首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
抗肿瘤多肽具有分子质量小、特异性高、免疫原性低、生物利用度高等优点,且易于合成和改造,其在肿瘤治疗领域的应用研究近 年来受到广泛关注。目前,已有多种抗肿瘤多肽及其衍生物上市或进入临床研究,对于肿瘤的临床治疗具有重要价值。综述抗肿瘤多肽在 诱导肿瘤细胞凋亡、抑制肿瘤新生血管生成、抑制肿瘤细胞生长和转移以及用作疫苗和药物载体等方面的研究新进展。  相似文献   

2.
苦参是中国传统的植物药,具有清热燥湿等多种作用,广泛地应用于抗肿瘤研究,其活性成分能够通过细胞周期阻滞抑制肿瘤细胞的增殖、诱导肿瘤细胞分化、通过细胞周期阻滞、Fas/Fasl和线粒体途径诱导肿瘤细胞凋亡,通过降低VEGF等的表达抑制肿瘤血管生成和内皮细胞增殖,抑制肿瘤侵袭和转移,通过抑制端粒酶活性、逆转多药耐药、调节免疫耐受等辅助治疗肿瘤。通过收集、分析和整理最近几年涉及苦参活性成分抗肿瘤作用的文献,综述其抗肿瘤作用机制,为临床应用苦参治疗肿瘤提供参考。  相似文献   

3.
人参作为传统中药家喻户晓,其提纯的重要活性成分之一一一人参皂苷Rg3,在科研中发现,具有多方向、多“靶点”抗肿瘤作用,并在临床治疗中不断被证实和推广.目前发现:人参皂苷Rg3具有抑制肿瘤细胞增殖作用;通过激活凋亡基因活性或抑制凋亡抑制蛋白等,从而促进肿瘤细胞凋亡;抑制肿瘤细胞的侵袭和转移;抑制肿瘤血管生成因子的信号传导途径,促进肿瘤血管生成抑制因子的表达,从而抑制肿瘤新生血管形成;与部分化学药物联合,可明显提高效果,同时对临床患者无明显血液系统毒性,并提高生活质量等作用.近年临床及体外实验证明,人参皂苷Rg3对多个系统并以不同机制发挥抗肿瘤作用,而对其研究仍在不断探索新的方向.作为祖国传统中药中提纯的单体抗肿瘤药物,在现今综合抗肿瘤治疗中意义深刻.  相似文献   

4.
作为一种跨膜糖蛋白,神经菌毛素1(NRP1)在轴突导向、血管生成和肿瘤免疫等多种反应过程中发挥重要作用。NRP1高表达于多种肿瘤细胞表面,尤其是上皮细胞肿瘤。阻断NRP1不仅能直接对肿瘤细胞的迁移及肿瘤的发生发展产生抑制作用,而且能够间接抑制肿瘤局部血管的生成与发展,继而影响肿瘤的生长发展。因此,NRP1有望成为抗肿瘤治疗的新突破点。简要探讨NRP1在肿瘤发生发展中的作用,以及以NRP1为靶点治疗恶性肿瘤的相关研究进展。  相似文献   

5.
肿瘤细胞通过刺激新生血管生成来满足对营养及供氧的不断增长的需求,因此,肿瘤组织生长对于新生血管形成的依赖性使得抗血肿瘤管生成已经成为肿瘤学基础研究与临床治疗领域中最吸引人的策略之一.在众多的促血管生成因子中,血管内皮生长因子(VEGF)及其受体VEGFR2(鼠和人中也分别称为Flk-1和KDR)对于与肿瘤生长、转移及复发相关的血管生成是至关重要的.此外,通过打破肿瘤组织自身介导的免疫耐受与逃避,主动免疫治疗已成为一种崭新的抗肿瘤治疗方法.通过将这两种策略联合应用,抗血管生成主动免疫治疗使得更加有效地抑制肿瘤血管生成成为可能.这种免疫治疗与抗血管生成的联合应用有望成为一种有良好前景的研究方案.本文总结了通过打破VEGF/VEGFR2信号通路实现的抗肿瘤血管生成主动免疫治疗方面最新研究进展.本文讨论了旨在抑制血管生成的三种不同形式的抗肿瘤疫苗-细胞疫苗、蛋白质/多肽疫苗及基因/DNA疫苗,以及这一领域未来的研究方向.  相似文献   

