首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
1. Compactin, (-)-hydroxycitrate and dexamethasone gave rise to a decrease in the rate of cholesterol production in hepatocytes from fed rats by interfering with the flow of substrate into the sterol biosynthetic pathway. The cells responded to the deficit of biosynthetic sterol by increasing the activity of hydroxymethylglutaryl-CoA reductase (HMG-CoA reductase). 2. Compactin and (-)-hydroxycitrate gave similar results in hepatocytes from rats starved for 24 h but in this case dexamethasone had no significant effect. 3. Exogenous oleate interferes with the production of carbohydrate-derived acetyl-CoA and also gives rise initially to opposing effects on the rate of sterol synthesis and HMG-CoA reductase activity. Over a longer period, however, oleate itself was capable of replacing carbohydrate as the major source of carbon for sterol synthesis. 4. The increase in HMG-CoA reductase activity observed when liver cells were incubated in the presence of compactin, (-)-hydroxycitrate or oleate could be partially reversed by the simultaneous presence of glucagon. 5. Under some physiological conditions, a deficiency of biosynthetic cholesterol or of a related precursor may lead to an increase in the activity of HMG-CoA reductase.  相似文献   

2.
Cultured C-6 glial cells were utilized to evaluate the effect of antimicrotubular drugs on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and cholesterol synthesis. Colchicine, Colcemid, and vinblastine (1.0 muM) caused a marked reduction in HMG-CoA reductase activity and, as a consequence, the rate of cholesterol synthesis in these cells. No effect was observed with lumicolchicine, a mixture of colchicine isomers with no effect on microtubules. The effect of colchicine was apparent within 1 h after addition to the culture medium, and, after 6 h, HMG-CoA reductase activity in treated cells was only approximately 15 to 30% of that in untreated cells. Reductase activity was very sensitive to the concentration of drug added, i.e. cells treated with just 0.1 muM colchicine for 6 h exhibited a 50% lower enzymatic activity than did untreated cells. The lack of a generalized, nonspecific toxic effect on the cells was indicated by the finding of no change in the activities of fatty acid synthetase and NADPH-cytochrome c reductase and the rate of total protein synthesis in cells treated with colchicine (1 muM) for 6 h. A close temporal and quantitative correlation was observed between the effects of colchicine on HMG-CoA reductase and on a parameter of microtubular function, i.e. maintenance of glial cell shape. The data suggest that microtubules are involved in the regulation of HMG-CoA reductase and cholesterol synthesis in C-6 glial cells.  相似文献   

3.
Human blood monocytes cultured in medium containing 20% whole serum showed the greatest activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and [14C]acetate incorporation into non-saponifiable lipids around the 7th day after seeding, the period of greatest growth. Although there was enough low-density lipoprotein (LDL) in the medium to saturate the LDL receptors that were expressed by normal cells at that time, HMG-CoA reductase activity and acetate incorporation were as high in normal cells as in cells from familial-hypercholesterolaemic (FH) patients. Both the addition of extra LDL, which interacted with the cells by non-saturable processes, and receptor-mediated uptake of acetylated LDL significantly reduced reductase activity and increased incorporation of [14C]oleate into cholesteryl esters in normal cells and cells from FH patients ('FH cells'), and reduced the expression of LDL receptors in normal cells. Pre-incubation for 20h in lipoprotein-deficient medium apparently increased the number of LDL receptors expressed by normal cells but reduced the activity of HMG-CoA reductase in both normal and FH cells. During subsequent incubations the same rate of degradation of acetylated LDL and of non-saturable degradation of LDL by FH cells was associated with the same reduction in HMG-CoA reductase activity, although LDL produced a much smaller stimulation of oleate incorporation into cholesteryl esters. In normal cells pre-incubated without lipoproteins, receptor-mediated uptake of LDL could abolish reductase activity and the expression of LDL receptors. The results suggested that in these cells, receptor-mediated uptake of LDL might have a greater effect on reductase activity and LDL receptors than the equivalent uptake of acetylated LDL. It is proposed that endogenous synthesis is an important source of cholesterol for growth of normal cells, and that the site at which cholesterol is deposited in the cells may determine the nature and extent of the metabolic events that follow.  相似文献   

