首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
W. H. Parry 《Oecologia》1977,30(4):367-375
Summary Observations over a period of 10 years showed that, in Northeastern Scotland, alatae of E. abietinum regularly appeared in mid-May, the timing being unrelated to aphid density. The peak number of alatae produced was, however, correlated with aphid density. Following an initially high level the proportion of alatae dropped to virtually nil by mid-June, whilst over the same period the aphid population density increased. Amino acid levels in spruce needles were considerably higher during the period of alate formation than they were at the termination of alate production. It is suggested that a high amino acid level was the main factor controlling the formation of alatae and that population density affected the proportions of these alatae only when nutritional levels were favourable for alate formation.  相似文献   

2.
Keith Day 《Oecologia》1984,64(1):118-124
The population size and structure of the green spruce aphid was followed throughout the spring — summer cycle on the same group of trees in a low-elevation coastal Sitka spruce forest for three consecutive years. The relationship between the pattern of change and the phenology of bud burst, which heralds a marked change in needle sap quality, suggests that yearly differences in the winter temperature regime may affect the duration of the population growth phase and hence the peak numbers attained in late spring.An index of population growth rate was sufficiently sensitive to aphid fecundity during the population cycles of two years to suggest that the changing rate of fertility was the decisive process governing changes in population size. The commitment of aphids to alate development was greater than that recorded elsewhere in Britain but did little to effect population decline since the contribution of alatae to larviposition was substantial while seasonally pulsed.  相似文献   

3.
1 Green spruce aphid (Elatobium abietinum) is a serious pest of spruce (Picea spp.) in north‐west Europe, causing defoliation of one‐year‐old and older needles. 2 Relationships between population development of E. abietinum, needle loss and tree growth were compared for five pure genotypes of Sitka spruce and mixed‐genotype material of Sitka and Norway spruce, grown under high and low nutrient conditions. 3 Despite wide differences in flushing date between spruce genotypes, E. abietinum populations peaked on the same date on each genotype and on the mixed‐genotype material, irrespective of nutrient supply. 4 Larger aphid populations developed on trees grown under high nutrient conditions than under low nutrients. However, more needles were lost per aphid in the low nutrient treatment and overall defoliation rates in the two nutrient treatments were similar. 5 Total aphid numbers differed significantly between Sitka spruce genotypes within nutrient treatments, but not in relation to bud‐burst or needle terpene content. Reductions in height growth caused by infestation were greater (15–44%), and related to mean aphid densities and defoliation, in the low nutrient treatment, but were smaller (11–27%) and not related to aphid density and defoliation in the high nutrient treatment. 6 Development of E. abietinum populations was similar on Norway and Sitka spruce, but Norway spruce lost fewer needles. However, the effects of infestation on tree growth were more closely related to aphid density and were similar for Norway and Sitka spruce. 7 Infestation caused a decrease in total root dry weight of Norway and Sitka spruce in proportion to the reductions observed in above‐ground growth.  相似文献   

4.
W. H. Parry 《Oecologia》1979,41(2):235-244
Summary In North East Scotland small numbers of all developmental stages of the green spruce aphid survived on Sitka spruce needles during the summer months despite the nutritional inadequacy of these needles for aphid survival following population collapse in early summer. The surviving adults lost weight and fat reserves in response to time and contained low numbers of embryos. No metabolic acclimatization of the respiration rate occurred in response to exposure to different temperatures. Aphid respiration rates during summer were significantly higher than those in winter. Therefore, it was concluded that no summer aestivation occurred. Summer survival was dependent on the ability of a few aphids of all instars to survive on the nutritionally inadequate host, these aphids possibly possessing higher than normal fat reserves or feeding on marginally nutritionally superior trees or shoots.  相似文献   

