首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The opportunistic pathogen Pseudomonas aeruginosa can establish life-long chronic infections in the airways of cystic fibrosis (CF) patients. Persistent lifestyle is established with P. aeruginosa patho-adaptive variants, which are clonal with the initially-acquired strains. Several reports indicated that P. aeruginosa adapts by loss-of-function mutations which enhance fitness in CF airways and sustain its clonal expansion during chronic infection. To validate this model of P. aeruginosa adaptation to CF airways and to identify novel genes involved in this microevolution, we designed a novel approach of positive-selection screening by PCR-based signature-tagged mutagenesis (Pos-STM) in a murine model of chronic airways infection. A systematic positive-selection scheme using sequential rounds of in vivo screenings for bacterial maintenance, as opposed to elimination, generated a list of genes whose inactivation increased the colonization and persistence in chronic airways infection. The phenotypes associated to these Pos-STM mutations reflect alterations in diverse aspects of P. aeruginosa biology which include lack of swimming and twitching motility, lack of production of the virulence factors such as pyocyanin, biofilm formation, and metabolic functions. In addition, Pos-STM mutants showed altered invasion and stimulation of immune response when tested in human respiratory epithelial cells, indicating that P. aeruginosa is prone to revise the interaction with its host during persistent lifestyle. Finally, sequence analysis of Pos-STM genes in longitudinally P. aeruginosa isolates from CF patients identified signs of patho-adaptive mutations within the genome. This novel Pos-STM approach identified bacterial functions that can have important clinical implications for the persistent lifestyle and disease progression of the airway chronic infection.  相似文献   

2.
3.
The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa.  相似文献   

4.
The majority of cystic fibrosis (CF) patients suffer from chronic respiratory infection with the opportunistic bacterial pathogen Pseudomonas aeruginosa. The virulence of P. aeruginosa is associated with the presence of various extracellular factors, like alginate, elastase, alkaline protease which contribute tissue destruction and assist bacterial invasion. Virulence factor production of P. aeruginosa strains isolated from 46 CF patients followed in two cities in Turkey was detected. Strains were compared genotypically by arbitrarily primed PCR. Antimicrobial susceptibilities to 12 antibiotics were determined by broth microdilution method. Evaluation of virulence factor results revealed that 95.8% of the strains were alginate, 71.7% elastase and 52.1% alkaline protease producers. AP-PCR analysis revealed 35 genotypes indicated almost a complete discrepancy among the strains. The most effective drugs were penems and quinolones. Among aminoglycosides amikacin was the most effective one and a high level resistance to beta lactams was observed. Alginate is the most important virulence factor in the chronic colonisation of CF patients with P. aeruginosa. No evidence for cross infection between patients and for relationship between phenotypes and genotypes of the strains was found.  相似文献   

5.
The human pathogen Pseudomonas aeruginosa has been shown previously to use similar virulence factors when infecting mammalian hosts or Dictyostelium amoebae. Here we randomly mutagenized a clinical isolate of P. aeruginosa , and identified mutants with attenuated virulence towards Dictyostelium . These mutant strains also exhibited a strong decrease in virulence when infecting Drosophila and mice, confirming that P. aeruginosa makes use of similar virulence traits to confront these very different hosts. Further characterization of these bacterial mutants showed that TrpD is important for the induction of the quorum-sensing circuit, while PchH and PchI are involved in the induction of the type III secretion system. These results demonstrate the usefulness and the relevance of the Dictyostelium host model to identify and analyse new virulence genes in P. aeruginosa .  相似文献   

6.
Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3) demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo.  相似文献   

