首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast cells organize their actin cytoskeleton in a highly polarized manner during vegetative growth. The Ras-like GTPase Rsr1/Bud1 and its regulators are required for selection of a specific site for growth. Here we showed that Rsr1/Bud1 was broadly distributed on the plasma membrane and highly concentrated at the incipient bud site and polarized growth sites. We also showed that localization of Cdc24, a guanine nucleotide exchange factor for the Cdc42 GTPase, to the proper bud site was dependent on Rsr1/Bud1. Surprisingly, Rsr1/Bud1 also localized to intracellular membranes. A mutation in the lysine repeat in the hypervariable region of Rsr1/Bud1 specifically abolished its plasma membrane localization, whereas a mutation at the CAAX motif eliminated both plasma membrane and internal membrane association of Rsr1/Bud1. Thus the lysine repeat and the CAAX motif of Rsr1/Bud1 are important for its localization to the plasma membrane and to the polarized growth sites. This localization of Rsr1/Bud1 is essential for its function in proper bud site selection because both mutations resulted in random bud site selection.  相似文献   

2.
Bfa1p and Bub2p are spindle checkpoint proteins that likely have GTPase activation activity and are associated with the budding yeast spindle pole body (SPB). Here, we show that Bfa1p and Bub2p bind the Ras-like GTPase Tem1p, a component of the mitotic exit network, to the cytoplasmic face of the SPB that enters the bud, whereas the GDP/GTP exchange factor Lte1p is associated with the cortex of the bud. Migration of the SPB into the bud probably allows activation of Tem1p through Lte1p, thereby linking nuclear migration with mitotic exit. Since components of the Bub2p checkpoint are conserved in other organisms, we propose that the position of the SPB or mammalian centrosome controls the timing of mitotic exit.  相似文献   

3.
A novel pathway that coordinates mitotic exit with spindle position   总被引:1,自引:1,他引:0       下载免费PDF全文
In budding yeast, the spindle position checkpoint (SPC) delays mitotic exit until the mitotic spindle moves into the neck between the mother and bud. This checkpoint works by inhibiting the mitotic exit network (MEN), a signaling cascade initiated and controlled by Tem1, a small GTPase. Tem1 is regulated by a putative guanine exchange factor, Lte1, but the function and regulation of Lte1 remains poorly understood. Here, we identify novel components of the checkpoint that operate upstream of Lte1. We present genetic evidence in agreement with existing biochemical evidence for the molecular mechanism of a pathway that links microtubule-cortex interactions with Lte1 and mitotic exit. Each component of this pathway is required for the spindle position checkpoint to delay mitotic exit until the spindle is positioned correctly.  相似文献   

4.
In Saccharomyces cerevisiae, the spindle position checkpoint ensures that cells do not exit mitosis until the mitotic spindle moves into the mother/bud neck and thus guarantees that each cell receives one nucleus [1-6]. Mitotic exit is controlled by the small G protein Tem1p. Tem1p and its GTPase activating protein (GAP) Bub2p/Bfa1p are located on the daughter-bound spindle pole body. The GEF Lte1p is located in the bud. This segregation helps keep Tem1p in its inactive GDP state until the spindle enters the neck. However, the checkpoint functions without Lte1p and apparently senses cytoplasmic microtubules in the mother/bud neck [7-9]. To investigate this mechanism, we examined mutants defective for septins, which compose a ring at the neck [10]. We found that the septin mutants sep7Delta and cdc10Delta are defective in the checkpoint. When movement of the spindle into the neck was delayed, mitotic exit occurred, inappropriately leaving both nuclei in the mother. In sep7Delta and cdc10Delta mutants, Lte1p is mislocalized to the mother. In sep7Delta, but not cdc10Delta, mutants, inappropriate mitotic exit depends on Lte1p. These results suggest that septins serve as a diffusion barrier for Lte1p, and that Cdc10p is needed for the septin ring to serve as a scaffold for a putative microtubule sensor.  相似文献   

