首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D-3 phosphorylated inositides are a peculiar class of lipids, synthesized by phosphatidylinositol 3-kinase (PtdIns 3-K), which are also present in the nucleus. In order to clarify a possible role for nuclear D-3 phosphorylated inositides during human erythroid differentiation, we have examined the issue of whether or not, in K562 human erythroleukemia cells, erythropoietin (EPO) may generate nuclear translocation of an active PtdIns 3-K. Immunoprecipitation with an anti-p85 regulatory subunit of PtdIns 3-K, revealed that both the intranuclear amount and the activity of the kinase increased rapidly and transiently in response to EPO. Enzyme translocation was blocked by the specific PtdIns 3-K pharmacological inhibitor, LY294002, which also inhibited erythroid differentiation. In vivo, intranuclear synthesis of phosphatidylinositol (3,4,5) trisphosphate (PtdIns (3,4,5)P(3)) was stimulated by EPO. Almost all PtdIns 3-K that translocated to the nucleus was highly phosphorylated on tyrosine residues of the p85 regulatory subunit. These findings strongly suggest that an important step in the signaling pathways that mediate EPO-induced erythroid differentiation may be represented by the intranuclear translocation of an active PtdIns 3-K.  相似文献   

2.
Neutrophil priming by agents such as TNF-alpha and GM-CSF causes a dramatic increase in the response of these cells to secretagogue agonists and affects the capacity of neutrophils to induce tissue injury. In view of the central role of phosphatidylinositol 3-kinase (PI3-kinase) in regulating NADPH oxidase activity we examined the influence of priming agents on agonist-stimulated phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) accumulation in human neutrophils. Pretreatment of neutrophils with TNF-alpha or GM-CSF, while not influencing fMLP-stimulated PtdIns(3,4,5)P3 accumulation at 5 s, caused a major increase in PtdIns(3,4,5)P3 at later times (10-60 s), which paralleled the augmented superoxide anion (O2-) response. The intimate relationship between PtdIns(3,4,5)P3 accumulation and O2- release was confirmed using platelet-activating factor, which caused full but transient priming of both responses. Likewise, LY294002, a PI3-kinase inhibitor, and genistein, a tyrosine kinase inhibitor, caused parallel inhibition of O2- generation and PtdIns(3,4,5)P3 accumulation; in contrast, radicicol, which inhibits receptor-mediated activation of p85 PI3-kinase, had no effect on either response. Despite major increases in PI3-kinase activity observed in p85 and anti-phosphotyrosine immunoprecipitates in growth factor-stimulated smooth muscle cells, no such increase was observed in primed/stimulated neutrophils. In contrast, both fMLP and TNF-alpha alone caused a 3-fold increase in PI3-kinase activity in p110gamma PI3-kinase immunoprecipitates. p21(ras) activation (an upstream regulator of PI3-kinase) was unaffected by priming. These data demonstrate that timing and magnitude of PtdIns(3,4,5)P3 accumulation in neutrophils correlate closely with O2- generation, that PI3-kinase-gamma is responsible for the enhanced PtdIns(3,4,5)P3 production seen in primed cells, and that factors other than activation of p21(ras) underlie this response.  相似文献   

3.
Phospholipase C-gamma (PLC-gamma) isoforms are thought to be activated by both tyrosine phosphorylation and phosphatidylinositol 3,4,5 trisphosphate (PtdIns 3,4,5 P(3)), the product of phosphatidylinositol 3-kinase (PtdIns 3-kinase). In this study, we show that stimulation of mouse macrophages with either zymosan beads or bacteria (Prevotella intermedia) induced tyrosine phosphorylation of PLC-gamma 2. Zymosan stimulation also induced translocation to membrane and cytoskeleton fractions, which was inhibited by the PtdIns 3-kinase inhibitors wortmannin and LY 294002. However, the tyrosine phosphorylation of PLC-gamma 2 induced by zymosan was not affected by the inhibitors wortmannin and LY 294002. In contrast to zymosan and bacteria, PLC-gamma 2 was not phosphorylated by stimulation with lipopolysaccharide (LPS), phorbol ester or calcium ionophore. Moreover, the PLC-gamma 1 isoform was not detected in mouse macrophages. These data indicate that PtdIns 3-kinase is critical for the translocation but not for the tyrosine phosphorylation of PLC-gamma 2 in mouse macrophages and that the latter may be insufficient for enzyme activation.  相似文献   