7.
A significant number of environmental microorganisms can cause serious, even fatal, acute and chronic infections in humans. The severity and outcome of each type of infection depends on the expression of specific bacterial phenotypes controlled by complex regulatory networks that sense and respond to the host environment. Although bacterial signals that contribute to a successful acute infection have been identified in a number of pathogens, the signals that mediate the onset and establishment of chronic infections have yet to be discovered. We identified a volatile, low molecular weight molecule, 2-amino acetophenone (2-AA), produced by the opportunistic human pathogen Pseudomonas aeruginosa that reduces bacterial virulence in vivo in flies and in an acute mouse infection model. 2-AA modulates the activity of the virulence regulator MvfR (multiple virulence factor regulator) via a negative feedback loop and it promotes the emergence of P. aeruginosa phenotypes that likely promote chronic lung infections, including accumulation of lasR mutants, long-term survival at stationary phase, and persistence in a Drosophila infection model. We report for the first time the existence of a quorum sensing (QS) regulated volatile molecule that induces bistability phenotype by stochastically silencing acute virulence functions in P. aeruginosa. We propose that 2-AA mediates changes in a subpopulation of cells that facilitate the exploitation of dynamic host environments and promote gene expression changes that favor chronic infections.  相似文献   

8.
9.
Several strains of the human opportunistic pathogen Pseudomonas aeruginosa infect plants, nematodes and insects. Our laboratory has developed a multihost pathogenesis system based on the P. aeruginosa clinical isolate PA14, in which non-mammalian hosts are used to screen directly for virulence-attenuated mutants. The majority of PA14 mutants isolated using non-mammalian hosts also displayed reduced virulence in a burned mouse model. Surprisingly, only a few host-specific virulence factors were identified, and many of the P. aeruginosa mutants were attenuated in virulence in all the hosts. These studies illustrate the extensive conservation in the virulence mechanisms used by P. aeruginosa to infect evolutionarily diverged hosts, and validate the multihost method of screening for virulence factors relevant to mammalian pathogenesis. Through the use of genetically tractable hosts, the multihost pathogenesis model also provides tools for elucidating host responses and dissecting the fundamental molecular interactions that underlie bacterial pathogenesis.  相似文献   

10.
The majority of cystic fibrosis (CF) patients succumb to a chronic infection of the airway with Pseudomonas aeruginosa. Paradoxically, pathogenic strains are often susceptible to antibiotics, but the infection cannot be eradicated with antimicrobial therapy. We find that in a majority of patients with airway infections, late isolates of P. aeruginosa produce increased levels of drug-tolerant persister cells. The genomes of a clonal pair of early/late isolates from a single patient have been previously sequenced, and the late isolate (obtained at age 96 months) showed a 100-fold increase in persister levels. The 96-month isolate carries a large number of mutations, including a mutation in mutS that confers a hypermutator phenotype. There is also a mutation in the mexZ repressor controlling the expression of the MexXY-OprM multidrug pump, which results in a moderate increase in the ofloxacin, carbenicillin, and tobramycin MICs. Knocking out the mexXY locus restored the resistance to that of the parent strain but did not affect the high levels of persisters formed by the 96-month isolate. This suggests that the late isolate is a high-persister (hip) mutant. Increased persister formation was observed in exponential phase, stationary phase, and biofilm populations of the 96-month isolate. Analysis of late isolates from 14 additional patients indicated that 10 of them are hip mutants. Most of these hip mutants did not have higher drug resistance. Increased persister formation appears to be their sole mechanism for surviving chemotherapy. Taken together, these findings suggest a link between persisters and recalcitrance of CF infection and identify an overlooked culprit-high-persister mutants producing elevated levels of drug-tolerant cells. Persisters may play a similarly critical role in the recalcitrance of other chronic infections.  相似文献   