5.
Abstract 1 The green spruce aphid, Elatobium abietinum, is an important defoliator of Sitka spruce in the U.K. However, it is usual for years in which high E. abietinum populations occur to be followed by a year with low aphid densities. The possibility that the performance of E. abietinum is reduced on previously infested Sitka spruce, and that this is the cause of year‐to‐year fluctuations in population density, was investigated by comparing population development and the growth rate of individual aphids on experimentally defoliated trees. 2 Separate experiments were performed to determine whether aphid performance was reduced either in the autumn immediately after defoliation in the spring, or was reduced in the spring of the next year. Different rates of initial defoliation on trees used to test aphid performance were created by artificially infesting the trees with aphids in the spring before the experiments, and varying the time of infestation. 3 Population development and the mean relative growth rate (MRGR) of individual aphids on previously defoliated and undefoliated Sitka spruce did not differ significantly in the spring of the next year. No differences were observed in the nutrient content of the 1‐year‐old needles of previously defoliated or undefoliated trees at this time. 4 In the autumn and winter immediately after spring defoliation, aphid MRGR was significantly higher on trees that had been heavily defoliated earlier in the season compared with trees that had been lightly defoliated. However, the difference in MRGR decreased over the winter period. Nitrogen, phosphorous and potassium concentrations were 9.4–12.2% higher, at the beginning of the autumn, in the current year needles of heavily defoliated trees than in the current year needles of lightly defoliated trees. 5 The experiments indicate that high populations of E. abietinum in the spring do not induce any defensive mechanisms in Sitka spruce that adversely affect subsequent generations of the aphid. By contrast, the results suggest that high spring densities of the aphid improve the nutritional quality of the current year's foliage for autumn generations.  相似文献   

6.
The effect of chlorosis induced in needles of Sitka and Norway spruce by the green spruce aphid on growth of the aphid is investigated, and the effect of infestation of the aphid on amino acid levels in Sitka spruce foliage is reported. On both Sitka and Norway spruce green spruce aphids were heavier when reared on chlorotic (previously infested) needles than when reared on green (previously uninfested) needles. The effect was more pronounced on Sitka than on Norway spruce. Infestation of the aphid altered the amino acid balance of Sitka spruce foliage but not the concentration of total amino acids. Possible causes of chlorosis, the influence of individual amino acids on aphid growth, the potential effect of chlorosis on outbreaks of the aphid and the differences in susceptibility of Sitka and Norway spruce to damage by the aphid are discussed.  相似文献   

7.
Apterous parthenogentic females of the pea aphid, Acyrthosiphon pisum (Harris ), begin to produce alate offspring soon after they have been subjected to crowding. Females which were born early in their own parent's reproductive period respond most strongly to crowding, producing much larger numbers of alatae than their late-born sisters. In contrast, the early-born daughters of most alate females do not produce winged offspring after being crowded. Some of their later-born sisters may produce a few winged individuals, resembling in this respect the late-born daughters of the apterous females. Control of the production of alatae thus begins in the grandparental generation. Risk-spreading by means of differential dispersal becomes a less uncertain venture when local populations can modify their responses to environmental changes by utilizing past as well as present signals from their surroundings.  相似文献   

8.
Summary Zucchini yellow mosaic virus (ZYMV) and Aphis gossypii Glover are two components of a recently identified plant-parasite system that provides an excellent opportunity to study interrelations between a virus and a vector that share the same host, but have no direct physiological interaction. In a field experiment we documented numbers of alate and apterous A. gossypii on healthy Cucurbita pepo and on plants inoculated with virus 0, 7, 14, and 21 days before aphid infestation. When plants were inoculated and infested simultaneously, more than twice as many alatae were produced after 20 days of colony growth than on any other treatment. This indicates that properties unique to the early stages of viral infection somehow stimulated wing formation. Because it is spread by the activities of alatae, virus dispersal would be greater as a result of these properties. Developmental rate, total numbers of aphids, and numbers of alatae and apterae decreased as the time between virus inoculation and aphid colonization increased.  相似文献   

9.
Three-month-old needles of Sitka spruce were less susceptible to Elatobium abietinutn than 15-month-old needles. Symptoms appeared after longer aphid feeding times but only a proportion of damaged needles fell. After short feeding periods symptoms appeared in more Norway spruce needles than in Sitka spruce, whereas longer feeding periods resulted in more needles producing symptoms in the Sitka spruce. The symptoms took 4—6 days longer to appear in Norway spruce, and needle fall followed a longer feeding period than on Sitka spruce. Following 72 h feeding, needle fall occurred more quickly on Sitka spruce than on Norway spruce. The time taken for needle fall to occur was inversely related to the feeding time in Sitka spruce but such a response was not evident in Norway spruce. The results are discussed in relation to the differences exhibited in the probing behaviour of the aphid on the two spruces.  相似文献   