4.
The mechanism by which leptin increases ATP-sensitive K(+) (K(ATP)) channel activity was investigated using the insulin-secreting cell line, CRI-G1. Wortmannin and LY 294002, inhibitors of phosphoinositide 3-kinase (PI3-kinase), prevented activation of K(ATP) channels by leptin. The inositol phospholipids phosphatidylinositol bisphosphate and phosphatidylinositol trisphosphate (PtdIns(3,4,5)P(3)) mimicked the effect of leptin by increasing K(ATP) channel activity in whole-cell and inside-out current recordings. LY 294002 prevented phosphatidylinositol bisphosphate, but not PtdIns(3,4,5)P(3), from increasing K(ATP) channel activity, consistent with the latter lipid acting as a membrane-associated messenger linking leptin receptor activation and K(ATP) channels. Signaling cascades, activated downstream from PI 3-kinase, utilizing PtdIns(3,4,5)P(3) as a second messenger and commonly associated with insulin and cytokine action (MAPK, p70 ribosomal protein-S6 kinase, stress-activated protein kinase 2, p38 MAPK, and protein kinase B), do not appear to be involved in leptin-mediated activation of K(ATP) channels in this cell line. Although PtdIns(3,4,5)P(3) appears a plausible and attractive candidate for the messenger that couples K(ATP) channels to leptin receptor activation, direct measurement of PtdIns(3,4,5)P(3) demonstrated that insulin, but not leptin, increased global cellular levels of PtdIns(3,4,5)P(3). Possible mechanisms to explain the involvement of PI 3-kinases in K(ATP) channel regulation are discussed.  相似文献   

5.
PIKE/nuclear PI 3-kinase signaling in preventing programmed cell death   总被引:5,自引:0,他引:5  
PI 3-kinase enhancer (PIKE) is a nuclear GTPase that enhances PI 3-kinase (PI3K) activity. Nerve growth factor (NGF) treatment leads to PIKE activation by triggering the nuclear translocation of PLC-gamma1, which acts as a physiological guanine nucleotide exchange factor (GEF) for PIKE. PI3K occurs in the nuclei of a broad range of cell types, and various stimuli elicit PI3K nuclear translocation. While cytoplasmic PI3K has been well characterized, little is known about the biological function of nuclear PI3K. Surprisingly, nuclei from 30 min NGF-treated PC12 cells are resistant to DNA fragmentation initiated by the activated cell-free apoptosome, and both PIKE and nuclear PI3K are sufficient and necessary for this effect. Moreover, pretreatment of the control nucleus with PI(3,4,5)P3 alone mimics the anti-apoptotic activity of NGF by selectively preventing apoptosis, for which nuclear Akt is required but not sufficient. Recently, a nuclear PI(3,4,5)P3 receptor, nucleophosmin/B23, has been identified from NGF-treated PC12 nuclear extract. PI(3,4,5)P3/B23 complex mediates the anti-apoptotic effects of NGF by inhibiting DNA fragmentation activity of caspase-activated DNase (CAD). Thus, PI(3,4,5)P3/B23 complex and nuclear Akt effectors might coordinately mediate PIKE/nuclear PI3K signaling in promoting cell survival by NGF.  相似文献   