5.
In budding yeast, Tem1 is a key regulator of mitotic exit. Bfa1/Bub2 stimulates Tem1 GTPase activity as a GTPase-activating protein (GAP). Lte1 possesses a guanine-nucleotide exchange factor (GEF) domain likely for Tem1. However, recent observations showed that cells may control mitotic exit without either Lte1 or Bfa1/Bub2 GAP activity, obscuring how Tem1 is regulated. Here, we assayed BFA1 mutants with varying GAP activities for Tem1, showing for the first time that Bfa1/Bub2 GAP activity inhibits Tem1 in vivo. A decrease in GAP activity allowed cells to bypass mitotic exit defects. Interestingly, different levels of GAP activity were required to prevent mitotic exit depending on the type of perturbation. Although essential, more Bfa1/Bub2 GAP activity was needed for spindle damage than for DNA damage to fully activate the checkpoint. Conversely, Bfa1/Bub2 GAP activity was insufficient to delay mitotic exit in cells with misoriented spindles. Instead, decreased interaction of Bfa1 with Kin4 was observed in BFA1 mutant cells with a defective spindle position checkpoint. These findings demonstrate that there is a GAP-independent surveillance mechanism of Bfa1/Bub2, which, together with the GTP/GDP switch of Tem1, may be required for the genomic stability of cells with misaligned spindles.  相似文献   

6.
GTPases are widespread in directing cytoskeletal rearrangements and affecting cellular organization. How they do so is not well understood. Yeast cells divide by budding, which occurs in two spatially programmed patterns, axial or bipolar [1-3]. Cytoskeletal polarization to form a bud is governed by the Ras-like GTPase, Bud1/Rsr1, in response to cortical landmarks. Bud1 is uniformly distributed on the plasma membrane, so presumably its regulators, Bud5 GTPase exchange factor and Bud2 GTPase activating protein, impart spatial specificity to Bud1 action [4]. We examined the localizations of Bud5 and Bud2. Both Bud1 regulators associate with cortical landmarks designating former division sites. In haploids, Bud5 forms double rings that encircle the mother-bud neck and split upon cytokinesis so that each progeny cell inherits Bud5 at the axial division remnant. Recruitment of Bud5 into these structures depends on known axial landmark components. In cells undergoing bipolar budding, Bud5 associates with multiple sites, in response to the bipolar landmarks. Like Bud5, Bud2 associates with the axial division remnant, but rather than being inherited, Bud2 transiently associates with the remnant in late G1, before condensing into a patch at the incipient bud site. The relative timing of Bud5 and Bud2 localizations suggests that both regulators contribute to the spatially specific control of Bud1 GTPase.  相似文献   

7.
The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck) and the division axis (i.e., the mother-bud axis). A surveillance mechanism called spindle position checkpoint (SPOC) delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN) kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1 complex is crucial to control Kar9 distribution and spindle positioning during mitosis.  相似文献   

8.
During mitotic exit, a small GTPase Tem1 needs to be activated. During most of the cell cycle, Tem1 activity is antagonized by a GTPase activating complex (GAP) composed of Bub2 and Bfa1. Bfa1 protein has cell cycle regulated phosphorylation depending upon the Polo-like kinase Cdc5. This phosphorylation dissociates Bfa1 from Tem1 and thus relieves the inhibition of Tem1 by the GAP complex. Bub2 and Bfa1 are also required to prevent mitotic exit when there is DNA damage, spindle damage or spindle misorientation at G(2)/M phase. While Cdc5 inhibits Bfa1/Bub2, mutating the Cdc5 phosphorylation sites on Bfa1 does not have a strong activating effect on Bub2/Bfa1, suggesting there must be additional regulation in this pathway. Here we report that Bub2 protein also has cell cycle regulated phosphorylation. This phosphorylation is partially dependent upon the Polo-like kinase Cdc5 and is consistent with negative regulation of the Bub2/Bfa1 GAP complex. Spindle damage or spindle misorientation prevents Bub2 phosphorylation. The spindle damage effect is dependent upon the spindle assembly checkpoint components Mad2 and Mps1. Thus like Bfa1, Bub2 protein is also controlled both during mitotic exit and in response to cell cycle checkpoints. Bub2 phosphorylation is likely to be controlled by a novel kinase.  相似文献   