10.
The reproduction of apterous and alate morphs of the aphids Sitobion avenae and Metopolophium dirhodum is compared on the basis of fecundity in 5- and 10-day periods of adult life. Apterae of both species are consistently more fecund than alatae of comparable weight, producing about three more nymphs on average in any 5-day period. The reproductive differences are related to the number and quality of embryos at eclosion and to ovulation rates, both of which in turn appear to be linked to wing-muscle maintenance. These relationships between weight, embryos and reproduction may be used to predict a newly moulted adult aphid's fecundity, a method which may facilitate the assessment of resistance to aphids in new cereal varieties, by obviating lengthy recording of reproduction. The strategies by which alatae of these and other aphid species minimize the difference between their fecundity and that of apterae are discussed.  相似文献   

11.
Interannual dynamics of aerial and arboreal green spruce aphid populations   总被引:1,自引:0,他引:1  
Partial defoliation of spruce by the green spruce aphid Elatobium abietinum (Walker) is a recurrent event in European and, increasingly, North American forests. The patterns of insect abundance on trees have never been satisfactorily described by a numerical model despite considerable knowledge of endogenous and exogenous factors in the population dynamics of the species. Long-term field population estimates of the aphid on foliage provided the opportunity to evaluate such a model. Unlike comparable models for tree-dwelling aphids, this was also applicable to almost completely independent aphid field data derived from the Rothamsted Insect Survey’s nationwide network of suction traps. Although based on relatively few parameters, the model was robust in its predictions of alate aphids geographically remote from the forest in which the original population was estimated. The population maximum, which causes the greatest forest damage, is reached in early summer and can be predicted from knowledge of winter temperature (chill bouts), spring temperature (thermal sum), and interannual negative feedback (density dependence). The model provides confirmation that alate populations of spruce aphids, upon which a number of other extensive studies have been based, are ultimately influenced by similar endogenous and climatic factors and that they are a reasonable proxy for aphids on trees.  相似文献   

12.
Summary Apterous parthenogentic females of the pea aphid,Acyrthosiphon pisum (Harris), begin to produce alate offspring soon after they have been subjected to crowding. Females which were born early in their own parent’s reproductive period respond most strongly to crowding, producing much larger numbers of alatae than their late-born sisters. In contrast, the early-born daughters of most alate females do not produce winged offspring after being crowded. Some of their later-born sisters may produce a few winged individuals, resembling in this respect the late-born daughters of the apterous females. Control of the production of alatae thus begins in the grandparental generation. Risk-spreading by means of differential dispersal becomes a less uncertain venture when local populations can modify their responses to environmental changes by utilizing past as well as present signals from their surroundings.  相似文献   

13.
1 Seasonal changes in the distribution of green spruce aphid Elatobium abietinum (Walker) within the canopy of 20–25‐year‐old Sitka spruce are described based on data from two low‐altitude sites (310–420 m above sea‐level), two mid‐altitude sites (500–550 m a.s.l) and one high‐altitude site (610 m a.s.l). 2 Aphids were counted throughout the canopy on shoots representative of all needle age‐classes present at each whorl of branches. Counts were made during the middle week of each month from September to July for 4 years (1999–2003), and mean E. abietinum densities at each canopy position were calculated separately for each month and for the low‐, mid‐ and high‐altitude sites. 3 During September to November, the highest densities of E. abietinum occurred on 3–4‐year‐old needles on branches low in the canopy. Over the winter and spring, the centre of the aphid’s distribution shifted outward and upward, so that by June of the next year the highest aphid densities occurred on current and 1‐year‐old needles on branches near the top of the tree. 4 The aphid distribution was re‐set each year during July, at the time when the nutrient quality of the host was in decline and E. abietinum populations were decreasing. Aphid densities decreased less on 3–4‐year‐old needles than on current and 1‐year‐old needles, suggesting that older needles were a superior food resource at this time of year and in the autumn. However, other factors, such as higher temperatures in the upper canopy during the summer or differential mortality caused by natural enemies, could also have contributed to the change in distribution. 5 The outward and upward shift in the aphid distribution over the winter period provided no evidence that aphids at positions lower and deeper in the canopy were better insulated from freezing temperatures and had higher over‐winter survival rates. Mean air temperatures at the top and bottom of the canopy during the winter were also found to differ by only 0.1–0.2 °C. 6 The percentage of the total aphids per tree that occurred on current or 1‐year‐old needles varied widely between seasons and between sites. Consequently, sampling programmes designed to estimate total population numbers of E. abietinum have little option but to sample needles throughout the canopy, and at regular intervals during the period when the aphid is abundant.  相似文献   