6.
We investigated the involvement of phosphatidylinositol 3-kinase (PtdIns 3-kinase) in the initiation of signal transduction by nerve growth factor (NGF) in the rat pheochromocytoma PC12 cell line. PtdIns 3-kinase catalyzes the formation of phosphoinositides with phosphate in the D-3 position of the inositol ring and previously has been found to associate with other activated protein tyrosine kinases, including growth factor receptor tyrosine kinases. Anti-phosphotyrosine immunoprecipitates had PtdIns 3-kinase activity that reached a maximum (9 times the basal activity) after a 5-min exposure of PC12 cells to NGF (100 ng/ml). Since NGF activates the tyrosine kinase activity of gp140trk, the protein product of the trk proto-oncogene, we also examined the association of PtdIns 3-kinase with gp140trk. Anti-gp140trk immunoprecipitates from NGF-stimulated PC12 cells had increased PtdIns 3-kinase activity compared to that of unstimulated cells, and larger increases were detected in cells overexpressing gp140trk, indicating that PtdIns 3-kinase associates with gp140trk. NGF produced large increases in [32P]phosphatidylinositol 3,4-bisphosphate and [32P]phosphatidylinositol 3,4,5-trisphosphate in PC12 cells labeled with [32P]orthophosphate, indicating an increase in PtdIns 3-kinase activity in intact cells. Using an anti-85-kDa PtdIns 3-kinase subunit antibody, we found that NGF promoted the tyrosine phosphorylation of an 85-kDa protein and two proteins close to 110 kDa. These studies demonstrate that NGF activates PtdIns 3-kinase and promotes its association with gp140trk and also show that NGF promotes the tyrosine phosphorylation of the 85-kDa subunit of PtdIns 3-kinase. Thus, PtdIns 3-kinase activation appears to be involved in differentiation as well as mitogenic responses.  相似文献   

7.
The activity of nuclear phosphoinositide 3-kinase C2beta (PI3K-C2beta) was investigated in HL-60 cells blocked by aphidicolin at G(1)/S boundary and allowed to progress synchronously through the cell cycle. The activity of immunoprecipitated PI3K-C2beta in the nuclei and nuclear envelopes showed peak activity at 8 h after release from the G(1)/S block, which correlates with G(2)/M phase of the cell cycle. In the nuclei and nuclear envelopes isolated from HL-60 cells at 8 h after release from G(1)/S block, a significant increase in the level of incorporation of radiolabeled phosphate into phosphatidylinositol 3-phosphate (PtdIns(3)P) was observed with no change in the level of radiolabeled PtdIns(4)P, PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3). On Western blots, PI3K-C2beta revealed a single immunoreactive band of 180 kDa, whereas in the nuclei and nuclear envelopes isolated at 8 h after release, the gel shift of 18 kDa was observed. When nuclear envelopes were treated for 20 min with mu-calpain in vitro, the similar gel shift and increase in PI3K-C2beta activity was observed which was completely inhibited by pretreatment with calpain inhibitor calpeptin. The presence of PI3K inhibitor LY 294002 completely abolished the calpain-mediated increase in the activity of PI3K-C2beta but did not prevent the gel shift. When HL-60 cells were released from G(1)/S block in the presence of either calpeptin or LY 294002, the activation of nuclear PI3K-C2beta was completely inhibited. These results demonstrate the calpain-mediated activation of the nuclear PI3K-C2beta during G(2)/M phase of the cell cycle in HL-60 cells.  相似文献   

8.
mTORC2 (mammalian target of rapamycin complex 2) plays important roles in signal transduction by regulating an array of downstream effectors, including protein kinase AKT. However, its regulation by upstream regulators remains poorly characterized. Although phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) is known to regulate the phosphorylation of AKT Ser(473), the hydrophobic motif (HM) site, by mTORC2, it is not clear whether PtdIns(3,4,5)P(3) can directly regulate mTORC2 kinase activity. Here, we used two membrane-docked AKT mutant proteins, one with and the other without the pleckstrin homology (PH) domain, as substrates for mTORC2 to dissect the roles of PtdIns(3,4,5)P(3) in AKT HM phosphorylation in cultured cells and in vitro kinase assays. In HEK293T cells, insulin and constitutively active mutants of small GTPase H-Ras and PI3K could induce HM phosphorylation of both AKT mutants, which was blocked by the PI3K inhibitor LY294002. Importantly, PtdIns(3,4,5)P(3) was able to stimulate the phosphorylation of both AKT mutants by immunoprecipitated mTOR2 complexes in an in vitro kinase assay. In both in vivo and in vitro assays, the AKT mutant containing the PH domain appeared to be a better substrate than the one without the PH domain. Therefore, these results suggest that PtdIns(3,4,5)P(3) can regulate HM phosphorylation by mTORC2 via multiple mechanisms. One of the mechanisms is to directly stimulate the kinase activity of mTORC2.  相似文献   