4.
Administration of estradiol-17 beta to male Xenopus laevis evokes the proliferation of the endoplasmic reticulum and the Golgi apparatus and the synthesis and secretion by the liver of massive amounts of the egg yolk precursor phospholipoglycoprotein, vitellogenin. We have investigated the effects of estrogen on three key regulatory enzymes in lipid biosynthesis, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the major regulatory enzyme in cholesterol and isoprenoid synthesis, and acetyl-CoA carboxylase and fatty acid synthetase, which regulate fatty acid biosynthesis. HMG-CoA reductase activity and cholesterol synthesis increase in parallel following estrogen administration. Reductase activity in estrogen stimulated Xenopus liver cells peaks at 40-100 times the activity observed in control liver cells. The increased rate of reduction of HMG-CoA to mevalonic acid is not due to activation of pre-existing HMG-CoA reductase by dephosphorylation, as the fold induction is unchanged when reductase from control and estrogen-stimulated animals is fully activated prior to assay. The estrogen-induced increase of fatty acid synthesis is paralleled by a 16- to 20-fold increase of acetyl-CoA carboxylase activity, indicating that estrogen regulates fatty acid synthesis at the level of acetyl-CoA carboxylase. Fatty acid synthetase activity was unchanged during the induction of fatty acid biosynthesis by estrogen. The induction of HMG-CoA reductase and of acetyl-CoA carboxylase by estradiol-17 beta provides a useful model for regulation of these enzymes by steroid hormones.  相似文献   

5.
The mechanism by which competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase decrease serum cholesterol is incompletely understood. The few available data in humans suggest that chronic administration of the competitive inhibitor, lovastatin, decreases serum cholesterol with little or no change in total body sterol synthesis. To further define the effect of lovastatin on cholesterol synthesis in normal subjects, we investigated the effect of a single oral dose of lovastatin and a 4-week treatment period of lovastatin on mononuclear leukocyte (ML) sterol synthesis as a reflection of total body sterol synthesis. In parallel, we measured serum lipid profiles and HMG-CoA reductase activity in ML microsomes that had been washed free of lovastatin. ML sterol synthesis did not significantly decrease (23 +/- 5%, mean +/- SEM) at 3 h after a single 40-mg dose of lovastatin. With a single oral 80-mg dose, ML sterol synthesis decreased by 57 +/- 10% (P less than 0.05) and remained low for the subsequent 6 h. With both doses, total HMG-CoA reductase enzyme activity in microsomes prepared from harvested mononuclear leukocytes was induced 4.8-fold (P less than 0.01) over baseline values. Both the 20-mg bid dose and the 40-mg bid dose of lovastatin administered for a 4-week period decreased serum cholesterol by 25-34%. Lovastatin at 20 mg bid decreased ML sterol synthesis by 23 +/- 6% (P less than 0.02) and increased ML HMG-CoA reductase 3.8 times (P less than 0.001) the baseline values. Twenty four hours after stopping lovastatin, ML sterol synthesis and HMG-CoA reductase enzyme activity had returned to the baseline values. The higher dose of lovastatin (40 mg bid) decreased ML sterol synthesis by 16 +/- 3% (P less than 0.05) and induced HMG-CoA reductase to 53.7 times (P less than 0.01) the baseline value at 4 weeks. Stopping this higher dose effected a rebound in ML sterol synthesis to 140 +/- 11% of baseline (P less than 0.01), while HMG-CoA reductase remained 12.5 times baseline (P less than 0.01) over the next 3 days. No rebound in serum cholesterol was observed. From these data we conclude that in normal subjects lovastatin lowers serum cholesterol with only a modest effect on sterol synthesis. The effect of lovastatin on sterol synthesis in mononuclear leukocytes is tempered by an induction of HMG-CoA reductase enzyme quantity, balancing the enzyme inhibition by lovastatin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The relationship of microsomal cholesterol and phospholipid fatty acid composition to the activities of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and acyl-CoA: cholesterol acyltransferase was investigated in male, female virgin and pregnant rats when hepatic cholesterogenesis was stimulated by cholestyramine. Cholestyramine increased HMG-CoA reductase activity in both sexes but had no effect on microsomal free cholesterol level or acyl-CoA: cholesterol acyltransferase activity. The data suggest that during cholestyramine treatment high rates of bile acid synthesis are supported by preferential channelling of cholesterol into this pathway, whilst the substrate pool and activity of acyl-CoA:cholesterol acyltransferase are maintained unaltered. The lack of a consistent relationship among enzyme activities and microsomal lipid composition infers that HMG-CoA reductase and acyl-CoA:cholesterol acyltransferase are regulated in vivo by independent mechanisms which are unlikely to involve modulation by the physical properties of the microsomal lipid.  相似文献   

