首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hu P  Yang M  Zhang A  Wu J  Chen B  Hua Y  Yu J  Chen H  Xiao J  Jin M 《PloS one》2011,6(9):e24988

Background

Streptococcus suis infections are a serious problem for both humans and pigs worldwide. The emergence and increasing prevalence of antibiotic-resistant S. suis strains pose significant clinical and societal challenges.

Results

In our study, we sequenced one multi-drug-resistant S. suis strain, R61, and one S. suis strain, A7, which is fully sensitive to all tested antibiotics. Comparative genomic analysis revealed that the R61 strain is phylogenetically distinct from other S. suis strains, and the genome of R61 exhibits extreme levels of evolutionary plasticity with high levels of gene gain and loss. Our results indicate that the multi-drug-resistant strain R61 has evolved three main categories of resistance.

Conclusions

Comparative genomic analysis of S. suis strains with diverse drug-resistant phenotypes provided evidence that horizontal gene transfer is an important evolutionary force in shaping the genome of multi-drug-resistant strain R61. In this study, we discovered novel and previously unexamined mutations that are strong candidates for conferring drug resistance. We believe that these mutations will provide crucial clues for designing new drugs against this pathogen. In addition, our work provides a clear demonstration that the use of drugs has driven the emergence of the multi-drug-resistant strain R61.  相似文献   

2.
对新近测定的猪链球菌2型(S. suis 2) 05ZYH33全基因序列进行生物信息学分析, 并与相关家族蛋白进行同源性比较, 设计合成引物, PCR法扩增出约1.3 kb的烯醇化酶编码基因 (enolase, eno), 将其克隆入pMD-18T载体中, 进一步亚克隆入表达载体pET32a。将重组表达质粒pET32a::eno转化E. coli BL21 (DE3), 经IPTG诱导表达后, SDS-PAGE初步检测到分子量约为75kD的蛋白带。通过His-Tag亲和层析纯化, 获得融合蛋白His-ENO。Western-blot表明该表达产物具有免疫原性。基于ELISA进行的细胞定位实验证实了Enolase可以部分存在S. suis 2 05ZYH33细菌的表面。这提示了Enolase作为一种新发现的抗原对于引发猪链球菌相关疾病可能发挥着重要的作用。  相似文献   

3.
A molecular dynamics investigation and coarse-grained analysis of inactivated actin-related protein (Arp) 2/3 complex is presented. It was found that the nucleotide binding site within Arp3 remained in a closed position with bound ATP or ADP, but opened when simulation with no nucleotide was performed. In contrast, simulation of the isolated Arp3 subunit with bound ATP, showed a fast opening of the nucleotide binding cleft. A homology model for the missing subdomains 1 and 2 of Arp2 was constructed, and it was also found that the Arp2 binding cleft remained closed with bound nucleotide. Within the nucleotide binding cleft a distinct opening and closing period of 10 ns was observed in many of the simulations of Arp2/3 as well as isolated Arp3. Substitution studies were employed, and several alanine substitutions were found to induce a partial opening of the ATP binding cleft in Arp3 and Arp2, whereas only a single substitution was found to induce opening of the ADP binding cleft. It was also found that the nucleotide type did not cause a substantial change on interfacial contacts between Arp3 and the ArpC2, ArpC3 and ArpC4 subunits. Nucleotide-free Arp3 had generally less stable contacts, but the overall contact architecture was constant. Finally, nucleotide-dependent coarse-grained models for Arp3 are developed that serve to further highlight the structural differences induced in Arp3 by nucleotide hydrolysis.  相似文献   