9.
The orientation of the mitotic spindle with respect to the polarity axis is crucial for the accuracy of asymmetric cell division. In budding yeast, a surveillance mechanism called the spindle position checkpoint (SPOC) prevents exit from mitosis when the mitotic spindle fails to align along the mother‐to‐daughter polarity axis. SPOC arrest relies upon inhibition of the GTPase Tem1 by the GTPase‐activating protein (GAP) complex Bfa1–Bub2. Importantly, reactions signaling mitotic exit take place at yeast centrosomes (named spindle pole bodies, SPBs) and the GAP complex also promotes SPB localization of Tem1. Yet, whether the regulation of Tem1 by Bfa1–Bub2 takes place only at the SPBs remains elusive. Here, we present a quantitative analysis of Bfa1–Bub2 and Tem1 localization at the SPBs. Based on the measured SPB‐bound protein levels, we introduce a dynamical model of the SPOC that describes the regulation of Bfa1 and Tem1. Our model suggests that Bfa1 interacts with Tem1 in the cytoplasm as well as at the SPBs to provide efficient Tem1 inhibition.  相似文献   

10.
How dividing cells monitor the effective transmission of genomes during mitosis is poorly understood. Budding yeast use a signaling pathway known as the spindle position checkpoint (SPC) to ensure the arrival of one end of the mitotic spindle in the nascent daughter cell. An important question is how SPC activity is coordinated with mother-daughter polarity. We sought to identify factors at the bud neck, the junction between mother and bud, which contribute to checkpoint signaling. In this paper, we show that the protein kinase Elm1 is an obligate regulator of the SPC, and this function requires localization of Elm1 to the bud neck. Furthermore, we show that Elm1 promotes the activity of the checkpoint kinase Kin4. These findings reveal a novel function for Elm1 in the SPC and suggest how checkpoint activity may be linked to cellular organization.  相似文献   

11.
Polarized cell growth requires the coupling of a defined spatial site on the cell cortex to the apparatus that directs the establishment of cell polarity. In the budding yeast Saccharomyces cerevisiae, the Ras-family GTPase Rsr1p/Bud1p and its regulators select the proper site for bud emergence on the cell cortex. The Rho-family GTPase Cdc42p and its associated proteins then establish an axis of polarized growth by triggering an asymmetric organization of the actin cytoskeleton and secretory apparatus at the selected bud site. We explored whether a direct linkage exists between the Rsr1p/Bud1p and Cdc42p GTPases. Here we show specific genetic interactions between RSR1/BUD1 and particular cdc42 mutants defective in polarity establishment. We also show that Cdc42p coimmunoprecipitated with Rsr1p/Bud1p from yeast extracts. In vitro studies indicated a direct interaction between Rsr1p/Bud1p and Cdc42p, which was enhanced by Cdc24p, a guanine nucleotide exchange factor for Cdc42p. Our findings suggest that Cdc42p interacts directly with Rsr1p/Bud1p in vivo, providing a novel mechanism by which direct contact between a Ras-family GTPase and a Rho-family GTPase links the selection of a growth site to polarity establishment.  相似文献   