7.
The activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase; EC 1.1.1.34) in the lactating mammary gland of rats killed between 10:00 and 14:30 h was 2-3 times that in the livers of the same animals. In contrast, after injection of 3H2O in vivo, the rate of appearance of 3H in the cholesterol of the gland was much lower than that in the liver. In the mammary gland of virgin and non-lactating animals, the activity of HMG-CoA reductase was less than 10% of that of the lactating gland. The activity of HMG-CoA reductase in the lactating mammary gland was significantly (P less than 0.005) lower at midnight than at mid-day, and appeared to show an inverse relationship to the activity of the liver enzyme. However, there was no corresponding change in the incorporation of 3H into the gland cholesterol. Withdrawal of food for 6h had no effect on the activity of HMG-CoA reductase in the lactating mammary gland, but resulted in a significant decrease (P less than 0.005) in that of the liver. Starvation of lactating rats for 24h produced a significant decrease (P less than 0.005) in the activity of the enzyme in both organs. There was also a significant decline in the rate at which 3H2O was incorporated in vivo into the cholesterol of both organs (liver, P less than 0.05; gland, P less than 0.005). Giving a high-fat palatable diet together with chow to lactating animals led to a decline in HMG-CoA reductase activity in the mammary gland, but not in liver. This decrease in the gland was not accompanied by a corresponding decline in the apparent rate of cholesterol synthesis.  相似文献   

8.
The effect of feeding 2% cholestanol or cholesterol on cholesterol-7 alpha-hydroxylase activity and hydroxymethylglutaryl (HMG)-CoA reductase activity was studied in rats. The rate of 7 alpha-hydroxylation of a trace amount of labelled cholesterol increased by about 80% after the cholestanol feeding, whereas the 7 alpha-hydroxylation of endogenous microsomal cholesterol increased by about 40%. The latter conversion was measured with an accurate technique based on isotope dilution-mass spectrometry. After cholesterol feeding, the corresponding figures were about 50 and 60%, respectively. The cholestanol feeding had no significant effect on the HMG-CoA reductase activity, whereas the cholesterol feeding decreased the activity by about 80%. From the results obtained, it is concluded that the increased 7 alpha-hydroxylation observed after cholesterol feeding can not be explained only by a simple expansion of the substrate pool. The similar effect of both cholesterol and cholestanol on the cholesterol 7 alpha-hydroxylase activity and the diverging effect on the HMG-CoA reductase activity show that there is no coupling between cholesterol synthesis and degradation under the conditions employed. The lack of effect of cholestanol on the HMG-CoA reductase activity indicates a high structural specificity of the receptor involved in regulation of the enzyme. If a receptor mechanism is involved in the stimulation of the cholesterol-7 alpha-hydroxylase by cholesterol and cholestanol, these receptor(s) must be different from those involved in the regulation of the HMG-CoA reductase.  相似文献   