6.
姜黄素具有很显著的抗肿瘤作用。本文通过对几年来国内外对姜黄素抗肿瘤的研究进行总结,介绍了姜黄素的抗肿瘤机制。在分子水平上,肿瘤细胞摄取姜黄素,增加药物作用的靶位点,调节肿瘤细胞的信号传递,从而调节肿瘤细胞中某些酶活性及蛋白质、基因的表达。在细胞水平上,姜黄素能抑制肿瘤细胞的增殖、促进肿瘤细胞凋亡、逆转肿瘤细胞的多药耐药性、增强NK细胞杀伤力。在组织水平上抑制肿瘤血管生成等方面来发挥抗肿瘤作用。  相似文献   

7.
厚朴酚作为传统中药厚朴的主要成分之一,已经被证实具有明显的抗肿瘤作用,且毒性较低,在抗肿瘤药物的研究中引起了广泛的关注。厚朴酚能够抑制肿瘤细胞的增殖和分化,诱导肿瘤细胞凋亡,抑制肿瘤的转移和肿瘤血管的形成,逆转肿瘤耐药的效果也非常显著。本文通过对厚朴酚以往的研究,主要从细胞周期阻滞,细胞凋亡,抗转移,抗血管生成等方面对其在抗肿瘤领域的进展进行综述。  相似文献   

8.
人参皂苷Rg3是从五加科植物人参中提取的重要活性成分之一,其可通过抑制肿瘤细胞增殖,调节机体免疫力,促进肿瘤细胞凋亡,逆转耐药性,减少肿瘤内血管生成,抑制肿瘤细胞的侵袭和转移,联合放、化疗药物减毒增效等发挥抗肿瘤的作用。本文主要对近年来人参皂苷Rg3抗肿瘤的作用机制的研究进展做一综述。  相似文献   

9.
肝细胞生长因子(hepatocyte growth factor, HGF)是一种多功能的细胞因子,其生物学活性由c-Met蛋白所介导.HGF/c-Met信号通路在肿瘤生成、侵袭、转移以及肿瘤新生血管生成方面起重要促进作用. 因此, HGF/c-Met信号转导通路可以作为抗肿瘤药物设计的靶点.其中,HGF-α链N端447个氨基酸组成的NK4蛋白是HGF的特异性拮抗剂,它不仅通过抑制HGF/c-Met系统的信号转导发挥抗肿瘤效应;而且可以通过拮抗HGF和其它血管生成因子如成纤维细胞生长因子(fibroblast growth factors, FGF)、血管内皮生长因子(vascular endothelial growth factor, VEGF)的活性,进而抑制肿瘤新生血管生成,最终导致肿瘤细胞的凋亡.NK4的这种双重抗肿瘤功能使其成为一类很有前景的新型抗肿瘤药物.本文就NK4对肿瘤的抑制作用及其机制的研究进展进行综述.  相似文献   

10.
研究表明,肿瘤的生长转移和新血管的生成有密切关系,其中血管内皮细胞生长因子(vascular endothelial growth factor,VEGF)及其信号途径在肿瘤血管生成中起关键作用。阻断该途径的任何环节均可有效抑制肿瘤血管的生成,进而抑制肿瘤的生长和转移。近年来,已有多种以VEGF/VEGFR为靶点的抗肿瘤血管生成药物投入临床应用,其中bevacizumab为第一个获批上市的抗肿瘤血管生成药物。继bevacizumab后,一种以基因工程手段获得的人Fc融合蛋白Zaltrap也成功在美国上市,这种杂交分子的药代动力学明显优于单克隆抗体,能更好的遏制肿瘤血管的发生并消退已形成的肿瘤血管。在肿瘤的临床治疗中,Zaltrap比bevacizumab显示出更大的优势。此外,VEGFC/D Trap及小分子酪氨酸激酶抑制剂也能有效抑制肿瘤血管的生成。在此对以VEGF/VEGFR为靶点的抗肿瘤血管生成药物进行综述。  相似文献   

11.
肿瘤发生的根本原因是基因调控的改变,而细胞凋亡是在基因调控下的一种细胞自我消亡的过程。因此,开发一种具有抑制肿瘤细胞生长,促进肿瘤细胞凋亡作用的药物是目前研究的重点。近年来研究发现,苏木具有明显的抗肿瘤作用,并且苏木的体内外抗肿瘤作用、不同提取物的作用、不同作用方式的效果不尽相同。此外,苏木不同提取物和各单体成分存在不同抗肿瘤谱,活性各不相同。随着对苏木及其提取物研究的不断深入,苏木及各单体成分的抗肿瘤机制研究也获得一定进展。本文对近年来苏木及其各单体成分抗肿瘤作用的研究进展作一综述。  相似文献   