11.
Pseudomonas aeruginosa is an opportunistic pathogen and an important cause of infection, particularly amongst cystic fibrosis (CF) patients. While specific strains capable of patient-to-patient transmission are known, many infections appear to be caused by unique and unrelated strains. There is a need to understand the relationship between strains capable of colonising the CF lung and the broader set of P. aeruginosa isolates found in natural environments. Here we report the results of a multilocus sequence typing (MLST)-based study designed to understand the genetic diversity and population structure of an extensive regional sample of P. aeruginosa isolates from South East Queensland, Australia. The analysis is based on 501 P. aeruginosa isolates obtained from environmental, animal and human (CF and non-CF) sources with particular emphasis on isolates from the Lower Brisbane River and isolates from CF patients obtained from the same geographical region. Overall, MLST identified 274 different sequence types, of which 53 were shared between one or more ecological settings. Our analysis revealed a limited association between genotype and environment and evidence of frequent recombination. We also found that genetic diversity of P. aeruginosa in Queensland, Australia was indistinguishable from that of the global P. aeruginosa population. Several CF strains were encountered frequently in multiple ecological settings; however, the most frequently encountered CF strains were confined to CF patients. Overall, our data confirm a non-clonal epidemic structure and indicate that most CF strains are a random sample of the broader P. aeruginosa population. The increased abundance of some CF strains in different geographical regions is a likely product of chance colonisation events followed by adaptation to the CF lung and horizontal transmission among patients.  相似文献   

12.
Chronic bacterial lung infections in cystic fibrosis (CF) are the leading cause of morbidity and mortality. While a range of bacteria are known to be capable of establishing residence in the CF lung, only a small number have a clearly established link to deteriorating clinical status. The two bacteria with the clearest roles in CF lung disease are Pseudomonas aeruginosa and bacteria belonging to the Burkholderia cepacia complex (BCC). A number of common adaptations by P. aeruginosa strains to chronic lung infection in CF have been well described. Typically, initial isolates of P. aeruginosa are nonmucoid and display a range of putative virulence determinants. Upon establishment of chronic infection, subsequent isolates ultimately show a reduction in putative virulence determinants, including swimming motility, along with an acquisition of the mucoid phenotype and increased levels of antimicrobial resistance. Infections by BCC are marked by an unpredictable, but typically worse, clinical outcome. However, in contrast to P. aeruginosa infections in CF, studies describing adaptive changes in BCC bacterial phenotype during chronic lung infections are far more limited. To further enhance our understanding of chronic lung infections by BCC bacteria in CF, we assessed the swimming motility phenotype in 551 isolates of BCC bacteria from cystic fibrosis (CF) lung infections between 1981 and 2007. These data suggest that swimming motility is not typically lost by BCC during chronic infection, unlike as seen in P. aeruginosa infections. Furthermore, while we observed a statistically significant link between mucoidy and motility, we did not detect any link between motility phenotype and clinical outcome. These studies highlight the need for further work to understand the adaptive changes of BCC bacteria during chronic infection in the CF lung.  相似文献   

13.
Matrilysin (matrix metalloproteinase-7) is expressed by mucosal epithelia throughout the body and functions in host defense by activating murine intestinal alpha-defensins. In normal adult human lung, matrilysin is expressed at low levels in the airway epithelium, but is markedly up-regulated in cystic fibrosis (CF). Because CF lungs support a heavy bacterial load, we assessed if relevant CF pathogens regulate matrilysin expression in human lung epithelial cells. Indeed, acute infection with Pseudomonas aeruginosa (but not Staphylococcus aureus, Haemophilus influenzae, or Klebsiella pneumoniae) induced the expression of matrilysin in Calu-3 lung epithelial cells. Increased matrilysin mRNA levels were detectable at 3 h post-infection and peaked at a 25-fold induction between 6 and 8 h. Both P. aeruginosa CF isolates and laboratory strains induced matrilysin expression to similar levels. Flagellin, the monomeric precursor of bacterial flagella, was identified as the inductive factor released by P. aeruginosa that regulated matrilysin expression. In addition, flagellin-null mutants failed to stimulate matrilysin expression in cultured cells or in lungs infected in vivo. These data show that P. aeruginosa (and specifically flagellin) potently stimulates matrilysin expression in lung epithelial cells and may mediate the overexpression of this proteinase in CF lungs.  相似文献   