4.
Yamaotsu N  Suga M  Hirono S 《Biopolymers》2001,58(4):410-421
Trifluoperazine (TFP) has been widely studied in relation to its mode of binding and its inactivation of calmodulin (CaM). Most studies in solution have indicated that CaM has two high-affinity binding sites for TFP. The crystal structure of the 1:4 CaM-TFP complex (CaM-4TFP) shows that three TFP molecules bind to the C-domain of CaM, and that one TFP molecule binds to the N-domain. In contrast, the crystal structure of the 1:1 CaM-TFP complex (CaM-1TFP) shows that one TFP molecule binds to the C-domain. It has been thought that the binding of one TFP molecule to the C-domain is followed by binding to the N-domain. The crystal structure of the 1:2 CaM-TFP complex (CaM-2TFP), moreover, has recently been determined, showing that two TFP molecules bind to the C-domain. In order to determine the structure of the CaM-TFP complex and to clarify the interaction between CaM and TFP in solution, we performed a molecular dynamics simulation of the CaM-TFP complex in aqueous solution starting from the CaM-4TFP crystal structure. The obtained solution structure is very similar to the CaM-2TFP crystal structure. The computer simulation showed that the binding ability of the secondary binding site of the C-domain is higher than that of the primary binding site of the N-domain.  相似文献   

5.
Rong J  Zhang W  Wang X  Fan H  Lu C  Yao H 《PloS one》2012,7(2):e32150
Streptococcus suis type 2 (SS2) is an important swine pathogen and zoonosis agent. A/J mice are significantly more susceptible than C57BL/6 (B6) mice to SS2 infection, but the genetic basis is largely unknown. Here, alterations in gene expression in SS2 (strain HA9801)-infected mice were identified using Illumina mouse BeadChips. Microarray analysis revealed 3,692 genes differentially expressed in peritoneal macrophages between A/J and B6 mice due to SS2 infection. Between SS2-infected A/J and control A/J mice, 2646 genes were differentially expressed (1469 upregulated; 1177 downregulated). Between SS2-infected B6 and control B6 mice, 1449 genes were differentially expressed (778 upregulated; 671 downregulated). These genes were analyzed for significant Gene Ontology (GO) categories and signaling pathways using the Kyoto Encylopedia of Genes and Genomes (KEGG) database to generate a signaling network. Upregulated genes in A/J and B6 mice were related to response to bacteria, immune response, positive regulation of B cell receptor signaling pathway, type I interferon biosynthesis, defense and inflammatory responses. Additionally, upregulated genes in SS2-infected B6 mice were involved in antigen processing and presentation of exogenous peptides, peptide antigen stabilization, lymphocyte differentiation regulation, positive regulation of monocyte differentiation, antigen receptor-mediated signaling pathway and positive regulation of phagocytosis. Downregulated genes in SS2-infected B6 mice played roles in glycolysis, carbohydrate metabolic process, amino acid metabolism, behavior and muscle regulation. Microarray results were verified by quantitative real-time PCR (qRT-PCR) of 14 representative deregulated genes. Four genes differentially expressed between SS2-infected A/J and B6 mice, toll-like receptor 2 (Tlr2), tumor necrosis factor (Tnf), matrix metalloproteinase 9 (Mmp9) and pentraxin 3 (Ptx3), were previously implicated in the response to S. suis infection. This study identified candidate genes that may influence susceptibility or resistance to SS2 infection in A/J and B6 mice, providing further validation of these models and contributing to understanding of S. suis pathogenic mechanisms.  相似文献   

6.
Notch is a single-pass transmembrane receptor protein which is composed of a short extracellular region, a single-pass transmembrane domain and a small intracellular region. Notch ligand like Delta, member of the DSL protein family, is also single-pass transmembrane protein. It has been demonstrated that of the 36 EGF repeats of Notch, 11th and 12th are sufficient to mediate interactions with Delta. Crystal structure of mammalian Notch extracellular ligand binding domain contains 11 and 12 EGF-like repeats. Here a portion of the Delta protein of Drosophila, known to interact with Notch extracellular domain (ECD) has been modeled using homology modeling. The structure of the Delta-Notch complex was subsequently modeled by protein docking method using GRAMM. MD simulations of the modeled structures were performed. The structure for Delta-Notch complex has been proposed based on interaction energy parameter and planarity studies.  相似文献   

