developing the methodology for screening large numbers of heterocyst-forming freshwater cyanobacteria strains for the presence of various types of nitrogenases and hydrogenases, we surveyed the distribution of these genes and their activities in 14 strains from culture collections. The nitrogenase genes include nif1 encoding a Mo-type nitrogenase expressed in heterocysts, nif2 expressed in vegetative cells and heterocysts under anaerobic conditions, and vnf encoding a V-type nitrogenase expressed in heterocysts. Two methods proved to be valuable in surveying the distribution of nitrogenase types. The first method was Southern blot hybridization of DNA digested with two different endonucleases and hybridized with nifD1, nifD2, and vnfD probes. The second method was ethane formation from acetylene to detect the presence of active V-nitrogenase. We found that all 14 strains have nifD1 genes, and eight strains also have nifD2 genes. Four of the strains have vnfD genes, in addition to nifD2 genes. It is curious that three of these four strains had similar hybridization patterns with all of the nifD1, nifD2, and vnfD probes, suggesting that there could be some bias in strains used in the present study or in strains held in culture collections. This point will need to be assessed in the future. For surveying the distribution of hydrogenases, Southern blot hybridization was an effective method. All strains surveyed had hup genes, with the majority of them also having hox genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号