9.
10.
We identified a potential phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) binding pleckstrin homology domain in the data bases and have cloned and expressed its full coding sequence (LL5beta). The protein bound PtdIns(3,4,5)P(3) selectively in vitro. Strikingly, a substantial proportion of LL5beta became associated with an unidentified intracellular vesicle population in the context of low PtdIns(3,4,5)P(3) levels produced by the addition of wortmannin or LY294002. In addition, expression of platelet-derived growth factor-receptor mutants unable to activate type 1A phosphoinositide 3-kinase (PI3K) or serum starvation in porcine aortic endothelial cells lead to redistribution of LL5beta to this vesicle population. Importantly, pleckstrin homology domain mutants of LL5beta that could not bind PtdIns(3,4,5)P(3) were constitutively localized to this vesicle population. At increased PtdIns(3,4,5)P(3) levels, LL5beta was redirected to a predominantly cytoplasmic distribution, presumably through a PI3K-dependent block on its targeting to the vesicular compartment. Furthermore, at high, hormone-stimulated PtdIns(3,4,5)P(3) levels, it became significantly plasma-membrane localized. The distribution of LL5beta is thus dramatically and uniquely sensitive to low levels of PtdIns(3,4,5)P(3) indicating it can act as a sensor of both low and hormone-stimulated levels of PtdIns(3,4,5)P(3). In addition, LL5beta bound to the cytoskeletal adaptor, gamma-filamin, tightly and in a PI3K-independent fashion, both in vitro and in vivo. This interaction could co-localize heterologously expressed gamma-filamin with GFP-LL5beta in the unidentified vesicles.  相似文献   

11.
The small GTP-binding protein Rap1B is activated in human platelets upon stimulation of a G(i)-dependent signaling pathway. In this work, we found that inhibition of platelet adenylyl cyclase by dideoxyadenosine or SQ22536 did not cause activation of Rap1B and did not restore Rap1B activation in platelets stimulated by cross-linking of Fcgamma receptor IIA (FcgammaRIIA) in the presence of ADP scavengers. Moreover, elevation of the intracellular cAMP concentration did not impair the G(i)-dependent activation of Rap1B. Two unrelated inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin and LY294002, totally prevented Rap1B activation in platelets stimulated by cross-linking of FcgammaRIIA, by stimulation of the P2Y(12) receptor for ADP, or by epinephrine. However, in platelets from PI3Kgamma-deficient mice, both ADP and epinephrine were still able to normally stimulate Rap1B activation through a PI3K-dependent mechanism, suggesting the involvement of a different isoform of the enzyme. Moreover, the lack of PI3Kgamma did not prevent the ability of epinephrine to potentiate platelet aggregation through a G(i)-dependent pathway. The inhibitory effect of wortmannin on Rap1B activation was overcome by addition of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), but not PtdIns(3,4)P(2), although both lipids were found to support phosphorylation of Akt. Moreover, PtdIns(3,4,5)P(3) was able to relieve the inhibitory effect of apyrase on FcgammaRIIA-mediated platelet aggregation. We conclude that stimulation of a G(i)-dependent signaling pathway causes activation of the small GTPase Rap1B through the action of the PI3K product PtdIns(3,4,5)P(3), but not PtdIns(3,4)P(2), and that this process may contribute to potentiation of platelet aggregation.  相似文献   