7.
Abstract Streptococcus suis capsular type 2 has a capsule rich in sialic acid (NANA). Sialic acid, known to be an antiphagocytic factor for many bacterial species, inhibits the activation of the alternative complement pathway. The role of capsular NANA in virulence, resistance to phagocytosis and intracellular survival of S. suis capsular type 2 was evaluated. In general, a low concentration of NANA was observed for all the S. suis strains tested. In addition, no difference could be found in NANA concentrations between strains of different virulence degrees. Sialic acid concentration increased in the virulent strain 89–1591 and the avirulent strain 90–1330 after in vivo growth with an increased capsular material thickness compared to growth in vitro. No significant difference could be found in the phagocytosis rate by porcine blood monocytes of either strain and strain 89–1591 treated with sialidase or the sialic acid-binding lectin from Sambucus nigra (SNA I). Intracellular survival of strain 89–1591 decreased after treatments with sialidase or lectin, becoming comparable to that of strain 90–1330. Finally, no difference could be seen in virulence using a murine model, even if strain 89–1591 was treated with the enzyme or the lectin. Thus, NANA does not seem to be a critical virulence factor for S. suis capsular type 2.  相似文献   

8.
Interleukin-2 (IL-2) protein belongs to the signal modulator cytokine's family and therefore it is prevalent for immunological responses. It has been identified as a centrally important potential drug target for the inhibition of protein-protein interactions; so as to suppress the immunological responses associated with autoimmune, inflammatory and immunological diseases, and cancer. In the present work, we have performed two independent 100?ns of molecular dynamics (MD) simulations on the apo IL-2 protein and its ligand-bound complex (with a potent inhibitor FRG), to study the effect of inhibitor binding on the dynamics and stability of the protein. The calculation of binding free energy via post-processing end state method of Molecular Mechanics Poisson Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics Generalised Born Surface Area (MM-GBSA) has inferred a good correlation in accordance with the already reported experimental data, demonstrating that the free energy of binding calculated by the two methods has no significant difference. The investigation of individual components of free energy revealed that the association of IL-2 protein with FRG ligand is primarily driven by the van der Waals energy contribution that represents the non-polar/hydrophobic energy contribution as dominant in this case of ligand binding.  相似文献   

9.
As one potent plant protease inhibitor, potato carboxypeptidase inhibitor (PCI) can competitively inhibit insect digestive metallocarboxypeptidases (MCPs) through interfering with its digestive system that causes amino acid deficiencies and leading to serious developmental delay and mortality. However, this effective biological pest control is significantly impaired by the PCI-resistant insect MCPs. Therefore, deep understanding of the resistant mechanism of insect MCPs is particularly necessary for designing new durable pest control regimen and developing effective pesticides. In this study, the binding of PCI and small molecular inhibitor THI to insect PCI-sensitive/-resistant MCPs and human MCP was investigated by docking, molecular dynamics (MD) simulations and thermodynamic analysis. The structural analysis from MD simulations indicates that the PCI-resistant mechanism of CPBHz is mainly dominated by the Trp277A, which changes the conformation of β8-α9 loop and therefore narrow the access to the active site of CPBHz, prohibiting the entrance of the C termini tail of PCI. Additionally, the insertion of Gly247A weakens the stabilization of CPBHz and PCI through disrupting the hydrogen bond formation with its surrounding residues. Furthermore, the predicted binding free energies gives explanation of structure affinity relationship of PCI and THI with MCPs and suggest that the electrostatic energy is the main contribution term affecting the difference in binding affinities. Finally, the decomposition analysis of binding free energies infers that the key residues Glu72, Arg127, Ile247/Leu247 and Glu270 are critical for the binding of PCI/THI to MCPs.  相似文献   