12.
Budding yeast spindle position checkpoint is engaged by misoriented spindles and prevents mitotic exit by inhibiting the G protein Tem1 through the GTPase-activating protein (GAP) Bub2/Bfa1. Bub2 and Bfa1 are found on both duplicated spindle pole bodies until anaphase onset, when they disappear from the mother-bound spindle pole under unperturbed conditions. In contrast, when spindles are misoriented they remain symmetrically localized at both SPBs. Thus, symmetric localization of Bub2/Bfa1 might lead to inhibition of Tem1, which is also present at SPBs. Consistent with this hypothesis, we show that a Bub2 version symmetrically localized on both SPBs throughout the cell cycle prevents mitotic exit in mutant backgrounds that partially impair it. This effect is Bfa1 dependent and can be suppressed by high Tem1 levels. Bub2 removal from the mother-bound SPB requires its GAP activity, which in contrast appears to be dispensable for Tem1 inhibition. Moreover, it correlates with the passage of one spindle pole through the bud neck because it needs septin ring formation and bud neck kinases.  相似文献   

13.
The Rsr1 protein of Saccharomyces cerevisiae has been shown to be essential for bud site selection (Bender, A., and Pringle, J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9976-9980). This protein of 272 amino acids shares approximately 50% sequence identity with both Ras and Rap GTPases. However, neither GTP binding nor GTPase activity of the Rsr1 protein has been reported. The Rsr1 protein shares with human Rap1 GTPases the four specific motifs, i.e. Gly-12, residues 32-40, Ala-59, and residues 64-70, that are required for GAP3-dependent activation of the Rap1 GTPases. In this paper we demonstrate that the intrinsic GTPase activity of the Rsr1 protein is stimulated by GAP3 purified from bovine brain cytosol. The Rsr1 GTPase is not activated by either GAP1 or GAP2 which are specific for the Ras and Rho GTPases, respectively. Thus, it appears that the Rsr1 GTPase is a new member of the Rap1 GTPase family. Replacement of Gly-12 by Val in the Rsr1 GTPase completely abolishes the GAP3-dependent activation. The chimeric GTPases, Ras(1-60)/Rsr1(61-168) and Rsr1(1-65)/Ras(66-189), are activated by GAP3 but not by GAP1. Replacement of Thr-65 by Ser in the latter chimeric GTPase completely abolishes the GAP3-dependent activation, indicating that Thr-65 is required for distinguishing GAP3 from GAP1. We have previously shown that Gln-61 and Ser-65 are sufficient to determine the GAP1 specificity. Replacement of Thr-35 by Ala in the common effector domain (residues 32-40) of the chimeric Ras/Rsr1 GTPases completely abolishes GAP3-dependent activation.  相似文献   

14.
During mitotic exit, a small GTPase Tem1 needs to be activated. During most of the cell cycle, Tem1 activity is antagonized by a GTPase activating complex (GAP) composed of Bub2 and Bfa1. Bfa1 protein has cell cycle regulated phosphorylation depending upon the Polo-like kinase Cdc5. This phosphorylation dissociates Bfa1 from Tem1 and thus relieves the inhibition of Tem1 by the GAP complex. Bub2 and Bfa1 are also required to prevent mitotic exit when there is DNA damage, spindle damage or spindle misorientation at G2/M phase. While Cdc5 inhibits Bfa1/Bub2, mutating the Cdc5 phosphorylation sites on Bfa1 does not have a strong activating effect on Bub2/Bfa1, suggesting there must be additional regulation in this pathway. Here we report that Bub2 protein also has cell cycle regulated phosphorylation. This phosphorylation is partially dependent upon the Polo-like kinase Cdc5 and is consistent with negative regulation of the Bub2/Bfa1 GAP complex. Spindle damage or spindle misorientation prevents Bub2 phosphorylation. The spindle damage effect is dependent upon the spindle assembly checkpoint components Mad2 and Mps1. Thus like Bfa1, Bub2 protein is also controlled both during mitotic exit and in response to cell cycle checkpoints. Bub2 phosphorylation is likely to be controlled by a novel kinase.