9.
The coordinated control of cholesterol biosynthesis and esterification by 25-hydroxycholesterol was studied in the macrophage-like cell line P388D1. Since 25-hydroxycholesterol rapidly stimulated incorporation of [3H]oleate into the cholesteryl ester fraction of these cells, we have tested the possibility that the well-known inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) by 25-hydroxycholesterol might be the indirect consequence of an increased cholesterol esterification rather than a direct effect on HMG-CoA reductase. The experimental results show that progesterone, an inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT), when added together with 25-hydroxycholesterol, abolished the increased cholesterol esterification without affecting the inhibition of HMG-CoA reductase by 25-hydroxycholesterol. Thus, uncoupling cholesterol esterification had no effect on 25-hydroxycholesterol's ability to inhibit HMG-CoA reductase. Unexpectedly, pretreatment of P388D1 cells with 25-hydroxycholesterol resulted in no elevation of ACAT activity as measured in broken cell preparations. Therefore, the possibility that 25-hydroxycholesterol stimulated cholesteryl ester formation by increasing the amount of cholesterol available for esterification, rather than by acting directly on ACAT activity, was considered. Labeling experiments using [14C]-cholesterol have provided evidence for this assumption.  相似文献   

10.
Lovastatin, a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity, was used to study the regulation of cholesterol metabolism and the basolateral-membrane secretion of triacylglycerol and cholesterol in the human intestinal cell line CaCo-2. At 0.1 microgram/ml, lovastatin decreased 3H2O incorporation into cholesterol by 71%. In membranes prepared from cells incubated with lovastatin for 18 h, HMG-CoA reductase activity was induced 4-8-fold. Mevalonolactone prevented this induction. In intact cells, lovastatin (10 micrograms/ml) decreased cholesterol esterification by 50%. The reductase inhibitor decreased membrane acyl-CoA:cholesterol O-acyltransferase (ACAT) activity by 50% at 5 micrograms/ml. ACAT inhibition by lavastatin was not reversed by adding excess of cholesterol or fatty acyl-CoA to the assay. Lovastatin, in the presence or absence of mevalonolactone, decreased the basolateral secretion of newly synthesized cholesteryl esters and triacylglycerols. Lovastatin also inhibited the esterification of absorbed cholesterol and the secretion of this newly synthesized cholesteryl ester. Lovastatin is a potent inhibitor of cholesterol synthesis in CaCo-2 cells. Moreover, it is a direct inhibitor of ACAT activity, independently of its effect on HMG-CoA reductase and cholesterol synthesis.  相似文献   

11.
The current studies demonstrate that corticosteroidogenesis can be maintained by primary cultures of bovine adrenocortical cells under lipoprotein-depleted conditions. The cholesterol necessary as substrate for steroid synthesis was found to arise from de novo synthesis within these cells. Adrenocorticotropin (ACTH) increased 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity 5-fold within 12 h after addition to the medium. The increase in activity apparently represented accumulation of enzyme as determined by protein blotting and immunodetection. The predominant immunodetectable species of HMG-CoA reductase from bovine adrenal cells was 97,000 daltons; no higher molecular mass species was detectable. The ACTH induction of HMG-CoA reductase activity could be prevented after inhibition of cholesterol conversion to pregnenolone with clotrimazole. These results are suggestive that ACTH increases adrenocortical cholesterol biosynthesis and HMG-CoA reductase activity after conversion of a cellular pool of cholesterol and/or oxysterol into steroid. The increased rate of cholesterol biosynthesis is then capable of maintaining ACTH-promoted steroid production. This is the first study, in vitro, to demonstrate an ACTH-promoted accumulation of HMG-CoA reductase of adrenocortical cells.  相似文献   

12.
Disruption of the permeability barrier results in an increase in cholesterol synthesis in the epidermis. Inhibition of cholesterol synthesis impairs the repair and maintenance of barrier function. The increase in epidermal cholesterol synthesis after barrier disruption is due to an increase in the activity of epidermal HMG-CoA (3-hydroxy-3-methylglutaryl CoA) reductase. To determine the mechanism for this increase in enzyme activity, in the present study we have shown by Western blot analysis that there is a 1.5-fold increase in the mass of HMG-CoA reductase after acute disruption of the barrier with acetone. In a chronic model of barrier disruption, essential fatty acid deficiency, there is a 3-fold increase in the mass of HMG-CoA reductase. Northern blot analysis demonstrated that after acute barrier disruption with acetone or tape-stripping, epidermal HMG-CoA reductase mRNA levels are increased. In essential fatty acid deficiency, epidermal HMG-CoA reductase mRNA levels are increased 3-fold. Thus, both acute and chronic barrier disruption result in increases in epidermal HMG-CoA reductase mRNA levels which could account for the increase in HMG-CoA reductase mass and activity. Additionally, both acute and chronic barrier disruption increase the number of low density lipoprotein (LDL) receptors and LDL receptor mRNA levels in the epidermis. Moreover, epidermal apolipoprotein E mRNA levels are increased by both acute and chronic perturbations in the barrier. Increases in these proteins in response to barrier disruption may allow for increased lipid synthesis and transport between cells and facilitate barrier repair.  相似文献   