14.
Recorded minimum temperatures of – 7 oC or lower noticeably reduced overwintering populations of the green spruce aphid, Elatobium abietinum, in north-east Scotland. It is suggested that, at these temperatures, ice formation in the needles of the host Sitka spruce, caused attached aphids to freeze. Aphid mortality also occurred when maximum temperatures did not rise above + 6 oC for prolonged periods, possibly as a result of starvation following an extended chill coma. A diagrammatic representation of the main factors affecting anholocyclic populations of E. abietinum during the winter is presented to emphasize the governing role played by temperature. The balance between mortality and recruitment determines the size of the population at the end of the winter, and this in turn determines the subsequent summer infestation. It should be possible, therefore, to predict aphid outbreaks either from winter temperatures or from the number of aphids present at the end of the winter. Temperature records obtained from integrating thermometers indicated that the inside of the lower crown tended to be the warmest part of the tree during the winter, resulting in greater aphid survival in the lower branches.  相似文献   

15.
Laboratory investigations into the low-temperature tolerance of the green spruce aphid, Elatobium abietinum, revealed that the insect was killed by freezing. Aphids and host Sitka spruce needles showed similar seasonal changes in supercooling ability. A noticeable increase in this ability occurred between June and October. Aphids were more susceptible to low temperatures when attached to the plant. It is suggested that mortality resulted from ice which formed in the sap of the host needles and spread into the feeding aphids via their mouthparts. Neither the chlorotic banding of needles, caused by aphid feeding, nor needle length affected needle supercooling. Increased duration of exposure increased the probability of freezing of supercooled needles at low temperatures. A small percentage of first-instar nymphs supercooled to much lower temperatures than the remainder of the population. These were newly born nymphs whose high supercooling ability markedly decreased when they began to feed.  相似文献   

16.
Abstract. 1. Alatiform nymphs of Sitobion avenae were first recorded on wheat in 1977 and 1978 when there were 0.6 aphids per tiller and reached a maximum proportion of 0.9 of the population despite a seventeen-fold difference in aphid density between years.
2. At the same aphid density per tiller there was a higher proportion of alatiform nymphs on the tillers at an advanced than at an earlier stage of plant growth.
3. Both pre- and post-natal crowding, and late stages of plant growth, were important in inducing the development of alatae in the laboratory.
4. Changes in the quality of the host plant through its previously reported effect on reproductive and survival rates, and its effect on alate induction and emigration was important in shaping the population dynamics of S.avenae on cereals.  相似文献   

17.
In numerous locations in Europe spruce trees are exposed to high loads of nitrogen. The present study was performed to characterize the distribution of nitrogen compounds under these conditions. For this purpose Norway spruce ( Picea abies [L.] Karst.) trees were cultivated under close-to-natural conditions of a forest understory in soil from an apparently nitrogen-limited field site in the Black Forest either with, or without supplementation of nitrogen as ammonium nitrate. After 11 and 20 months, growth, total nitrogen contents of the biomass, and total soluble non-proteinogenic nitrogen compounds (TSNN, i.e. nitrate, ammonium, soluble proteinogenic and non-proteinogenic amino compounds) in needles, xylem sap and phloem exudate were analysed. After 20 months of growth, N-fertilization had slightly enhanced the biomass of current-, but not of 1-year-old shoots. At both harvests, total N-content of 1-year-old needles was increased by N-fertilization, whereas current-year needles were not significantly affected. By contrast, TSNN was elevated by N-fertilization in both current-year and 1-year-old needles. The increase in TSNN was mainly attributed to an accumulation of arginine. Xylem sap analysis showed that the increase in TSNN of the needles was a consequence of enhanced nitrogen assimilation of the roots rather than the shoot. Since also TSNN in phloem exudates was enhanced, it appears that N-fertilization elevates the cycling pool of amino compounds in young Norway spruce trees. However, this pool seems to be subject to metabolic interconversion, since mainly glutamine and aspartate are transported in the xylem from the roots to the shoot, but arginine accumulated in the needles and the phloem.  相似文献   