Key Words:

Bub2, Bfa1, Cdc5, Phosphorylation, Mitotic exit, Cell cycle checkpoints  相似文献   

15.
The spindle position checkpoint (SPOC) is an essential surveillance mechanism that allows mitotic exit only when the spindle is correctly oriented along the cell axis. Key SPOC components are the kinase Kin4 and the Bub2-Bfa1 GAP complex that inhibit the mitotic exit-promoting GTPase Tem1. During an unperturbed cell cycle, Kin4 associates with the mother spindle pole body (mSPB), whereas Bub2-Bfa1 is at the daughter SPB (dSPB). When the spindle is mispositioned, Bub2-Bfa1 and Kin4 bind to both SPBs, which enables Kin4 to phosphorylate Bfa1 and thereby block mitotic exit. Here, we show that the daughter cell protein Lte1 physically interacts with Kin4 and inhibits Kin4 kinase activity. Specifically, Lte1 binds to catalytically active Kin4 and promotes Kin4 hyperphosphorylation, which restricts Kin4 binding to the mSPB. This Lte1-mediated exclusion of Kin4 from the dSPB is essential for proper mitotic exit of cells with a correctly aligned spindle. Therefore, Lte1 promotes mitotic exit by inhibiting Kin4 activity at the dSPB.  相似文献   

16.
Cells of the budding yeast undergo oriented cell division by choosing a specific site for growth depending on their cell type. Haploid a and alpha cells bud in an axial pattern whereas diploid a/alpha cells bud in a bipolar pattern. The Ras-like GTPase Rsr1p/Bud1p, its GDP-GTP exchange factor Bud5p, and its GTPase-activating protein Bud2p are essential for selecting the proper site for polarized growth in all cell types. Here we showed that specific residues at the N terminus and the C terminus of Bud5p were important for bipolar budding, while some residues were involved in both axial and bipolar budding. These bipolar-specific mutations of BUD5 disrupted proper localization of Bud5p in diploid a/alpha cells without affecting Bud5p localization in haploid alpha cells. In contrast, Bud5p expressed in the bud5 mutants defective in both budding patterns failed to localize in all cell types. Thus, these results identify specific residues of Bud5p that are likely to be involved in direct interaction with spatial landmarks, which recruit Bud5p to the proper bud site. Finally, we found a new start codon of BUD5, which extends the open reading frame to 210 bp upstream of the previously estimated start site, thus encoding a polypeptide of 608 amino acid residues. Bud5p with these additional N-terminal residues interacted with Bud8p, a potential bipolar landmark, suggesting that the N-terminal region is necessary for recognition of the spatial cues.  相似文献   

17.
Candida albicans, the most prevalent fungal pathogen of humans, causes superficial mycoses, invasive mucosal infections, and disseminated systemic disease. Many studies have shown an intriguing association between C. albicans morphogenesis and the pathogenesis process. For example, hyphal cells have been observed to penetrate host epithelial cells at sites of wounds and between cell junctions. Ras- and Rho-type GTPases regulate many morphogenetic processes in eukaryotes, including polarity establishment, cell proliferation, and directed growth in response to extracellular stimuli. We found that the C. albicans Ras-like GTPase Rsr1p and its predicted GTPase-activating protein Bud2p localized to the cell cortex, at sites of incipient daughter cell growth, and provided landmarks for the positioning of daughter yeast cells and hyphal cell branches, similar to the paradigm in the model yeast Saccharomyces cerevisiae. However, in contrast to S. cerevisiae, CaRsr1p and CaBud2p were important for morphogenesis: C. albicans strains lacking Rsr1p or Bud2p had abnormal yeast and hyphal cell shapes and frequent bends and promiscuous branching along the hypha and were unable to invade agar. These defects were associated with abnormal actin patch polarization, unstable polarisome localization at hyphal tips, and mislocalized septin rings, consistent with the idea that GTP cycling of Rsr1p stabilizes the axis of polarity primarily to a single focus, thus ensuring normal cell shape and a focused direction of polarized growth. We conclude that the Rsr1p GTPase functions as a polarity landmark for hyphal guidance and may be an important mediator of extracellular signals during processes such as host invasion.  相似文献   