13.
14.
The regulation of hepatic and intestinal 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and acyl-CoA; cholesterol acyltransferase (ACAT) activities by dietary fish oil was examined in the rabbit. Rabbits were fed 10% menhaden oil or menhaden oil plus 1% cholesterol for 14 days. They were compared with animals fed a control diet or one enriched with long-chain saturated fats consisting of 10% cocoa butter oil or cocoa butter oil plus 1% cholesterol. Plasma cholesterol was increased in rabbits fed the fish oil and the two cholesterol-containing diets. In the liver, ACAT activity was increased and HMG-CoA reductase activity was decreased in rabbits ingesting the fish oil. The same was true for animals ingesting both cholesterol-containing diets. In the intestine, ACAT activity was not affected by the ingestion of the fish oil compared to control rabbits; however, it was significantly higher in animals fed the fish oil compared to animals ingesting the cocoa butter. HMG-CoA reductase activity was decreased in the distal two-thirds of the intestine in animals fed the menhaden oil compared to activities observed in controls. In animals ingesting the cholesterol diets, intestinal reductase was significantly decreased, whereas intestinal ACAT activity was increased in rabbits ingesting the cocoa butter and cholesterol diet when compared to their controls. Lipid analysis of hepatic and intestinal microsomes demonstrated an enrichment of n-3 polyunsaturated fatty acids in membranes from rabbits ingesting the menhaden oil.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effects of Triton WR 1339, starvation and cholesterol diet on the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acetyl-CoA carboxylase and on the rates of mevalonic acid (MVA) biosynthesis from acetyl-CoA and malonyl-CoA in the soluble (140 000 g) and microsomal fractions of rat liver, on the rate of incorporation of these substrates into squalene, cholesterol and lanosterol in the rat liver postmitochondrial fraction and on the rate of fatty acid biosynthesis was studied. The administration of Triton WR 1339 (200 mg per 100 g of body weight twice) stimulated the activity of HMG-CoA reductase and MVA biosynthesis from acetyl-CoA and malonyl-CoA in the intact and solubilized microsomal fractions and had no effect on these parameters in the soluble fraction. Starvation for 36 hrs did not cause inhibition of the reductase activity or MVA biosynthesis from both substrates in the soluble fraction. Alimentary cholesterol significantly increased the activity of HMG-CoA reductase, had no effect on the rate of MVA biosynthesis from acetyl-CoA and stimulated the malonyl-CoA incorporation in to MVA in the soluble fraction. Starvation an alimentary cholesterol inhibited the HMG-CoA reductase activity and MVA biosynthesis from both substrates in the solubilized microsomal fraction. Triton WR 1339 stimulated 4--19-fold the lipid formation in the total unsaponified fraction and its components i.e. squalene, lanosterol, cholesterol, from acetyl-CoA and only insignificantly (1,2--1,7-fold) increased malonyl-CoA incorporation into these compounds. Starvation and alimentary cholesterol repressed lanosterol and cholesterol biosynthesis from acetyl-CoA, decreased malonyl-CoA incorporation into these sterols and had no influence on squalene biosynthesis from the two substrates. Triton WR 1339 and starvation inhibited the acetyl-CoA carboxylase activity, unaffected by alimentary cholesterol. No significant changes in the rate of fatty acid biosynthesis from the substrates were observed. The data obtained provide evidence for the existence of autonomic pathways of MVA biosynthesis localized in the soluble and microsomal fractions of rat liver. The pathway of MVA biosynthesis in the soluble fraction is less sensitive to regulatory factors. Sterol biosynthesis from malonyl-CoA is also more resistant to regulatory effects than sterol biosynthesis from acetyl-CoA. This suggests that HMG-CoA reductase localized in the soluble fraction takes part in MVA and sterol biosynthesis from malonyl-CoA.  相似文献   