12.
Tumor growth and progression depends on tumor angiogenesis, the growth of tumor blood vessels, therefore, targeting tumor angiogenesis is a very promising approach for controlling tumor growth and/or causing regression. Tumor blood vessels have been recognized as a critical component of radiation response to the point of being independent of tumor oxygenation during radiation. An anti-angiogenic approach has been considered less likely to develop drug resistance. But recent findings suggest that anti-angiogenesis causes hypoxia that selects tumor cells (due to genetic instability) that are less dependent on blood supply and leads to drug resistance. The approach of combination of anti-angiogenesis with ionizing radiation by targeting both endothelial and tumor cells should minimize this possibility. The combination may produce a synergistic anti-tumor effect.  相似文献   

13.
Anti-angiogenesis: making the tumor vulnerable to the immune system   总被引:1,自引:1,他引:0  
Ongoing angiogenesis has been shown to possess immune suppressive activity through several mechanisms. One of these mechanisms is the suppression of adhesion receptors, such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin-adhesion molecules involved in leukocyte interactions-on the vascular endothelium. This phenomenon, when happening to the tumor endothelium, supports tumor growth due to escape from immunity. Since angiogenesis has this immune suppressive effect, it has been hypothesized that inhibition of angiogenesis may circumvent this problem. In vitro and in vivo data now show that several angiogenesis inhibitors are able to normalize endothelial adhesion molecule expression in tumor blood vessels, restore leukocyte vessel wall interactions, and enhance the inflammatory infiltrate in tumors. It is suggested that such angiogenesis inhibitors can make tumors more vulnerable for the immune system and may therefore be applied to facilitate immunotherapy approaches for the treatment of cancer.  相似文献   

14.
血管内皮生长因子和抗肿瘤血管新生药物研究进展   总被引:1,自引:0,他引:1  
肿瘤的生长与迁移离不开新血管的形成,这使得抗血管新生成为肿瘤治疗的重要途径之一。血管内皮生长因子(VEGF)是针对内皮细胞作用最强、特异性最高的血管新生促进因子,因而VEGF是抗肿瘤治疗的重要靶点。我们简要介绍了VEGF的一些生物学特点及肿瘤血管新生,着重介绍了一些抗血管新生药物的最新研究成果及其临床应用。  相似文献   

15.
A method is reported for the study of early phases of neovascularization in syngeneic murine tumors and human tumor xenografts in nude mice. Using this method, the effect of irradiation of tumor cells or tumor bed on tumor angiogenesis was studied. Tumor cells were injected intradermally in the abdominal skin flap, which was reopened at 2-day intervals to quantify newly formed blood vessels at the site of tumor cell injection. Both tumor cell injection and blood vessel counting were performed under a dissecting microscope. Using three syngeneic murine tumors and two clones of a human colonic adenocarcinoma, it was observed that new blood vessels started appearing within a few days after tumor cell injection and that this event preceded measurable tumor growth. The number of blood vessels increased exponentially for several days but then their further growth slowed. The extent of angiogenesis depended on the tumor type and the number of tumor cells injected. The exposure of the skin flap to ionizing radiation prior to tumor cell injection reduced neovascularization. We further observed that heavily irradiated tumor cells retained their ability to induce angiogenic response and that lymphoid cells (peritoneal exudate and spleen cells) could also elicit an angiogenic response, although it is weaker than the response elicited by tumor cells. Thus this method is suitable for quantification and kinetics of early phases of tumor angiogenesis in individual mice bearing transplants of syngeneic tumors or human tumor xenografts, and it can be useful for investigating various regulators of tumor angiogenesis.  相似文献   

16.
An increasing amount of evidence indicates that a small extracellular chondroitin/dermatan sulfate proteoglycan, decorin, is indirectly involved in angiogenesis. Given that angiogenesis is a sine qua non for tumor growth and progression, we attempted to examine whether human malignant vascular tumors differ from human benign vascular tumors in terms of their decorin expression and synthesis. CD31 immunostaining demonstrated that the human malignant vascular tumors Kaposi's sarcoma and angiosarcoma were filled with capillary-like structures, whereas in benign cavernous and capillary hemangiomas, blood vessels were not as abundantly present. By utilizing in situ hybridization and immunocytochemical assays for decorin, we showed that there was no detectable decorin mRNA expression or immunoreactivity within the tumor mass in the Kaposi's sarcoma or angiosarcoma group. Instead, decorin was expressed in the connective tissue stroma lining the sarcoma tissue. In contrast to sarcomas, in hemangiomas, decorin mRNA expression and immunoreactivity were observed also within the tumor mass, particularly in the connective tissue stroma surrounding the clusters of intratumoral blood vessels. Finally, distribution of type I collagen was found to be similar to that of decorin in these tumor tissues. Our findings can be explained with different states of angiogenesis in dissimilar growths. In sarcomas, angiogenesis is extremely powerful, whereas in hemangiomas, angiogenesis has ceased. Thus, decorin is likely to possess a suppressive effect on human tumor angiogenesis in vivo, as previously described by studies using different experimental models. Decorin certainly provides a usable biomarker for distinguishing between benign and malignant vascular tumors in patients.  相似文献   