10.
The RNA recognition motif (RRM) is one of the most common RNA binding domains. We have investigated the contribution of three highly conserved aromatic amino acids to RNA binding by the N-terminal RRM of the U1A protein. Recently, we synthesized a modified base (A-4CPh) in which a phenyl group is tethered to adenine using a linker of 4 methylene groups. The substitution of this base for adenine in the target RNA selectively stabilizes the complex formed with a U1A protein in which one of the conserved aromatic amino acids is replaced with Ala (Phe56Ala). In this article, we report molecular dynamics (MD) simulations that probe the structural consequences of the substitution of A-4CPh for adenine in the wild type and Phe56Ala U1A-RNA complexes and in the free RNA. The simulations suggest that A-4CPh stabilizes the complex formed with Phe56Ala by adopting a folded conformation in which the tethered phenyl group fills the site occupied by the phenyl group of Phe56 in the wild-type complex. In contrast, an extended conformation of A-4CPh is predicted to be most stable in the complex formed with the wild-type protein. The calculations indicate A-4CPh is in an extended conformation in the free RNA. Therefore, preorganizing the structure of the phenyl-tethered base for binding may improve both the affinity and specificity of the RNA containing A-4CPh for the Phe56Ala U1A protein. Taken together, the previous experimental work and the calculations reported here suggest a general design strategy for altering RRM-RNA complex stability.  相似文献   

11.
Penicillin-binding proteins (PBPs), the primary targets for beta-lactam antibiotics, are periplasmic membrane-attached proteins responsible for the construction and maintenance of the bacterial cell wall. Bacteria have developed several mechanisms of resistance, one of which is the mutation of the target enzymes to reduce their affinity for beta-lactam antibiotics. Here, we describe the structure of PBP2x from Streptococcus pneumoniae determined to 2.4 A. In addition, we also describe the PBP2x structure in complex with cefuroxime, a therapeutically relevant antibiotic, at 2.8 A. Surprisingly, two antibiotic molecules are observed: one as a covalent complex with the active-site serine residue, and a second one between the C-terminal and the transpeptidase domains. The structure of PBP2x reveals an active site similar to those of the class A beta-lactamases, albeit with an absence of unambiguous deacylation machinery. The structure highlights a few amino acid residues, namely Thr338, Thr550 and Gln552, which are directly related to the resistance phenomenon.  相似文献   

12.
A 2200-ps molecular dynamics (MD) simulation of the U2 snRNA hairpin IV/U2B" complex was performed in aqueous solution using the particle mesh Ewald method to consider long-range electrostatic interactions. To investigate the interaction and recognition process between the RNA and protein, the free energy contributions resulting from individual amino acids of the protein component of the RNA/protein complex were calculated using the recently developed glycine-scanning method. The results revealed that the loop region of the U2 snRNA hairpin IV interacted mainly with three regions of the U2B" protein: 1) beta 1-helix A, 2) beta 2-beta 3, and 3) beta 4-helix C. U2 snRNA hairpin IV bound U2B" in a similar orientation as that previously described for U1 snRNA with the U1A' protein; however, the details of the interaction differed in several aspects. In particular, beta 1-helix A and beta 4-helix C in U2B" were not observed to interact with RNA in the U1A' protein complex. Most of the polar and charged residues in the interacting regions had larger mutant free energies than the nonpolar residues, indicating that electrostatic interactions were important for stabilizing the RNA/protein complex. The interaction was further stabilized by a network of hydrogen bonds and salt bridges formed between RNA and protein that was maintained throughout the MD trajectory. In addition to the direct interactions between RNA and the protein, solvent-mediated interactions also contributed significantly to complex stability. A detailed analysis of the ordered water molecules in the hydration of the RNA/protein complex revealed that bridged water molecules reside at the interface of RNA and protein as long as 2100 ps in the 2200-ps trajectory. At least 20 bridged water molecules, on average, contributed to the instantaneous stability of the RNA/protein complex. The stabilizing interaction energy due to bridging water molecules was obtained from ab initio Hartree-Fock and density functional theory calculations.  相似文献   

13.
Colchicin, podophylotoxin and indibulin are natural cytostatics that are used in the treatment of neoplasms. But applications of those compounds are rather restricted due to the high toxicity and low specificity. It seems very promising to investigate possibility to design new analogs of the above mentioned drugs that will possess higher cytostatic activity and less toxicity. For this purpose we see computer modeling experiments of tubulin and above mentioned compounds interaction as a powerful approach to design new artificial cytostatics with desired properties. In the current study the CHARMM software of protein-ligand interaction molecular dynamics method has been used. Particularly the following strategy has been applied. Molecules of the cytostatits have been positioned at several random positions around binding sites of tubulin and after energy minimization several binding sites have been identified on the tubulin macromolecule. In these binding sites structural changes that may be responsible for tubulin polymerization have been detected.  相似文献   