16.
To characterize the metabolic regulatory response to interruption of the enterohepatic circulation of bile acids, we examined the effects of cholestyramine treatment on the rate-limiting steps in cholesterol biosynthesis (HMG-CoA reductase) and bile acid production (cholesterol 7 alpha-hydroxylase) as well as on the heparin-sensitive binding of low density lipoproteins (LDL) (reflecting LDL receptor expression) in human liver. Altogether, 18 normolipidemic patients with uncomplicated cholesterol gallstone disease were treated with cholestyramine (8 g b.i.d.) for 2-3 weeks prior to cholecystectomy, and another 34 cholesterol gallstone patients served as untreated controls. Cholestyramine treatment stimulated cholesterol 7 alpha-hydroxylase more than sixfold, and increased both HMG-CoA reductase activity (552 +/- 60 pmol/min per mg protein vs 103 +/- 9 pmol/min per mg protein) and LDL receptor expression (6.1 +/- 0.8 ng/mg protein; n = 6 vs 2.2 +/- 0.3 ng/mg protein; n = 7). Moreover, there was a good correlation between HMG-CoA reductase activity and LDL receptor binding (rs = +0.71; n = 13), suggesting a simultaneous stimulatory effect to compensate for the increased hepatic cholesterol catabolism due to bile acid depletion caused by cholestyramine. Further evidence for this assumption was the finding of a significant relationship between cholesterol 7 alpha-hydroxylase activity and both LDL receptor expression (rs = +0.77; n = 13) and HMG-CoA reductase activity (rs = +0.76; n = 46). We conclude that in human liver a parallel stimulation of cholesterol synthesis and LDL receptor expression occurs in response to stimulation of bile acid synthesis.  相似文献   

17.
Hepatic free cholesterol levels are influenced by cholesterol synthesis and ester formation, which, in turn, might regulate cholesterol secretion into bile and plasma. We manipulated the rates of hepatic cholesterol synthesis and esterification and measured biliary and very low density lipoprotein (VLDL) cholesterol secretion, and bile acid synthesis. Mevalonate decreased HMG CoA reductase by 80%, increased acyl coenzyme A: cholesterol acyltransferase (ACAT) by 60% and increased [3H]oleate incorporation into microsomal and VLDL cholesteryl esters by 174% and 122%, respectively. Microsomal and biliary free cholesterol remained constant at the expense of increased microsomal and VLDL cholesteryl ester content. Mevalonate did not change bile acid synthesis. 25-OH cholesterol decreased HMG-CoA reductase by 39%, increased ACAT by 24%, but did not effect 7 alpha-hydroxylase. 25-OH cholesterol increased [3H]oleate in microsomal and VLDL cholesterol esters by 71% and 120%. Biliary cholesterol decreased by 40% and VLDL cholesteryl esters increased by 83%. A small and unsustained decrease in bile acid synthesis (14CO2 release) occurred after 25-OH cholesterol. After orotic acid feeding, HMG-CoA reductase increased 352%, and [3H]oleate in microsomal and VLDL cholesteryl esters decreased by 43% and 89%. Orotic acid decreased all VLDL components including free cholesterol (68%) and cholesteryl esters (55%), and increased biliary cholesterol by 160%. No change in bile acid synthesis occurred. Hepatic cholesterol synthesis and esterification appear to regulate a cholesterol pool available for both biliary and VLDL secretion. Changing cholesterol synthesis and esterification did not alter bile acid synthesis, suggesting that either this common bile/VLDL secretory pool is functionally distinct from the cholesterol pool used for bile salt synthesis, or that free cholesterol availability in this precursor pool is not a major determinant of bile acid synthesis.  相似文献   