12.
The effects of nerve growth factor (NGF) and epidermal growth factor (EGF) on the regulation of phosphatidylinositol 3-kinase (PtdIns 3-kinase) activity were assessed in rat pheochromocytoma (PC12) cells. Both NGF and EGF induced a rapid activation of PtdIns 3-kinase as assessed by a dramatic rise in growth factor-induced PtdIns 3-kinase activity found in antiphosphotyrosine immunoprecipitates. The intracellular levels of two of the lipid products of PtdIns 3-kinase, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), also rose dramatically, exhibiting time courses very similar to the appearance of PtdIns 3-kinase in immunoprecipitates. The activation of PtdIns 3-kinase is, therefore, a common event in the signal transduction processes elicited by growth factors stimulating distinct cellular end points in PC12 cells, namely the NGF-induced neuronal differentiation and EGF-stimulated mitogenesis. Thus the intracellular products of this enzyme may function in early biochemical events that are common components of the pathways controlling both differentiation and proliferation.  相似文献   

13.
Ahn JY  Liu X  Cheng D  Peng J  Chan PK  Wade PA  Ye K 《Molecular cell》2005,18(4):435-445
Phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] is an essential second messenger implicated in various cellular processes. Cytoplasmic PI(3,4,5)P(3) has been well characterized, but little is known about the physiological role of nuclear PI(3,4,5)P(3). Here, we describe a nuclear PI(3,4,5)P(3) receptor, nucleophosmin (NPM)/B23, that mediates the antiapoptotic effects of NGF by inhibiting DNA fragmentation activity of caspase-activated DNase (CAD). Employing PI(3,4,5)P(3) column and NGF-treated PC12 nuclear extracts, we identified B23 as a nuclear PI(3,4,5)P(3) binding protein. Purification from nuclear extract demonstrates that B23 contributes to DNA fragmentation inhibitory activity. Depletion of B23 from nuclear extracts or knockdown B23 in PC12 cells abolishes NGF-provoked protective effect, whereas overexpression of B23 in PC12 cells prevents apoptosis. Further, hydrolyzing PI(3,4,5)P(3) with PTEN or SHIP abrogates its antiapoptotic activity. Moreover, B23 mutants that can not associate with PI(3,4,5)P(3) fail to prevent DNA fragmentation. Thus, the nuclear B23-PI(3,4,5)P(3) complex regulates the antiapoptotic activity of NGF in the nucleus.  相似文献   

14.
An active phosphatidylinositol 3-kinase (PI3K) has been shown in nuclei of different cell types. The products of this enzyme, i.e. inositides phosphorylated in the D3 position of the inositol ring, may act as second messengers themselves. Nuclear PI3K translocation has been demonstrated to be related to an analogous translocation of a PtdIns(3,4,5)P(3) activated PKC, the zeta isozyme. We have examined the issue of whether or not in the osteoblast-like clonal cell line MC3T3-E1 there may be observed an insulin-like growth factor-I- (IGF-I) and platelet-derived growth factor- (PDGF) dependent nuclear translocation of an active Akt/PKB. Western blot analysis showed a maximal nuclear translocation after 20 min of IGF-I stimulation or after 30 min of PDGF treatment. Both growth factors increased rapidly and transiently the enzyme activity of immunoprecipitable nuclear Akt/PKB on a similar time scale and after 60 min the values were slightly higher than the basal levels. Enzyme translocation was blocked by the specific PI3K inhibitor, LY294002, as well as cell entry into S-phase. Confocal microscopy showed an evident increase in immunostaining intensity in the nuclear interior after growth factor treatment but no changes in the subcellular distribution of Akt/PKB when a LY294002 pre-treatment was administered to the cells. These findings strongly suggest that the intranuclear translocation of Akt/PKB is an important step in signalling pathways that mediate cell proliferation.  相似文献   

15.
The phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) is accepted to be a direct modulator of ion channel activity. The products of phosphoinositide 3-OH kinase (PI3K), PtdIns(3,4)P(2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), in contrast, are not. We report here activation of the epithelial Na(+) channel (ENaC) reconstituted in Chinese hamster ovary cells by PI3K. Insulin-like growth factor-I also activated reconstituted ENaC and increased Na(+) reabsorption across renal A6 epithelial cell monolayers via PI3K. Neither IGF-I nor PI3K affected the levels of ENaC in the plasma membrane. The effects of PI3K and IGF-I on ENaC activity paralleled changes in the plasma membrane levels of the PI3K product phospholipids, PtdIns(3,4)P(2)/PtdIns(3,4,5)P(3), as measured by evanescent field fluorescence microscopy. Both PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) activated ENaC in excised patches. Activation of ENaC by PI3K and its phospholipid products corresponded to changes in channel open probability. We conclude that PI3K directly modulates ENaC activity via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). This represents a novel transduction pathway whereby growth factors, such as IGF-I, rapidly modulate target proteins independent of signaling elicited by kinases downstream of PI3K.  相似文献   