14.
15.
Studies on cultured cells and in infection models have shown that cell density-dependent quorum-sensing (QS) controls many of the known virulence factors of Pseudomonas aeruginosa . However, it is less clear what role QS plays in chronic human lung infections associated with cystic fibrosis (CF). The involvement of QS in biofilm development, crucial to the establishment of long-term infections, suggests a role in the early stages of infection. However, the accumulation of QS mutants during chronic CF infections has been taken to indicate that any role diminishes thereafter. Here, we discuss the evidence for a continuing role for QS in P. aeruginosa CF infections, including QS activity in CF sputa and CF-relevant effects of QS-regulated products, such as pyocyanin. Bacterial population behaviour in CF is complex, and the exact roles of QS remains unclear. Therapeutic strategies directed against QS suggest that a greater understanding of bacterial populations during infection would be a valuable research goal from a clinical perspective.  相似文献   

16.
The opportunistic pathogen Pseudomonas (Ps.) aeruginosa causes severe infections, particularly in immunocompromised individuals and patients with cystic fibrosis (CF). A serious side effect of antibiotic therapy in Ps. aeruginosa infections is the development of resistance to antibiotics. During the infection process Ps. aeruginosa forms biofilms, rendering bacterial cells more resistant to disinfectants, antibiotics and the action of host immune defense effectors. Pseudomonas aeruginosa employs the intercellular communication system, known as quorum sensing (QS) to coordinate the expression of tissue-damaging factors. Since the QS systems controls the production of different virulence factors, it is possible that the inhibition of its regulatory activity to severely compromise the ability of Ps. aeruginosa to cause infections in humans. Many studies have shown that some probiotic strains exhibit inhibitory activity on different virulence properties of pathogenic bacteria (adherence to cellular or inert substrate, soluble virulence factors expression). The aim of the present study was to investigate by real-time RT-qPCR the influence of probiotic culture soluble factors on the QS genes expression in 30 Ps. aeruginosa strains isolated from patients hospitalized in the National Institute for Cardiovascular Infections, Prof. C.C. Iliescu Fundeni Hospital, Bucharest. The results of the real time RT-qPCR have shown that in all Ps. aeruginosa strains grown in the presence of probiotic culture sterile filtrates, the level of QS genes expression was reduced comparatively with those from control cultures. In conclusion, these results proved that the inhibition of virulence factors regulation mechanisms by soluble molecules secreted by probiotics could represent an interesting way pathogenicity and virulence attenuation in Ps. aeruginosa nosocomial strains.  相似文献   

17.
18.
19.
Cystic fibrosis (CF) patients suffer from chronic bacterial lung infections, most notably by Pseudomonas aeruginosa, which persists for decades in the lungs and undergoes extensive evolution. P. aeruginosa requires iron for virulence and uses the fluorescent siderophore pyoverdine to scavenge and solubilize ferric iron during acute infections. Pyoverdine mutants accumulate in the lungs of some CF patients, however, suggesting that the heme and ferrous iron acquisition pathways of P. aeruginosa are more important in this environment. Here, we sought to determine how evolution of P. aeruginosa in the CF lung affects iron acquisition and regulatory pathways through the use of longitudinal CF isolates. These analyses demonstrated a significant reduction of siderophore production during the course of CF lung infection in nearly all strains tested. Mass spectrometry analysis of one of these strains showed that the later CF isolate has streamlined the metabolic flux of extracellular heme through the HemO heme oxygenase, resulting in more-efficient heme utilization. Moreover, gene expression analysis shows that iron regulation via the PrrF small RNAs (sRNAs) is enhanced in the later CF isolate. Finally, analysis of P. aeruginosa gene expression in the lungs of various CF patients demonstrates that both PrrF and HemO are consistently expressed in the CF lung environment. Combined, these results suggest that heme is a critical source of iron during prolonged infection of the CF lung and that changes in iron and heme regulatory pathways play a crucial role in adaptation of P. aeruginosa to this ever-changing host environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号