18.
The spindle position checkpoint in Saccharomyces cerevisiae delays mitotic exit until the spindle has moved into the mother-bud neck, ensuring that each daughter cell inherits a nucleus. The small G protein Tem1p is critical in promoting mitotic exit and is concentrated at the spindle pole destined for the bud. The presumed nucleotide exchange factor for Tem1p, Lte1p, is concentrated in the bud. These findings suggested the hypothesis that movement of the spindle pole through the neck allows Tem1p to interact with Lte1p, promoting GTP loading of Tem1p and mitotic exit. However, we report that deletion of LTE1 had little effect on the timing of mitotic exit. We also examined several mutants in which some cells inappropriately exit mitosis even though the spindle is within the mother. In some of these cells, the spindle pole body did not interact with the bud or the neck before mitotic exit. Thus, some alternative mechanism must exist to coordinate mitotic exit with spindle position. In both wild-type and mutant cells, mitotic exit was preceded by loss of cytoplasmic microtubules from the neck. Thus, the spindle position checkpoint may monitor such interactions.  相似文献   

19.
Shimada Y  Wiget P  Gulli MP  Bi E  Peter M 《The EMBO journal》2004,23(5):1051-1062
Site-specific activation of the Rho-type GTPase Cdc42p by its guanine-nucleotide exchange factor (GEF) Cdc24p is critical for the establishment of cell polarity. Here we show that binding of Cdc24p to the small GTPase Rsr1p/Bud1p is required for its recruitment to the incipient bud site. Rsr1p/Bud1p binds to the CH-domain of Cdc24p, which is essential for its function in vivo. We have identified a cdc24-mutant allele, which is specifically defective for bud-site selection. Our results suggest that Cdc24p is auto-inhibited by an intramolecular interaction with its carboxy-terminal PB1-domain. Rsr1p/Bud1p appears to activate the GEF activity of Cdc24p in vivo, possibly by triggering a conformational change that dissociates the PB1-domain from its intramolecular binding site. Genetic experiments suggest that Bem1p functions as a positive regulator of Cdc24p by binding to the PB1-domain of Cdc24p, thereby preventing its re-binding to the intramolecular inhibitory site. Taken together, our results support a two-step molecular mechanism for the site-specific activation of Cdc24p, which involves Rsr1p/Bud1p and the adaptor protein Bem1p.  相似文献   

20.
Kim J  Song K 《Molecules and cells》2006,21(2):251-260
During mitosis, genomic integrity is maintained by the proper coordination of anaphase entry and mitotic exit via mitotic checkpoints. In budding yeast, mitotic exit is controlled by a regulatory cascade called the mitotic exit network (MEN). The MEN is regulated by a small GTPase, Tem1p, which in turn is controlled by a two-component GAP, Bfa1p-Bub2p. Recent results suggested that phosphorylation of Bfa1p by the polo-related kinase Cdc5p is also required for triggering mitotic exit, since it decreases the GAP activity of Bfa1p-Bub2p. However, the dispensability of GEF Lte1p for mitotic exit has raised questions about regulation of the MEN by the GTPase activity of Tem1p. We isolated a Bfa1p mutant, Bfa1p(E438K), whose overexpression only partially induced anaphase arrest. The molecular and biochemical functions of Bfa1p(E438K) are similar to those of wild type Bfa1p, except for decreased GAP activity. Interestingly, in BFA1(E438K) cells, the MEN could be regulated with nearly wild type kinetics at physiological temperature, as well as in response to various checkpoint-activating signals, but the cells were more sensitive to spindle damage than wild type. These results suggest that the GAP activity of Bfa1p-Bub2p is responsible for the mitotic arrest caused by spindle damage and Bfa1p overproduction. In addition, the viability of cdc5-2 delta bfa1 cells was not reduced by BFA1(E438K), suggesting that Cdc5p also regulates Bfa1p to activate mitotic exit by other mechanism(s), besides phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号