18.
The effect of cholesterol diet on the rate of mevalonic acid biosynthesis from 1-14C acetyl-CoA, 2-14C malonyl-CoA and the incorporation of these substrates into sterols and bile acids in rabbit liver were studied. Simultaneously, the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acetyl-CoA carboxylase and the biosynthesis of fatty acids from acetyl-CoA and malonyl-CoA were measured. Hypercholesterolemia was found to be concomitant with the inhibition of acetyl-CoA carboxylase activity only in cell-free (700 g) and mitochondrial fractions and slightly decreased the incorporation of acetyl-CoA and malonyl-CoA into fatty acids in the postmitochondrial fraction. The HMG-CoA reductase activity in all subcellular fractions except for the postmicrosomal one was inhibited under these conditions. A significant decrease of acetyl-CoA incorporation and an increase in malonyl-CoA incorporation into mevalonic acid in all liver fractions except for microsomal one were observed in rabbits with hypercholesterolemia. These data provide evidence for the existence of two pathways of mevalonic acid synthesis from the above-said substrates that are differently sensitive to cholesterol. Cholesterol feeding resulted in a decreased synthesis of the total unsaponified fraction including cholesterol from acetyl-CoA, malonyl-CoA and mevalonic acid. The rate of incorporation of these substrates into lanosterol was unchanged. All the indicated substrates (acetyl-CoA, malonyl-CoA, mevalonic acid) are precursors of bile acid synthesis in rabbit liver. Cholesterol feeding and the subsequent development of hypercholesterolemia resulted in bile acid synthesis stimulation, preferentially in the formation of the cholic + deoxycholic acids from these precursors.  相似文献   

19.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase exists in interconvertible active and inactive forms in cultured fibroblasts from normal and familial hypercholesterolemic subjects. The inactive form can be activated by endogenous or added phosphoprotein phosphatase. Active or partially active HMG-CoA reductase in cell extracts was inactivated by a ATP-Mg-dependent reductase kinase. Incubation of phosphorylated (inactive) HMG-CoA reductase with purified phosphoprotein phosphatase was associated with dephosphorylation (reactivation) and complete restoration of HMG-CoA reductase activity. Low density lipoprotein, 25-hydroxycholesterol, 7-ketocholesterol, and mevalonolactone suppressed HMG-CoA reductase activity by a short-term mechanism involving reversible phosphorylation. 25-Hydroxycholesterol, which enters cells without the requirement of low density lipoprotein-receptor binding, inhibited the HMG-CoA reductase activity in familial hypercholesterolemic cells by reversible phosphorylation. Measurement of the short-term effects of inhibitors on the rate of cholesterol synthesis from radiolabeled acetate revealed that HMG-CoA reductase phosphorylation was responsible for rapid suppression of sterol synthesis. Reductase kinase activity of cultured fibroblasts was also affected by reversible phosphorylation. The active (phosphorylated) reductase kinase can be inactivated by dephosphorylation with phosphatase. Inactive reductase kinase can be reactivated by phosphorylation with ATP-Mg and a second protein kinase from rat liver, designated reductase kinase kinase. Reductase kinase kinase activity has been shown to be present in the extracts of cultured fibroblasts. The combined results represent the initial demonstration of a short-term regulation of HMG-CoA reductase activity and cholesterol synthesis in normal and receptor-negative cultured fibroblasts involving reversible phosphorylation of both HMG-CoA reductase and reductase kinase.  相似文献   

20.
The activity of acetoacetyl-CoA (AcAc-CoA) ligase (E.C.6.2.1.16) in hepatocytes from rats was shown to be the same as the activity in homogenates of their livers. In hepatocytes treated with 25-hydroxycholesterol, AcAc-CoA ligase, 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase and rates of sterol synthesis were substantially decreased. Hepatocytes treated with high density lipoprotein (HDL) exhibited a 2 to 4 fold induction of HMG-CoA reductase activity; however an accompanying increase in AcAc-CoA ligase activity and the rate of cholesterol synthesis was not observed. We conclude (a) that increases in the activity of HMG-CoA reductase when mediated by HDL in hepatocytes do not result in a corresponding change in the capacity for sterol synthesis and (b) that changes in the activity state of HMG-CoA reductase can be dissociated from that of AcAc-CoA ligase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号