17.
Blood vessels are mainly composed of intraluminal endothelial cells (ECs) and mural cells adhering to the ECs on their basal side. Immature blood vessels lacking mural cells are leaky; thus, the process of mural cell adhesion to ECs is indispensable for stability of the vessels during physiological angiogenesis. However, in the tumor microenvironment, although some blood vessels are well-matured, the majority is immature. Because mural cell adhesion to ECs also has a marked anti-apoptotic effect, angiogenesis inhibitors that destroy immature blood vessels may not affect mature vessels showing more resistance to apoptosis. Activation of Tie2 receptor tyrosine kinase expressed in ECs mediates pro-angiogenic effects via the induction of EC migration but also facilitates vessel maturation via the promotion of cell adhesion between mural cells and ECs. Therefore, inhibition of Tie2 has the advantage of completely inhibiting angiogenesis. Here, we isolated a novel small molecule Tie2 kinase inhibitor, identified as 2-methoxycinnamaldehyde (2-MCA). We found that 2-MCA inhibits both sprouting angiogenesis and maturation of blood vessels, resulting in inhibition of tumor growth. Our results suggest a potent clinical benefit of disrupting these two using Tie2 inhibitors.  相似文献   

18.
Antiangiogenic therapy mediated by food components is an established strategy for cancer chemoprevention. Growth factors play critical roles in tumor angiogenesis. A conditioned medium containing growth factors from human gastric adenocarcinoma SGC-7901 cell conditioned medium was used as an angiogenic stimulus in this study. The purpose of this study was to evaluate the inhibitory effect and possible mechanism of γ-tocotrienol on tumor angiogenesis. The results showed that γ-tocotrienol (10-40 μmol/L) significantly suppressed proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) induced by SGC-7901 cell conditioned medium in a dose-dependent manner. γ-Tocotrienol (800-1200 μg/egg) also inhibited new blood vessel formation on the growing chick embryo chorioallantoic membrane in a dose-dependent manner. Moreover, the inhibitory effects of γ-tocotrienol on HUVECs were correlated with inducing the apoptosis and arresting cell cycle at the G0/G1 phase at a dose of 40 μmol/L γ-tocotrienol. In addition, γ-tocotrienol inhibited angiogenesis in HUVECs by down-regulation of β-catenin, cyclin D1, CD44, phospho-VEGFR-2 and MMP-9. The antiangiogenic effects of γ-tocotrienol on HUVECs may be attributable to regulation of Wnt signaling by decreasing β-catenin expression. Thus, our results suggest that γ-tocotrienol has a potential chemopreventive agent via antiangiogenesis.  相似文献   

19.
ABSTRACT: BACKGROUND: The epidermal growth factor receptor (EGFR) signaling pathway and angiogenesis in brain cancer act as an engine for tumor initiation, expansion and response to therapy. Since the existing literature does not have any models that investigate the impact of both angiogenesis and molecular signaling pathways on treatment, we propose a novel multi-scale, agent-based computational model that includes both angiogenesis and EGFR modules to study the response of brain cancer under tyrosine kinase inhibitors (TKIs) treatment. RESULTS: The novel angiogenesis module integrated into the agent-based tumor model is based on a set of reaction--diffusion equations that describe the spatio-temporal evolution of the distributions of micro-environmental factors such as glucose, oxygen, TGFalpha, VEGF and fibronectin. These molecular species regulate tumor growth during angiogenesis. Each tumor cell is equipped with an EGFR signaling pathway linked to a cell-cycle pathway to determine its phenotype. EGFR TKIs are delivered through the blood vessels of tumor microvasculature and the response to treatment is studied. CONCLUSIONS: Our simulations demonstrated that entire tumor growth profile is a collective behaviour of cells regulated by the EGFR signaling pathway and the cell cycle. We also found that angiogenesis has a dual effect under TKI treatment: on one hand, through neo-vasculature TKIs are delivered to decrease tumor invasion; on the other hand, the neo-vasculature can transport glucose and oxygen to tumor cells to maintain their metabolism, which results in an increase of cell survival rate in the late simulation stages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号