16.
Motile nonmuscle cells concentrate phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in areas of new actin filament assembly. There is great interest in assessing the in vivo functional significance of these phosphoinositides, and we have used Listeria monocytogenes to explore the contribution of PtdIns(3,4,5)P3 and PtdIns(4,5)P2 to its actin-based motility. In Listeria-infected PtK2 cells Akt-pleckstrin homology (PH)-green fluorescent protein (GFP) and phospholipase C delta (PLC delta)-PH-GFP both first concentrate at the front of motile Listeria, subsequently surrounding the bacterium and then concentrating in the actin filament tail. Surprisingly, Listeria ActA mutant strains lacking the putative phosphoinositide binding site are also able to concentrate these probes. Reduction of available PtdIns(3,4,5)P3 by expression of Akt-PH-GFP and available PtdIns(4,5)P2 by expression of PLC delta-PH-GFP both significantly slow Listeria actin-based movement. Treatment of cells with the PI 3-kinase inhibitor, LY294002, dissociates Akt-PH but not PLC delta-PH, from the bacterial surface and cell membranes, and results in near complete inhibition of Listeria actin-based motility and filopod formation. Removal of LY294002 results in rapid and full recovery of Akt-PH localization, Listeria actin-based motility, and filopod formation. These findings suggest that PtdIns(4,5)P2 is concentrated at the surface of Listeria and serves as the substrate for PtdIns(3,4,5)P3 production, indicating a central role for PI 3-kinases in Listeria intracellular actin-based motility and filopod formation.  相似文献   

17.
The activity of nuclear phosphoinositide 3-kinase C2β (PI3K-C2β) was investigated in HL-60 cells blocked by aphidicolin at G1/S boundary and allowed to progress synchronously through the cell cycle. The activity of immunoprecipitated PI3K-C2β in the nuclei and nuclear envelopes showed peak activity at 8 h after release from the G1/S block, which correlates with G2/M phase of the cell cycle. In the nuclei and nuclear envelopes isolated from HL-60 cells at 8 h after release from G1/S block, a significant increase in the level of incorporation of radiolabeled phosphate into phosphatidylinositol 3-phosphate (PtdIns(3)P) was observed with no change in the level of radiolabeled PtdIns(4)P, PtdIns(4,5)P2 and PtdIns(3,4,5)P3. On Western blots, PI3K-C2β revealed a single immunoreactive band of 180 kDa, whereas in the nuclei and nuclear envelopes isolated at 8 h after release, the gel shift of 18 kDa was observed. When nuclear envelopes were treated for 20 min with μ-calpain in vitro, the similar gel shift and increase in PI3K-C2β activity was observed which was completely inhibited by pretreatment with calpain inhibitor calpeptin. The presence of PI3K inhibitor LY 294002 completely abolished the calpain-mediated increase in the activity of PI3K-C2β but did not prevent the gel shift. When HL-60 cells were released from G1/S block in the presence of either calpeptin or LY 294002, the activation of nuclear PI3K-C2β was completely inhibited. These results demonstrate the calpain-mediated activation of the nuclear PI3K-C2β during G2/M phase of the cell cycle in HL-60 cells.  相似文献   