14.
A simple method is described to perform docking of subtrates to proteins or probes to receptor molecules by a modification of molecular dynamics simulations. The method consists of a separation of the center-of-mass motion of the substrate from its internal and rotational motions, and a separate coupling to different thermal baths for both types of motion of the substrate and for the motion of the receptor. Thus the temperatures and the time constants of coupling to the baths can be arbitrarily varied for these three types of motion, allowing either a frozen or a flexible receptor and allowing control of search rate without disturbance of internal structure. In addition, an extra repulsive term between substrate and protein was applied to smooth the interaction. The method was applied to a model substrate docking onto a model surface, and to the docking of phosphocholine onto immunoglobulin McPC603, in both cases with a frozen receptor. Using transrational temperatures of the substrate in the range of 1300–1700 K and room temperature for the internal degrees of freedom of the substrate, an efficient nontrapping exploratory search (“helicopter view”) is obtained, which visits the correct binding sites. Low energy conformations can then be further investigated by separate search or by dynamic simulated annealing. In both cases the correct minima were identified. The possibility to work with flexible receptors is discussed. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Crizotinib is an anticancer tyrosine kinase inhibitor that is approved for use as a first-line treatment for some non-small-cell lung cancers. L1196M is the most frequently observed mutation in NSCLC patients. This mutation, known as the gatekeeper mutation in the ALK kinase domain, confers resistance to crizotinib by sterically blocking the binding of the drug. However, the molecular mechanism of crizotinib resistance caused by the L1196M mutation is still unclear. Molecular dynamics simulation was therefore utilized in this study to investigate the mechanism by which the L1196M mutation may affect crizotinib resistance. Our results suggest that larger fluctuations in some important regions of the mutant complex compared to the wild-type complex may contribute to the resistance of the mutant complex to crizotinib. Also, mutation-induced alterations to the secondary structure of the complex as well as unstable hydrogen-bonding patterns in the A-loop and P-loop regions decrease the total binding energy of the complex. This study therefore provides a molecular explanation for the resistance to crizotinib caused by the L1196M mutation, which could aid the design of more efficient and selective drugs.  相似文献   

16.
Hepatitis C virus (HCV) infection is a serious threat to global health. NS3 serine protease is one of the most advanced HCV drug targets. However, the high mutation rate makes many protease inhibitors ineffective and allows viral replication to continue. To investigate the structural basis of the molecular mechanism of HCV resistance to inhibitors, molecular dynamics and molecular mechanics Poisson–Boltzmann/surface area calculations were carried out on HCV NS3 serine protease–BI201335 complexes. The drug resistance to BI201335 is explained by the fact that seven single mutations weaken the biological activity by lessening the sum of electrostatic interactions in the gas phase and polar solvation. The computational results demonstrate that the mutations affect the BI201335 binding through direct and indirect mechanisms. Seven single mutations lead to significant changes in the conformation, such as the shifts of the side chain of His57 and Lys136 and the movement of the P2 group of BI201335 towards the solvent. Furthermore, the contributions of Lys136 significantly decrease, which is the most major binding attraction. The shifts of the side chain of His57 induce the lack of hydrogen bond between His57 with Asp81 expert for D168G mutation. Detailing the molecular mechanisms of BI201335 drug resistance provides some helpful insights into the nature of mutational effect and aid the rational design of potent inhibitors combating HCV.  相似文献   