18.
The great variability of the aphid life cycle and their tendency for host alternation gives rise to aphid clones and morphs. Inter‐ and intraclonal variability may be observed in the responses of aphids to various environmental factors. In this study we aimed to evaluate the influence of intrinsic factors (clone and morph type) on the intrinsic rate of increase (rm) of the English grain aphid, Sitobion avenae (Fabricius), and the bird cherry‐oat aphid, Rhopalosiphum padi (Linnaeus). For each species four apterous clones were collected from established laboratory colonies and compared to assess their relative fitness on high‐ and low‐nitrogen wheat plants under laboratory conditions. The clones had significantly different intrinsic rates of increase on high‐ and low‐nitrogen plants. All R. padi clones had a higher intrinsic rate of increase and mean relative growth rate than S. avenae. Experiments were also conducted to compare the mean fecundity of apterous and alate morphs of S. avenae and R. padi clones on high‐ and low‐nitrogen wheat plants. On high‐nitrogen plants the apterous morphs of S. avenae clones had significantly higher mean fecundity than alate morphs. There were no significant differences between the mean fecundity of alate morphs of the same species on high‐ and low‐nitrogen plants. The results support the idea of better fitness of specific clones/morphs on certain host plants due to higher and lower intrinsic rates of increase.  相似文献   

19.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies Karst.) seedlings were exposed to realistically elevated O3 levels in open‐air experiments over three growing seasons. The total O3 exposure doses were 1.2 × (1991), 1.5 × (1992) and 1.7 × (1993) ambient levels. During the 1992 and 1993 growing seasons pine and spruce seedlings received two different levels of nitrogen supply. Effects on growth, mycorrhiza formation, needle ultrastructure, primary and secondary compounds were studied. Ozone exposure had only slight effects on biomass production, growth height and nutrient content of studied conifers. Higher nitrogen availability improved growth of the seedlings and resulted in higher concentration of nitrogen in needles. In Scots pine O3 exposure did not have effects on quantity of total mycorrhizas and short roots, while higher nitrogen availability decreased quantity of mycorrhizas and short roots. In both tree species O3 exposure induced O3‐related ultrastructural symptoms, e.g. granulation and dark staining of the chloroplast stroma in the needle mesophyll cells, at both nitrogen availability levels. Ozone exposure and nitrogen availability did not have significant effects on starch concentrations in either tree species. Concentrations of some individual terpenes were higher in O3‐exposed needles, while concentrations of individual and total resin acids, total phenolics and catechins were not affected by O3 exposure. Nitrogen availability did not have substantial effects on concentrations of monoterpenes. By contrast, concentrations of some individual and total resin acids were lower in pine needles and higher in spruce needles with higher nitrogen availability, while phenolic concentration in spruce needles decreased at higher nitrogen availability. The results suggest that realistically elevated levels of O3 in the field can have some negative effects on the mesophyll ultrastructure of conifer needles, but carbon allocation to root and shoot growth and secondary metabolites are not affected substantially.  相似文献   

20.
Climate change in the UK is predicted to increase both winter temperatures and the frequency of summer drought events. Elatobium abietinum, the green spruce aphid, is the most important defoliating pest of Sitka spruce, Picea sitchensis, a conifer very widely used in British forest industry. This aphid is expected to respond strongly to altered climate, with changes to population densities leading to more frequent serious outbreaks and defoliation. The impact of simulated spring–summer drought on the reproductive performance of E. abietinum was investigated under laboratory conditions. Rates were assessed under five drought treatments of differing frequencies and intensities to characterize the direction of responses under different drought scenarios, and in time‐staggered trials to explore seasonal variation. Variation in the response of reproduction to water deficit was mediated by drought frequency and magnitude. Low‐amplitude, moderate intermittent stress improved reproductive rates, while severe stress, both continuous and high‐amplitude intermittent, had a detrimental impact when compared with observations made on well‐watered controls. Season was also found to modify the response, with improvements to plant nutritional quality under high‐amplitude stress reflected by improving reproduction. Despite this, no differences in rates were found during the autumn, suggesting no advancement in spruce dormancy under drought. Drought stress therefore has the potential to alter E. abietinum population densities, structure and phenology in Sitka spruce plantations, with implications for forest management, damage levels and natural control of the aphid under future altered climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号