18.
In a previous study, we show that stimulation of chemotaxis in rat pheochromocytoma PC12 cells by nerve growth factor (NGF) and epidermal growth factor (EGF) requires activation of the RAS-ERK signaling pathway. In this study, we compared the threshold levels of ERK activation required for EGF and NGF-stimulated chemotaxis in PC12 cells. The threshold ERK activity required for NGF to stimulate chemotaxis was approximately 30% lower than that for EGF. PD98059 treatment inhibited EGF stimulation of growth and chemotaxis; however, stimulation of chemotaxis required an EGF concentration approximately 10 times higher than for stimulation of PC12 cell growth. Thus, ERK-dependent cellular functions can be differentially elicited by the concentration of EGF. Also, treatment of PC12 cells with the PI3-K inhibitor LY294002 reduced ERK activation by NGF; thus, higher NGF concentrations were required to initiate chemotaxis and to achieve the same maximal chemotactic response seen in untreated PC12 cells. Therefore, the threshold NGF concentration to stimulate chemotaxis could be adjusted by the crosstalk between the ERK and PI3-K pathways, and the contributions of PI3-K and ERK to signal chemotaxis varied with the concentrations of NGF used. In comparison, LY294002 treatment had no effect on ERK activation by EGF, but the chemotactic response was reduced at all the concentrations of EGF tested indicating that NGF and EGF differed in the utilization of ERK and PI3-K to signal chemotaxis in PC12 cells. (Mol Cell Biochem 271: 29–41, 2005)  相似文献   

19.
Roles of phosphatidylinositol 3-kinase in root hair growth   总被引:2,自引:1,他引:1  
Lee Y  Bak G  Choi Y  Chuang WI  Cho HT  Lee Y 《Plant physiology》2008,147(2):624-635
The root hair is a model system for understanding plant cell tip growth. As phosphatidylinositol 3-phosphate [PtdIns(3)P] has been shown in other plant cell types to regulate factors that affect root hair growth, including reactive oxygen species (ROS) levels, cytoskeleton, and endosomal movement, we hypothesized that PtdIns(3)P is also important for root hair elongation. The enzyme that generates PtdIns(3)P, phosphatidylinositol 3-kinase (PI3K), was expressed in root hair cells of transgenic plants containing the PI3K promoter:beta-glucuronidase reporter construct. To obtain genetic evidence for the role of PtdIns(3)P in root hair elongation, we attempted to isolate Arabidopsis (Arabidopsis thaliana) mutant plants that did not express the gene VPS34 encoding the PI3K enzyme. However, the homozygous mutant was lethal due to gametophytic defects, and heterozygous plants were not discernibly different from wild-type plants. Alternatively, we made transgenic plants expressing the PtdIns(3)P-binding FYVE domain in the root hair cell to block signal transduction downstream of PtdIns(3)P. These transgenic plants had shorter root hairs and a reduced hair growth rate compared with wild-type plants. In addition, LY294002, a PI3K-specific inhibitor, inhibited root hair elongation but not initiation. In LY294002-treated root hair cells, endocytosis at the stage of final fusion of the late endosomes to the tonoplast was inhibited and ROS level decreased in a dose-dependent manner. Surprisingly, the LY294002 effects on ROS and root hair elongation were similar in rhd2 mutant plants, suggesting that RHD2 was not the major ROS generator in the PtdIns(3)P-mediated root hair elongation process. Collectively, these results suggest that PtdIns(3)P is required for maintenance of the processes essential for root hair cell elongation.  相似文献   

20.
The activity of nuclear phosphoinositide 3-kinase C2beta (PI3K-C2beta) was investigated in HL-60 cells induced to differentiate along granulocytic or monocytic lineages. A significant increase in the activity of immunoprecipitated PI3K-C2beta was observed in the nuclei and nuclear envelopes isolated from all-trans-retinoic acid (ATRA)-differentiated cells which was inhibited by the presence of PI3K inhibitor LY 294002. High-performance liquid chromatography analysis of inositol lipids showed an increased incorporation of radiolabelled phosphate in both PtdIns(3)P and PtdIns(3,4,5)P(3) with no changes in the levels of PtdIns(4)P, PtdIns(3,4)P(2) and PtdIns(4,5)P(2). Western blot analysis of the PI3K-C2beta immunoprecipitates with anti-P-Tyr antibody revealed a significant increase in the level of the immunoreactive band corresponding to PI3K-C2beta in the nuclei and nuclear envelopes isolated from ATRA-differentiated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号