17.
The dopamine D2 receptor (D2R) is the primary target for antipsychotic drugs. Besides schizophrenia, this receptor is linked to dementia, Parkinson’s disease, and depression. Recent studies have shown that β-arrestin biased agonists at this receptor treat schizophrenia with less side effects. Although the high resolution structure of this receptor exists, the mechanism of biased agonism at the receptor is unknown. In this study, dopamine, the endogenous unbiased G-protein agonist, MLS1547, a G-protein biased agonist, and UNC9975, a G-protein antagonist and a β-arrestin biased agonist, were docked to a homology model of the whole D2R including all flexible loops, and molecular dynamics simulations were conducted to study the potential mechanisms of biased agonism. Our thorough analysis on the protein–ligand interaction, secondary structure, tertiary structure, structure dynamics, and molecular switches of all three systems indicates that ligand binding to transmembrane 3 might be essential for G-protein recruitment, while ligand binding to transmembrane 6 might be essential for β-arrestin recruitment. Our analysis also suggests changes in both the secondary and the tertiary structures of TM5 and TM7, molecular switches and ICL3 flexibility are important in biased signaling.

Communicated by Ramaswamy H. Sarma  相似文献   


18.
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the life cycle of the virus and is an attractive target for the development of new drugs useful in acquired immunodeficiency syndrome multidrug therapy. Starting from the crystal structure of the 5CITEP inhibitor bound to the active site in the catalytic domain of the HIV-1 IN, two different molecular dynamics simulations in water have been carried out. In the first simulation the wild-type IN was used, whereas in the second one the double mutation T66I/M154I, described to lead to drug resistance, was introduced in the protein. Compelling differences have been observed in these two structures during analyses of the molecular dynamics trajectories, particularly in the inhibitor binding modes and in the conformational flexibility of the loop (residues 138-149) located near the three catalytic residues in the active site (Asp(64), Asp(116), Glu(152)). Because the conformational flexibility of this region is important for efficient biological activity and its behavior is quite different in the two models, we suggest a hypothetical mechanism for the inhibition and drug resistance of HIV-1 IN. These results can be useful for the rational design of more potent and selective integrase inhibitors and may allow for the design of inhibitors that will be more robust against known resistance mutations.  相似文献   

19.
H(2)O(2) is an unavoidable cytotoxic by-product of aerobic life. Dpr, a recently discovered member of the Dps protein family, provides a means for catalase-negative bacteria to tolerate H(2)O(2). Potentially, Dpr could bind free intracellular iron and thus inhibit the Fenton chemistry-catalyzed formation of toxic hydroxyl radicals (H(2)O(2) + Fe(2+) --> (.)OH + (-)OH + Fe(3+)). We explored the in vivo function of Dpr in the catalase- and NADH peroxidase-negative pig and human pathogen Streptococcus suis. We show that: (i) a Dpr allelic exchange knockout mutant was hypersensitive ( approximately 10(6)-fold) to H(2)O(2), (ii) Dpr incorporated iron in vivo, (iii) a putative ferroxidase center was present in Dpr, (iv) single amino acid substitutions D74A or E78A to the putative ferroxidase center abolished the in vivo iron incorporation, and (v) the H(2)O(2) hypersensitive phenotype was complemented by wild-type Dpr or by a membrane-permeating iron chelator, but not by the site-mutated forms of Dpr. These results demonstrate that the putative ferroxidase center of Dpr is functionally active in iron incorporation and that the H(2)O(2) resistance is mediated by Dpr in vivo by its iron binding activity.  相似文献   

20.
We use molecular dynamics simulation to study the aggregation of Src SH3 domain proteins. For the case of two proteins, we observe two possible aggregation conformations: the closed form dimer and the open aggregation state. The closed dimer is formed by "domain swapping"-the two proteins exchange their RT-loops. All the hydrophobic residues are buried inside the dimer so proteins cannot further aggregate into elongated amyloid fibrils. We find that the open structure-stabilized by backbone hydrogen bond interactions-packs the RT-loops together by swapping the two strands of the RT-loop. The packed RT-loops form a beta-sheet structure and expose the backbone to promote further aggregation. We also simulate more than two proteins, and find that the aggregate adopts a fibrillar double beta-sheet structure, which is formed by packing the RT-loops from different proteins. Our simulations are consistent with a possible generic amyloidogenesis scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号